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General Linear Mixed Model


The general linear mixed model is an extension of the general linear model. The standard linear regression model, which is used in the GLM procedure, models the mean of the response variable 
by using the regression parameters. The random errors are assumed to be independent and normally distributed with a mean of 0 and a common variance. If the parametric assumptions are valid (other than the normality assumption), then the estimated regression parameters are the best linear unbiased estimates (BLUE).

The general linear mixed model extends the general linear model by the addition of random effect parameters and by allowing a more flexible specification of the covariance matrix of the random errors. For example, general linear mixed models allow for both correlated error terms and error terms with heterogeneous variances. The matrix Z can contain continuous or dummy predictor variables, just like 
the matrix X. The name mixed model indicates that the model contains both fixed-effect parameters and random-effect parameters. 
In the longitudinal model proposed by Diggle, Heagerty, Liang, and Zeger (2002), it is assumed that 
the error terms have a constant variance and can be decomposed as 
where
	is the measurement error reflecting the variation added by the measurement process.
	is the error associated with the serial correlation in which times closer together are more correlated than times farther apart.
i	denotes the subject. 

If you assume that the measurement errors have an independent covariance structure (), then you should concern yourself only with covariance structures that reflect the serial correlation.

Variable effects are either fixed or random depending on how the levels of the variables that appear in the study are selected. For example, the above slide represents a clinical trial analyzing the effectiveness of three drugs. If the three drugs are the only candidates for the clinical trial and the conclusions of the clinical trial are restricted to just those three drugs, then the effect of the variable drug is a fixed effect.

However, suppose the clinical trial was performed in four clinics and the four clinics are a sample from a larger population of clinics. The conclusions of the clinical trials are not only restricted to the four clinics but rather to the population of clinics. The appropriate model in this study is a general linear mixed model with drug as a fixed-effect variable and clinic as a random-effect variable.

PROC MIXED is used to model linear mixed models. The procedure also provides you with 
the flexibility of modeling not only the means of your data, but the variances and covariances as well. 
Selected MIXED procedure statements:
CLASS	specifies the classification variables to be used in the analysis. The CLASS statement must precede the MODEL statement.
MODEL	specifies the response variable (one and only one) and all the fixed effects, which determine the X matrix of the mixed model. The MODEL statement is required and only one is allowed with each invocation of PROC MIXED.
RANDOM	defines the random effects, which determine the Z matrix of the mixed model. 
The random effects can be categorical or numeric, and multiple RANDOM statements are possible. When random intercepts are needed, you must specify INTERCEPT (or INT) 
as a random effect. The covariance structure of the random effects corresponds 
to the G matrix.
REPEATED	specifies the R matrix in the mixed model. If no repeated statement is specified, then 
R is assumed to have the independent covariance structure. The repeated effect defines 
the ordering of the repeated measurements within each subject. If no repeated effect 
is specified, then the repeated measures data must be similarly ordered for each subject. All missing response variable values must be indicated with periods in the input data set unless they all fall at the end of a subject’s repeated response profile. The repeated effect must contain only classification variables. Furthermore, the levels of the repeated effect must be different for each observation within a subject.


A nonlinear mixed model can be used when modeling a process that follows a more general nonlinear relationship. Nonlinear mixed models can be fit in the NLMIXED procedure. Note that polynomial models do not belong to nonlinear models. Polynomial models are still linear in the parameters 
of the mean function. Nonlinear models refer to the nonlinear relationship between the response variable 
and the fixed effect parameters (in other words, ).


Estimation is more difficult in the mixed model than in the general linear model. Not only do you have fixed effects as in the general linear model, but you also have to estimate the random effects, 
the covariance structure of the random effects, and the covariance structure of the random errors. Ordinary least squares is no longer the best method because the distributional assumptions regarding 
the random error terms are too restrictive. In other words, the parameter estimates are no longer the best linear unbiased estimates.

Notice that EGLS requires the knowledge of G and R. Because you rarely have this information, the goal becomes finding a reasonable estimate for G and R.



The parameters of the covariance matrices G and R must be estimated. After they are estimated, they are substituted in place of the true parameter values in G and R to compute estimates of  and .

The maximum likelihood estimation method finds the parameter estimates that are most likely to occur given the data. The parameter estimates are derived by maximizing the likelihood function, which 
is a mathematical expression that describes the joint probability of obtaining the data expressed 
as a function of the parameter estimates.
PROC MIXED implements two likelihood-based methods, maximum likelihood (ML) and restricted maximum likelihood (REML), to estimate the parameters in G and R. The difference between ML and REML is the construction of the likelihood function. REML constructs the likelihood based on residuals and obtains maximum likelihood estimates of the variance components from this restricted/residual likelihood function. However, the two methods are asymptotically equivalent and often give very 
similar results. 
Details
PROC MIXED constructs an objective function associated with ML or REML and maximizes it over all unknown parameters. The corresponding log likelihood functions are as follows:
,
,
where  and p=rank(X).
By default, PROC MIXED uses a ridge-stabilized Newton-Raphson algorithm to find the parameter estimates that minimize –2 times the log likelihood functions.

The distinction between ML and REML becomes important only when the number of fixed effects 
is relatively large. In that case, the comparisons unequivocally favor REML. First, REML copes much more effectively with strong correlations among the responses for the subjects than does ML. Second, REML estimates do not have the downward bias that ML estimates have because REML estimators take into account the degrees of freedom from the fixed effects in the model. Finally, REML estimators are less sensitive to outliers in the data than ML estimators. In fact, when the estimates do vary substantially, Diggle, Heagerty, Liang, and Zeger favor REML (2002). 
There is also the noniterative MIVQUE0 method, which performs minimum variance quadratic unbiased estimation of the covariance parameters. However, Swallow and Monahan (1984) present simulation evidence favoring REML and ML over MIVQUE0. MIVQUE0 is generally not recommended except for situations when the iterative REML and ML methods fail to converge and it is necessary to obtain parameter estimates from a fitted model.


PROC MIXED requires that the data be structured so that each observation represents the measurement for a subject at only one moment in time. Therefore, if Subject A had five repeated measurements, Subject A would have five observations. An ID variable is needed to link the repeated measurements to the subjects, and a time variable is needed to order the repeated measurements within each subject. 
With repeated measures data using the SUBJECT= option in the REPEATED statement, the matrix R has a block-diagonal covariance structure where the block corresponds to the covariance structure for each subject. The observations within each block can take on a variety of covariance structures while the observations outside of the blocks are assumed to be independent. In PROC MIXED, the blocks must have the same structure but can have different parameter estimates. 

The validity of the statistical inference of the general linear mixed model depends on the covariance structure that you select for R. Therefore, a large amount of time spent on building the model is spent 
on choosing a reasonable covariance structure for R. 

The simplest covariance structure is the independent or variance component model, where the within-subject error correlation is zero. This is the default structure for both the RANDOM and REPEATED statements. For the between-subject errors, the simple covariance structure might be a reasonable assumption. However, for the within-subject errors, the simple covariance structure might be a reasonable choice if the repeated measurements occurred at long enough intervals so that the correlation is effectively zero relative to other variation.


The covariance structure with the simplest correlation model is the compound symmetry structure. 
It assumes that the correlation () is constant regardless of the distance between the time points. This 
is the assumption that univariate ANOVA makes, but it is usually not a reasonable choice in longitudinal data analysis. However, this covariance structure might be reasonable when the repeated measurements are not obtained over time. For example, the compound symmetry covariance structure might be a good choice if the independent experimental units were classrooms and the responses obtained were from each student in the classroom (Davis 2002).


The unstructured covariance structure is parameterized directly in terms of variances and covariances where the observations for each pair of times have their own unique correlations. The variances are constrained to be nonnegative and the covariances are unconstrained. This is the covariance structure used in multivariate ANOVA.
The correlation coefficient for row 1 column 2 is



There are two potential problems with using the unstructured covariance. First, it requires the estimation of a large number of variance and covariance parameters (). This can lead to severe computational problems, especially with unbalanced data. Second, it does not exploit the existence of trends in variances and covariances over time, and this can result in erratic patterns of standard error estimates (Littell et al. 1998). If a simpler covariance structure is a reasonable alternative, then the unstructured covariance structure wastes a great deal of information, which would adversely affect efficiency and power.
Although the unstructured covariance structure does not require equal spacing among the time points, 
the structure is not appropriate for the R matrix in the CD4+ cell count example because the spacing between time points is different across subjects. For example, the time interval between the first and second measurements for Subject 1 might be different from the time interval for Subject 2. The time interval between measurements can be different within the subjects (time between first and second measurements can be different from time between second and third measurements), but the time interval between specific measurements (first and second, second and third, and so on) must be the same across all subjects.







The first-order autoregressive covariance structure takes into account a common trend in longitudinal data; the correlation between observations is a function of the number of time points apart. In this structure, the correlation between adjacent observations is , regardless of whether the pair 
of observations is the first and second pair, the second and third pair, and so on. The correlation is  for any pair 
of observations two units apart, and for any pair of observations d units apart. Notice that the AR(1) model requires only estimates for just two parameters, and , whereas the unstructured models require estimates for  parameters (where T is the number of time points). One shortcoming 
is that the correlation decays very quickly as the spacing between measurements increases (Davis 2002).
The assumption in the AR(1) model is that the longitudinal data are equally spaced (Littell et al. 1996). This means that the distance between time 1 and 2 is the same as time 2 and 3, time 3 and 4, and 
so on. The AR(1) structure also assumes that the correlation structure does not change appreciably over time (Littell et al. 2002). Therefore, the AR(1) structure might not be appropriate for the CD4+ cell study because the repeated measures are unequally spaced.
In some circumstances the AR(1) model might be justified empirically where the observations are not evenly spaced. When the adjoining observations show similar covariances, despite unequal time periods, with exponentially decreasing covariances for increasingly separated measurement time points, then 
the AR(1) model might be warranted (Brown and Prescott 2001). However, these circumstances are unlikely for the CD4+ cell study.



The Toeplitz covariance structure is similar to the AR(1) covariance structure in that the pairs 
of observations separated by a common distance share the same correlation. However, observations d units apart have correlation  instead of. The Toeplitz structure requires the estimation of T parameters instead of just two parameters.
You can also specify a banded Toeplitz structure in which you specify the number of time points apart 
the measurements are still correlated. For example, a TOEP(3) (Toeplitz with 3 bands) structure would indicate that measurements are correlated if they are three or fewer time points apart. If they are four 
or more time points apart, the correlation is zero.
As with the AR(1) structure, the Toeplitz structure assumes that the observations are equally spaced 
and the correlation structure does not change appreciably over time (Littell et al. 2002). Therefore, 
the Toeplitz covariance structure is not an appropriate structure for the CD4+ cell study.

Covariance structures that allow for unequal spacing are the spatial covariance structures. These structures are mainly used in geostatistical models, but they are very useful for unequally spaced longitudinal measurements where the correlations decline as a function of time. The connection between geostatistics and longitudinal data is that the unequally spaced data can be viewed as a spatial process 
in one dimension (Littell et al. 1996).


The spatial power structure provides a direct generalization of the AR(1) structure for equally spaced data. Only two parameters are estimated (and ).

The spatial Gaussian structure is a frequently used covariance structure for unequally spaced measurements. The difference between the spatial covariance structures is the assumptions made on how the correlation between the error terms decreases as the length of the time interval increases. To determine which correlation function is the best fit for your data, the sample variogram (which will be discussed 
in a later section) could be used.
	Other spatial structures used later in the course include spatial linear, spatial exponential, 
and spatial spherical.


PROC MIXED provides the following methods for estimating the approximate denominator degrees 
of freedom: containment, between-within, residual, Satterthwaite’s, and KENWARDROGER. KENWARDROGER is considered by many to be the most appropriate for longitudinal models.

The Kenward-Roger degrees of freedom adjustment uses an approximation that involves inflating 
the estimated variance-covariance matrix of the fixed and random effects. Satterthwaite-type degrees 
of freedom are then computed based on this adjustment. By default, the observed information matrix 
of the covariance parameter estimates is used in the calculations.
	The KENWARDROGER method uses more computer resources. It can take a long time and extensive memory for large data sets.
	In a simulation study performed by Guerin and Stroup (2000), the Kenward-Roger degrees 
of freedom adjustment was shown to be superior or, at worst, equal to the Satterthwaite and default DDFM options. They strongly recommend the KR adjustment as the standard operating procedure for longitudinal models. 

For covariance structures that have nonzero second derivatives with respect to the covariance parameters, the Kenward-Roger covariance matrix adjustment includes a second-order term. This term can result 
in standard error shrinkage. Also, the resulting adjusted covariance matrix can then be indefinite 
and is not invariant under reparameterization.
	The following are examples of covariance structures that generally lead to nonzero second derivatives: First-order antedependence (TYPE=ANTE(1)), First-order autoregressive  (TYPE=AR(1)), Heterogeneous AR(1) (TYPE=ARH(1)),  First-order autoregressive
moving average (TYPE=ARMA(1,1)),  Heterogeneous CS (TYPE=CSH),  Factor-Analytic (TYPE=FA), No diagonal Factor-Analytic ( TYPE=FA0()),Heterogeneous Toeplitz  (TYPE=TOEPH), Unstructured Correlations (TYPE=UNR), and all Spatial covariance structures (TYPE=SP()).

The FIRSTORDER suboption of the DDFM=KR option is recommended for the spatial covariance structures because these covariance structures generally lead to nonzero second derivatives.
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Example:	Fit a longitudinal model to the long.aids data set. Rescale the response variable by dividing CD4 by 100. Include all the two-factor interactions with time and the time quadratic and cubic effects. Use the Kenward-Roger degrees of freedom calculations and use the compound symmetry covariance structure.
/* long02d01.sas */
data aids;
   set long.aids;
   cd4_scale=cd4/100;
run; 
A common recommendation is to rescale the response and explanatory variables if they have relatively large values compared to the other variables in the model. This creates a more stable model and decreases the likelihood of convergence problems in PROC MIXED. Because the response variable CD4 has relatively large values, a new rescaled variable was created. If time were measured in days, then that variable would also be rescaled.
/* The program below assumes the data is sorted by id and time */
proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*depression 
         time*partners time*drug time*cigarettes 
         time*time time*time*time
         / solution ddfm=kr;
   repeated / type=cs subject=id r rcorr;
   title 'Longitudinal Model with Compound Symmetry '
         'Covariance Structure';
run;
Selected MODEL statement options:
DDFM=KR	performs the degrees of freedom calculations proposed by Kenward and Roger (1997).   
SOLUTION	requests estimates for all fixed effects in the model, together with the standard errors, t‑statistics, and p-values.
Selected REPEATED statement options: 
R	requests that the residual covariance matrix (R matrix) be displayed. By default, the covariance matrix for the first subject is displayed. You can also request covariance matrices for specific subjects. 
RCORR	requests the correlation matrix corresponding to the blocks of the estimated covariance matrix be displayed. By default, the correlation matrix for the first subject is displayed. You can also request correlation matrices for specific subjects.
SUBJECT=ID	identifies the subjects in the mixed model. This defines the block diagonality 
of the covariance matrix. The identification variable can be continuous or categorical.
[bookmark: Demo2_8_pg26]TYPE=	specifies the covariance structure for the error components. The default structure is the simple or variance components structure. 
	When the subject’s identification number is treated as continuous, PROC MIXED considers 
a record to be from a new subject whenever the value of the identification number changes from the previous record. Therefore, you should first sort the data by the values of the identification number if they are not already sorted. The long.aids data set is sorted by ID. Using a continuous ID variable reduces the execution time for models with a large number of subjects.
No repeated effects are specified in the REPEATED statement because the data are similarly ordered within each subject and there are no missing time values. If the measurements were not similarly ordered within subject, then the time variable would have to be used as the repeated effect. If there were missing measurements, then you must indicate all missing response variable values with periods in the data set unless they all fall at the end of the subject’s response profile. This requirement is necessary in order to inform PROC MIXED of the proper location of the observed repeated responses.
Repeated effects must be classification variables, so you could use two versions of the time variable. A continuous time could be used in the MODEL statement as well as the RANDOM statement, and a classification time could be used in the REPEATED statement.
                 Longitudinal Model with Compound Symmetry Covariance Structure                

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structure         Compound Symmetry
                     Subject Effect               id
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Kenward-Roger
                     Degrees of Freedom Method    Kenward-Roger
The Model Information table shows the name of the data set, the dependent variable, the covariance structure used in the model, the subject effect, the estimation method to compute the parameters for the covariance structure, and the method to compute the degrees of freedom. The default estimation method is REML. The METHOD= option can be used in the PROC MIXED statement to specify other estimation methods.
There are four methods for handling the residual variance in the model. The profile method factors out 
the residual variance out of the optimization problem, whereas the fit method retains the residual variance as a parameter in the optimization. The factor method keeps the residual fixed, and none is displayed when a residual variance is not a part of the model. The NOPROFILE option in the PROC MIXED statement changes the method based on the chosen covariance structure. 
[bookmark: Demo2_8_pg27]The fixed effects standard error method describes the method used to compute the approximate standard errors for the fixed-effects parameter estimates and related functions of them. The default method can be changed using the EMPIRICAL option in the PROC MIXED statement. This option requests robust standard errors obtained from using the sandwich estimator, which has been shown to be consistent 
as long as the mean model is correctly specified. However, if there are any missing observations, the EMPIRICAL option provides only valid inferences for the fixed effects under the MCAR assumption. The EMPIRICAL option is not used here because it cannot be used with the Kenward-Roger degrees 
of freedom calculation.
                                          Dimensions

                              Covariance Parameters             2
                              Columns in X                     14
                              Columns in Z                      0
                              Subjects                        369
                              Max Obs per Subject              12

                                    Number of Observations

                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0
The Dimensions table lists the sizes of the relevant matrices. This table can be useful in determining CPU time and memory requirements. The Number of Observations table shows the number of observations read, used, and not used. Because there are no missing observations, all the observations are used.
                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1     12668.04910184
                          1              2     11846.03145506      0.00000217
                          2              1     11846.02324942      0.00000000

                                   Convergence criteria met.
The Iteration History table describes the optimization of the residual log likelihood. The minimization 
is performed using a ridge-stabilized Newton-Raphson algorithm, and the rows of the table describe 
the iterations that this algorithm takes in order to minimize the objective function.
                                Estimated R Matrix for Subject 1

                             Row        Col1        Col2        Col3

                               1     12.0198      5.7939      5.7939
                               2      5.7939     12.0198      5.7939
                               3      5.7939      5.7939     12.0198
Because the R option is used in the REPEATED statement, the residual covariance matrix is displayed for the first subject by default. The diagonal shows the variance while the off-diagonals show the covariances.
                                     Estimated R Correlation
                                      Matrix for Subject 1

                             Row        Col1        Col2        Col3

                               1      1.0000      0.4820      0.4820
                               2      0.4820      1.0000      0.4820
                               3      0.4820      0.4820      1.0000
The RCORR option displays the correlation matrix for the first subject. The estimated correlation among the measurements is 0.4820. The correlations are the same regardless of which pair of measurements is examined because the compound symmetry covariance structure was requested.
[bookmark: Demo2_8_pg28]                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                CS           id           5.7939
                                Residual                  6.2259
The Covariance Parameter Estimates table shows the parameter estimates for the compound symmetry covariance structure. In this example, the estimated covariance is 5.7939 and the estimated residual variance is 6.2259. Adding the values together gives the estimated variance (12.0198).
                                        Fit Statistics

                             -2 Res Log Likelihood         11846.0
                             AIC (Smaller is Better)       11850.0
                             AICC (Smaller is Better)      11850.0
                             BIC (Smaller is Better)       11857.8
The Fit Statistics table provides information that you can use to select the most appropriate covariance structure. Akaike’s Information Criterion (AIC) (Akaike 1974) penalizes the –2 residual log likelihood 
by twice the number of covariance parameters in the model. The smaller the value is, the better the model is. The finite-sample version of the AIC (AICC) is also included. It is recommended for small sample sizes to use the AICC rather than the AIC. The Schwarz’s Bayesian Information Criterion (BIC) (Schwarz 1978) also penalizes the –2 residual log likelihood, but the penalty is more severe. Therefore, BIC tends to choose less complex models than AIC or AICC.
                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   1        822.03          <.0001
The Null Model Likelihood Ratio Test table shows a test that determines whether it is necessary to model the covariance structure of the data at all. The test statistic is –2 times the log likelihood from the null model (model with an independent covariance structure) minus –2 times the log likelihood from the fitted model. The p-value can be used to assess the significance of the model fit.
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            8.0594      0.2362    1076      34.13      <.0001
             time                -1.0430     0.08359    2249     -12.48      <.0001
             age                 0.01554     0.01885     375       0.82      0.4104
             cigarettes           0.4605     0.07203    1328       6.39      <.0001
             drug                 0.1295      0.2017    2339       0.64      0.5209
             partners            0.03450     0.02237    2360       1.54      0.1231
             depression         -0.02638    0.008662    2326      -3.05      0.0024
             time*age           -0.01598    0.004560    2258      -3.50      0.0005
             time*depression    0.000784    0.003357    2234       0.23      0.8153
             time*partners      -0.00584    0.009560    2230      -0.61      0.5410
             time*drug          -0.04277     0.07641    2233      -0.56      0.5757
             time*cigarettes     -0.1520     0.02454    2244      -6.19      <.0001
             time*time           -0.1518     0.02400    2149      -6.32      <.0001
             time*time*time      0.05458    0.006254    2119       8.73      <.0001
[bookmark: Demo2_8_pg29]The SOLUTION option in the MODEL statement requested a table for the fixed effects parameter estimates. Notice that the quadratic and cubic time effects are significant (which agrees with the average trend curve of the CD4+ cell count) and the time*age and time*cigarettes interactions are significant.
                                 Type 3 Tests of Fixed Effects

                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1    2249     155.67    <.0001
                      age                   1     375       0.68    0.4104
                      cigarettes            1    1328      40.88    <.0001
                      drug                  1    2339       0.41    0.5209
                      partners              1    2360       2.38    0.1231
                      depression            1    2326       9.27    0.0024
                      time*age              1    2258      12.27    0.0005
                      time*depression       1    2234       0.05    0.8153
                      time*partners         1    2230       0.37    0.5410
                      time*drug             1    2233       0.31    0.5757
                      time*cigarettes       1    2244      38.37    <.0001
                      time*time             1    2149      39.99    <.0001
                      time*time*time        1    2119      76.17    <.0001
The Type 3 Tests of Fixed Effects table shows the hypothesis tests for the significance of each of the fixed effects. A p-value is computed from an F distribution with the numerator and denominator degrees 
of freedom. You can use the HTYPE= option in the MODEL statement to obtain tables of Type I (sequential) tests and TYPE II (adjusted) tests in addition to or instead of the table of TYPE III (partial) tests. You can also use the CHISQ option to obtain Wald chi-square tests of the fixed effects.
Example:	Fit a longitudinal model using the spatial power covariance structure and use FIRSTORDER suboption in the Kenward-Roger degrees of freedom adjustment. Request the covariance matrix and the correlation matrix for the 13th subject.
proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners depression 
          time*age time*depression time*partners time*drug
          time*cigarettes time*time time*time*time 
          / solution ddfm=kr(firstorder);
   repeated / type=sp(pow)(time) local subject=id r=13 rcorr=13;      
   title 'Longitudinal Model with Spatial Power Covariance Structure';
run;
Selected REPEATED statement option:
LOCAL	adds a measurement error component to the serial correlation component. 
This option is useful when you model a time series covariance structure.
Selected DDFM= suboption:
FIRSTORDER	eliminates the second derivatives from the calculation of the covariance matrix adjustment.
	The variable time in the TYPE= option is used to calculate the time differences between repeated measurements.
[bookmark: Demo2_8_pg30]                   Longitudinal Model with Spatial Power Covariance Structure                  

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structure         Spatial Power
                     Subject Effect               id
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger

                                          Dimensions

                              Covariance Parameters             3
                              Columns in X                     14
                              Columns in Z                      0
                              Subjects                        369
                              Max Obs per Subject              12

                                    Number of Observations

                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1     12668.04910184
                          1              3     11883.08815296      0.32992483
                          2              1     11881.79852820      0.00348677
                          3              2     11864.84042331      0.10490545
                          4              2     11801.90993395      2.88713335
                          5              2     11734.85393060      0.00204795
                          6              2     11731.57580732      0.00054912
                          7              1     11729.33587289      0.00001849
                          8              1     11729.26578521      0.00000003
                          9              1     11729.26567357      0.00000000

                                   Convergence criteria met.
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  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1   12.1853    7.2673    6.7060    6.2226    5.7297    5.2850    4.8914    4.5252    4.1739
    2    7.2673   12.1853    7.2487    6.7261    6.1934    5.7126    5.2872    4.8914    4.5117
    3    6.7060    7.2487   12.1853    7.2891    6.7118    6.1908    5.7297    5.3008    4.8893
    4    6.2226    6.7261    7.2891   12.1853    7.2332    6.6717    6.1749    5.7126    5.2692
    5    5.7297    6.1934    6.7118    7.2332   12.1853    7.2456    6.7060    6.2040    5.7224
    6    5.2850    5.7126    6.1908    6.6717    7.2456   12.1853    7.2704    6.7261    6.2040
    7    4.8914    5.2872    5.7297    6.1749    6.7060    7.2704   12.1853    7.2673    6.7032
    8    4.5252    4.8914    5.3008    5.7126    6.2040    6.7261    7.2673   12.1853    7.2456
    9    4.1739    4.5117    4.8893    5.2692    5.7224    6.2040    6.7032    7.2456   12.1853
   10    3.8615    4.1739    4.5233    4.8747    5.2940    5.7396    6.2013    6.7032    7.2673
   11    3.5831    3.8730    4.1972    4.5233    4.9124    5.3258    5.7543    6.2199    6.7434
   12    3.3050    3.5724    3.8714    4.1722    4.5310    4.9124    5.3076    5.7371    6.2199

                                Estimated R Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1    3.8615      3.5831      3.3050
                                2    4.1739      3.8730      3.5724
                                3    4.5233      4.1972      3.8714
                                4    4.8747      4.5233      4.1722
                                5    5.2940      4.9124      4.5310
                                6    5.7396      5.3258      4.9124
                                7    6.2013      5.7543      5.3076
                                8    6.7032      6.2199      5.7371
                                9    7.2673      6.7434      6.2199
                               10   12.1853      7.2891      6.7233
                               11    7.2891     12.1853      7.2456
                               12    6.7233      7.2456     12.1853
The Estimated R Matrix table shows the residual covariance matrix for the 13th subject who had 12 repeated measurements.
                          Estimated R Correlation Matrix for Subject 13

  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1    1.0000    0.5964    0.5503    0.5107    0.4702    0.4337    0.4014    0.3714    0.3425
    2    0.5964    1.0000    0.5949    0.5520    0.5083    0.4688    0.4339    0.4014    0.3703
    3    0.5503    0.5949    1.0000    0.5982    0.5508    0.5080    0.4702    0.4350    0.4012
    4    0.5107    0.5520    0.5982    1.0000    0.5936    0.5475    0.5067    0.4688    0.4324
    5    0.4702    0.5083    0.5508    0.5936    1.0000    0.5946    0.5503    0.5091    0.4696
    6    0.4337    0.4688    0.5080    0.5475    0.5946    1.0000    0.5967    0.5520    0.5091
    7    0.4014    0.4339    0.4702    0.5067    0.5503    0.5967    1.0000    0.5964    0.5501
    8    0.3714    0.4014    0.4350    0.4688    0.5091    0.5520    0.5964    1.0000    0.5946
    9    0.3425    0.3703    0.4012    0.4324    0.4696    0.5091    0.5501    0.5946    1.0000
   10    0.3169    0.3425    0.3712    0.4000    0.4345    0.4710    0.5089    0.5501    0.5964
   11    0.2941    0.3178    0.3444    0.3712    0.4031    0.4371    0.4722    0.5104    0.5534
   12    0.2712    0.2932    0.3177    0.3424    0.3718    0.4031    0.4356    0.4708    0.5104
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                                      Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1    0.3169      0.2941      0.2712
                                2    0.3425      0.3178      0.2932
                                3    0.3712      0.3444      0.3177
                                4    0.4000      0.3712      0.3424
                                5    0.4345      0.4031      0.3718
                                6    0.4710      0.4371      0.4031
                                7    0.5089      0.4722      0.4356
                                8    0.5501      0.5104      0.4708
                                9    0.5964      0.5534      0.5104
                               10    1.0000      0.5982      0.5517
                               11    0.5982      1.0000      0.5946
                               12    0.5517      0.5946      1.0000
The Estimated R Correlation Matrix table shows the correlation matrix for the 13th subject. Notice how the correlation coefficients decrease as the time interval increases. 
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     id           7.8554
                                SP(POW)      id           0.8554
                                Residual                  4.3300
The estimated correlation coefficient used in the spatial power covariance structure is 0.8554. 
The LOCAL option adds an additional variance parameter (labeled “Variance”). The parameter labeled “Residual” represents the measurement error.
                                        Fit Statistics

                             -2 Res Log Likelihood         11729.3
                             AIC (Smaller is Better)       11735.3
                             AICC (Smaller is Better)      11735.3
                             BIC (Smaller is Better)       11747.0
The AIC and BIC values are lower than the model using the compound symmetry covariance structure (11850.0 versus 11735.3 for the AIC).
                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2        938.78          <.0001
The model with the spatial power covariance structure is significantly different from the model with 
the independent covariance structure.
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                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            8.0939      0.2434    1100      33.25      <.0001
             time                -1.1385      0.1007     991     -11.30      <.0001
             age                 0.01736     0.01918     385       0.90      0.3661
             cigarettes           0.4203     0.07447    1297       5.64      <.0001
             drug                 0.1522      0.2034    2331       0.75      0.4544
             partners            0.04586     0.02291    2245       2.00      0.0454
             depression         -0.02620    0.008670    2338      -3.02      0.0025
             time*age           -0.01451    0.006072     617      -2.39      0.0172
             time*depression    0.001513    0.003823    1644       0.40      0.6924
             time*partners      -0.01312     0.01060    1790      -1.24      0.2161
             time*drug           0.01618     0.08757    1616       0.18      0.8535
             time*cigarettes     -0.1383     0.02984    1032      -4.63      <.0001
             time*time           -0.1753     0.02758     966      -6.35      <.0001
             time*time*time      0.06103    0.006930    1114       8.81      <.0001

                                 Type 3 Tests of Fixed Effects

                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1     991     127.79    <.0001
                      age                   1     385       0.82    0.3661
                      cigarettes            1    1297      31.85    <.0001
                      drug                  1    2331       0.56    0.4544
                      partners              1    2245       4.01    0.0454
                      depression            1    2338       9.13    0.0025
                      time*age              1     617       5.71    0.0172
                      time*depression       1    1644       0.16    0.6924
                      time*partners         1    1790       1.53    0.2161
                      time*drug             1    1616       0.03    0.8535
                      time*cigarettes       1    1032      21.47    <.0001
                      time*time             1     966      40.38    <.0001
                      time*time*time        1    1114      77.57    <.0001
The inferences for the fixed effects in the model using the spatial power covariance structure are similar to the model using the compound symmetry covariance structure.
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A pharmaceutical firm conducted a clinical trial to examine heart rates among patients. Each patient was subjected to one of three possible drug treatment levels: drug a, drug b, and a placebo. A baseline measurement was taken and the heart rates were recorded at five unequally spaced time intervals: 
1 minute, 5 minutes, 15 minutes, 30 minutes, and 1 hour. The data are stored in the SAS data set long.heartrate.
These are the variables in the data set:
heartrate	heart rate
patient	patient identification number
drug	drug treatment level (a, b, and p)
hours	time point heart rate was recorded (0.01677, 0.08333, 0.25000, 0.5000, 1.000)
baseline	baseline heart rate.
1. Fitting a General Linear Mixed Model
a.    Fit a general linear mixed model with the three main effects, the three two-factor interactions, 
and the quadratic and cubic effects of hours. Request the parameter estimates and the Kenward-Roger method for computing the degrees of freedom. In the REPEATED statement, request 
the unstructured covariance structure and the R matrix along with the correlations computed from the R matrix. 
1)    Is the unstructured covariance structure legitimate in this example?
2)    What does the R matrix represent?
3)    What does the R correlation matrix represent? What is the general pattern among 
the correlations?
4)    Interpret the results of the null likelihood ratio test.
5)    Are there any higher-order terms significant at the 0.05 level?
b.    Fit the same model but with the compound symmetry covariance structure.
1)    Is the compound symmetry covariance structure legitimate in this example?
2)    Why is the AICC statistic much lower for the model with the compound symmetry covariance structure compared to the model with the unstructured covariance structure?
3)    Are there differences in the inferences for the fixed effects compared to the model with 
the unstructured covariance structure? What is a possible reason for these differences?
c.    Fit the same model but with the spatial power covariance structure. Because you are using 
the spatial power covariance structure, add a measurement error component, and use 
the FIRSTORDER suboption.
1)    Interpret the covariance parameter estimates.
2)    [bookmark: Exercise2_18_pg35]Why is the AICC statistic lower for this model compared to the model with compound symmetry covariance structure and the model with the unstructured covariance structure?
3)    Are there differences in the inferences for the fixed effects compared to the model with 
the compound symmetry covariance structure? What is a possible reason for these differences?
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Obtaining valid inferences in a mixed model is much more complex than in a general linear model. 
For example, inferences are obtained in the GLM procedure by testing the fixed effects against the error variance (residual variance). However, in PROC MIXED the inferences are obtained by testing the fixed effects against the appropriate background variability, which is modeled by the covariance structure. This background variability might consist of several sources of error, so selecting the appropriate covariance structure is not a trivial task.

Longitudinal models usually have three sources of random variation. The between-subject variability 
is represented by the random effects. The within-subject variability is represented by the serial correlation. The correlation between the measurements within subject usually depends on the time interval between the measurements and decreases as the length of the interval increases. A common assumption is that the serial effect is a population phenomenon independent of the subject. Finally, there is potentially also measurement error in the measurement process.
The covariance structure that is appropriate for your model is directly related to which component 
of variability is the dominant component. For example, if the serial correlation among the measurements is minimal, then the random effects will probably account for most of the variability in the data and 
the remaining error components will have a very simple covariance structure. Diggle, Heagerty, Liang, and Zeger (2002) believe that in most applications, the serial correlation is very often dominated by the combination of random effects and measurement error. Furthermore, Chi and Reinsel (1989) found that models with random effects and serial correlation might sometimes over-parameterize the covariance structure because the random effects are often able to represent the serial correlations among the measurements. They conclude that methods for determining the best combination of serial correlation components and random effects are an important topic that deserves further consideration.
However, suppose the autocorrelation among the measurements is relatively large, and the between-subject variability not explained by the fixed effects is relatively small. Then choosing the appropriate serial correlation function in the covariance structure becomes important. 
	In this course, serial correlation will be used to describe correlation structures that allow 
the correlations to change over time.

Because the covariance structure models the variability not explained by the fixed effects, selecting the appropriate mean model is critical. For models dealing with data collected in an experiment, a saturated model is usually recommended. However, for models dealing with observational data, saturated models are not feasible. Therefore, it is important to include all the important main effects and interactions.
The choice of the covariance structure should be consistent with the empirical correlations. Examining a plot of the autocorrelation function of the residuals might be useful for this purpose when you have equally spaced data that are approximately stationary. (The residuals have constant mean and variance and the correlations depend only on the length of the time interval.) However, the aids data set has irregularly spaced data that might not be stationary. The variogram is an alternative function that describes the association among repeated measurements and is easily estimated with irregular observation times (Diggle 1990). 
Likelihood ratio tests can be used to compare covariance structures provided that the same mean model is fitted and the covariance parameters are nested. Nesting of covariance parameters occurs when the covariance parameters in the simpler model can be obtained by restricting some of the parameters in the more complex model. For example, a compound symmetry structure is nested within a Toeplitz structure, but is not nested within an AR(1) structure. It is recommended to compare simple structures to more complex structures, and the complex structures should be accepted only if they lead to a significant improvement in the likelihood (Brown and Prescott 2001).
You can also use the information criteria (such as the AIC and BIC) produced by PROC MIXED as a tool to help you select the most appropriate covariance structure. The smaller the information criteria value, the better the model.

The variogram is used extensively in the field of geostatistics, which is concerned primarily with the estimation of spatial variation. In longitudinal data analysis, the empirical counterpart of the variogram 
is called the sample variogram. The data values in the sample variogram are calculated from the observed half-squared differences between pairs of residuals, where the residuals are ordinary least squares residuals based on the mean model, and the corresponding time differences. The vertical axis 
in the variogram represents the residual variability within subject over time.
The scatter plot also contains a smoothed nonparametric curve, which estimates the general pattern 
in the sample variogram. This curve can be used to decide whether the mixed model should include serial correlation. If a serial correlation component is warranted, then the fitted curve can be used in selecting the appropriate serial correlation function.




The process variance, , is estimated as the average of all half-squared-differences of the residuals , with  (i and l are subscripts for subject, and j and k are subscripts for time points). 



The autocorrelation function can be estimated from the sample variogram by the formula , where  is the average of the observed half-squared differences between pairs of residuals corresponding to that particular value of u. With highly irregular sampling times, the averages for the sample variogram might be estimated by fitting a nonparametric curve.




To illustrate how the data values in a variogram are calculated, consider the above slide. The variogram value for the first comparison of the first time point to the second time point is , with a time interval of .


The value of the variance calculation that compares the first residual for Subject 1 to the first residual for Subject 2 is .





The fitted nonparametric curve in the sample variogram can also be used to determine which error components need to be addressed in the covariance structure. For example, suppose the variance 
of the error terms is due only to within-subject variability. The corresponding variogram,  with 
u representing the time interval, would be based on the autocorrelation function. At a time interval 
of 0, the autocorrelation is 1 and . As the time interval approaches infinity, the autocorrelation approaches 0 and approaches the process variance. Typically,  is an increasing function 
of u because the autocorrelation is positive and decreases as the time interval increases.
Sample variograms are better mechanisms to examine serial correlation compared to autocorrelation functions created  from the CORR procedure because the nonparametric smoothing of the variogram recognizes the scarcity of the data at the higher time intervals and incorporates information from the sample variogram at smaller time intervals. In comparison, autocorrelation functions might become very unstable with sparse data and give a misleading impression about the serial correlation. Furthermore, 
the autocorrelation function is most effective for studying equally spaced data that are approximately stationary. Autocorrelations are more difficult to estimate with irregularly spaced data unless you round the observation times, in other words, rounding the CD4+ observation time values to the nearest year (Diggle, Heagerty, Liang, and Zeger 2002).
	As was seen earlier, the variogram is related to the autocorrelation function:




In some situations the measurement process introduces a component of random variation. Now 
the variance of the error terms includes not only the within-subject variability, but also the measurement error. A characteristic property of models with measurement error is that  does not tend 
to 0 as u tends to 0. If the data include duplicate measurements at the same time, then you can estimate the measurement error directly as one-half the average squared differences between such duplicates. 
In the CD4+ example, there are no duplicate measurements within subject. Therefore, the estimation 
of the measurement error involves the extrapolation of the nonparametric curve, and this estimate 
of the measurement error might be strongly model-dependent (Diggle, Heagerty, Liang, and Zeger 2002).


In some situations the model might include all three components of error. Now the variance of the error terms includes the within-subject variability, the between-subject variability, and the measurement error. The corresponding variogram has the same form as the variogram for the model with serial correlation and measurement error. However, as the time interval approaches infinity,  approaches a value less than the variance of the error terms (which is approximately equal to the estimate of the process variance). The difference between the plateau of the fitted line and the process variance is the error pertaining 
to between-subject variability or random effects. 
Therefore, the sample variogram can indicate whether the model fitted in PROC MIXED needs 
the LOCAL option (to account for measurement error), a covariance structure that incorporates the serial correlation, and/or a RANDOM statement to specify random effects. Although serial correlation would appear to be a natural feature of any longitudinal model, in some situations the serial correlation might 
be dominated by the combination of random effects and measurement error. The fitted nonparametric curve in the sample variogram would have a slope near 0, which would indicate that a covariance structure incorporating serial correlation would be an unnecessary refinement of the model (Diggle, Heagerty, Liang, and Zeger 2002). A covariance structure such as compound symmetry would 
be sufficient.
If serial correlation is evident in the sample variogram, two popular choices of covariance structures 
for unequally spaced longitudinal data are the spatial exponential structure, which incorporates 
the exponential serial correlation function, and the spatial Gaussian structure, which incorporates 
the Gaussian serial correlation function. However, precise characterization of the serial correlation function is extremely difficult in the presence of several random effects. You should not ignore 
the possible presence of any serial correlation, because this might result in less efficient model-based inferences. 
	Verbeke and Molenberghs (2000) suggest that including serial correlation, if present, is more important than correctly specifying the serial correlation function. They recommend that your efforts should be in the detection of serial correlation, rather than specifying the actual shape 
of the serial correlation function, which seems to be of minor importance.
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Example:	Create a sample variogram with the aids data set. First include the VARIOGRAM 
and VARIANCE macros (programs long02d02a.sas and long02d02b.sas). Then use the VARIOGRAM macro to create the data set varioplot and use the VARIANCE macro to estimate the process variance. Use PROC SGPLOT to display the sample variogram with a scatter plot of the variogram values by time interval values as the background and a penalized B-spline curve in the foreground. Fit a vertical reference line at the process variance.
/* long02d02.sas */

%include ".\long02d02a.sas";

%include ".\long02d02b.sas";

%variogram (data=aids,resvar=cd4_scale,clsvar=,
            expvars=time age cigarettes drug partners
            depression time*age time*cigarettes time*drug 
            time*partners time*depression time*time 
            time*time*time,id=id,time=time,maxtime=12);

%variance(data=aids,id=id,resvar=cd4_scale,clsvar=,
          expvars=time age cigarettes drug partners
          depression time*age time*cigarettes time*drug 
          time*partners time*depression time*time 
          time*time*time,subjects=369,maxtime=12);

                        Variogram-Based Estimate of the Process Variance                       

                          Obs    nonmissing       total       average

                           1       2813683     32950045.18    11.7106
The variogram-based estimate of the process variance is 11.71.
proc sgplot data=varioplot noautolegend;
   scatter y=variogram x=time_interval / markerattrs=(color=cyan 
                                         symbol=circle);
   pbspline y=variogram x=time_interval / nomarkers smooth=50 nknots=5
        lineattrs=(color=blue pattern=1 thickness=3);
   refline 11.71 / label="Process Variance";
   xaxis values=(0 to 6 by .5) label='Time Interval';
   yaxis values=(0 to 30 by 2) label='Variogram Values'; 
   title 'Sample Variogram of CD4+ Data';
run;
In the data set VARIOPLOT, the variogram values are in the variable variogram while the time interval values are in the variable time_interval.
	The code for both macros is provided in an appendix.
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Because the fitted penalized B-spline curve does not tend toward zero as the time interval tends to zero, the sample variogram clearly shows that the model has some measurement error (error in the measurement process itself). Furthermore, the fitted line does not have a slope of zero, which indicates that there is serial correlation in the model (cd4 cell counts vary over time within subject). The serial correlation function appears to be relatively linear. Finally, because the fitted line does not reach the process variance, some error due to random effects is evident in the model (unexplained between-subject variability).
Example:	Create a plot of the autocorrelation function using PROC SGPLOT.
data varioplot;
   set varioplot;
   autocorr=1-(variogram/11.71);
run;

proc sgplot data=varioplot noautolegend;
   pbspline y=autocorr x=time_interval / nomarkers smooth=50 nknots=5
        lineattrs=(color=blue pattern=1 thickness=3);
   xaxis values=(0 to 6 by .5) label='Time Interval';
   yaxis values=(0 to 1 by .1) label='Autocorrelation Values'; 
   title 'Autocorrelation Plot of CD4+ Data';
run;
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The graph of the autocorrelation function shows that the correlation within subject decreases from approximately 0.60 to 0.10 within the range of the data. Therefore, there is error associated with serial correlation evident in the model and a structure that allows for this decreasing correlation should 
be selected.



In a simulation study conducted by Guerin and Stroup (2000), several information criteria were compared in terms of their ability to choose the right covariance structure. In terms of Type I error control, assuming that the Kenward-Roger (KR) adjustment is used, Guerin and Stroup showed that it is better to err 
in the direction of a more complex covariance structure. More complex covariance structures tend to have inflated Type I error rates only if you fail to use the KR adjustment, while excessively simple covariance structures have inflated Type I error rates that the degrees of freedom adjustment cannot correct. However, because complex covariance structures reduce power, erring too far in the direction 
of complexity is also not recommended. Guerin and Stroup believe that the AIC is the most desirable compromise in practice. However, if the sample size is relatively small, the finite-sample corrected version of AIC, called AICC, might be the most desirable.
	Information criteria provide only rules of thumb to discriminate between several models. 
These criteria should never be used or interpreted as formal statistical tests of significance.
When comparing several models with the same mean model but with different covariance structures, use REML as the estimation method. 

A common recommendation is to graph the information criteria by covariance structure. However, choose only the covariance structures that make sense given the data. For example, because the aids data set has unequally spaced time points and different time points across subjects, only compound symmetry 
and the spatial covariance structures are appropriate covariance structures. If the time points were equally spaced, then the AR(1) and Toeplitz covariance structures could have been examined. If the time points were unequally spaced but had the same time points across subjects, then the unstructured covariance structure could have been examined. 
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Example:	Calculate and plot the AIC, AICC, and BIC information criteria for the models and use the covariance structures of compound symmetry, spatial power, spatial linear, spatial exponential, spatial Gaussian, and spatial spherical. The tables in ODS that contain the information criteria are fitstatistics. 

/* long02d03.sas */

ods select none;
proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*depression
         time*partners time*drug time*cigarettes 
         time*time time*time*time;
   repeated / type=cs subject=id;
   ods output fitstatistics=csmodel;
run;

proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners
         depression time*age time*depression
         time*partners time*drug time*cigarettes 
         time*time time*time*time;
   repeated / type=sp(pow)(time) local subject=id;
   ods output fitstatistics=powmodel;
run;

proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners
         depression time*age time*depression
         time*partners time*drug time*cigarettes 
         time*time time*time*time;
   repeated / type=sp(lin)(time) local subject=id;
   ods output fitstatistics=linmodel;
run;

proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*depression
         time*partners time*drug time*cigarettes 
         time*time time*time*time;
   repeated / type=sp(exp)(time) local subject=id;
   ods output fitstatistics=expmodel;
run;
proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*depression
[bookmark: Demo2_10_pg53]         time*partners time*drug time*cigarettes 
         time*time time*time*time;
   repeated / type=sp(gau)(time) local subject=id;
   ods output fitstatistics=gaumodel;
run;

proc mixed data=aids;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*depression
         time*partners time*drug time*cigarettes 
         time*time time*time*time;
   repeated / type=sp(sph)(time) local subject=id;
   ods output fitstatistics=sphmodel;
run;

ods select all;

data model_fit;
   length model $ 7 type $ 4;
   set csmodel (in=cs)
       powmodel (in=pow)
       linmodel (in=lin)
       expmodel (in=exp)
       gaumodel (in=gau)
       sphmodel (in=sph);
   if substr(descr,1,1) in ('A','B');
   if substr(descr,1,3) = 'AIC' then type='AIC';
   if substr(descr,1,4) = 'AICC' then type='AICC';
   if substr(descr,1,3) = 'BIC' then type='BIC';
   if cs then model='CS';
   if pow then model='SpPow';
   if lin then model='SpLin';
   if exp then model='SpExp';
   if gau then model='SpGau';
   if sph then model='SpSph';
run;
The IN= option in the DATA step detects whether the data set contributed to an observation when you read multiple SAS data sets in one DATA step. The specified variable is a temporary numeric variable with values of 0 (indicates that the data set did not contribute to the current observation) or 1 (indicates that the data set did contribute to the current observation). The SUBSTR function extracts from the variable descr the necessary information to put in the variable type that identifies the information criteria.
proc sgplot data=model_fit;
   scatter y=value x=model / group=type;
   xaxis label='Covariance Structure';
   yaxis values=(11700 to 11900 by 20) label='Model Fit Values';
   title 'Model Fit Statistics by Covariance Structure';
run;
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The covariance structures, spatial exponential, spatial linear, spatial power, and spatial spherical, all seem to have the best fit. The spatial Gaussian model fit statistics are somewhat higher than the other spatial structures. The compound symmetry covariance structure is clearly inferior. The AIC and AICC values are identical across covariance structures because of the large sample size. For small sample sizes, 
the AICC model fit statistic might be useful.
In the simulation study performed by Guerin and Stroup (2000), most of the gain from modeling 
the covariance structures comes from “getting close”. Therefore, there will probably be a trivial impact 
on the analysis if any of the four spatial covariance structures with the smallest information criteria are used. Their simulation study focused on the Type I error rates, where the effects of simplistic covariance structures tend to be more obvious.




In conclusion, the sample variogram is a useful graph in the selection of a covariance structure. It is constructed from the ordinary least squares residuals from a complex mean model. For this model, 
the results of the sample variogram clearly show that the LOCAL option is needed in the REPEATED statement. This option adds an additional variance parameter to the R matrix. The results also show that serial correlation is evident (meaning that the correlations change over time) and that the pattern seems 
to be linear. However, the model fit statistics show that the spatial exponential, spatial linear, spatial power, and spatial spherical covariance structures all seem to have the best fit. Although the spatial power covariance structure will be selected, any of the other three spatial covariance structures would be appropriate.
The results of the sample variogram also show that some error associated with random effects is evident in the model. Therefore, a RANDOM statement might be needed. Models with RANDOM statements will be examined in a later section.
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Evaluating Covariance Structures
d.    Include the VARIOGRAM and VARIANCE macros (programs long02d02a.sas and long02d02b.sas). Pass the necessary information to the macros to create the varioplot data set and to estimate the process variance. Specify as explanatory variables the three main effects, 
the three two-factor interactions, and the quadratic and cubic effects of hours. Create a plot of the sample variogram using PROC SGPLOT and fit a penalized B-spline curve with a smoothing factor of 50 and 5 knots, fit a vertical reference line at the estimate of the process variance, specify a vertical axis of 0 to 100, and specify a horizontal axis of 0 to 1.
1)    Interpret the graph. What sources of error are evident in the model?
2)    What specifications in PROC MIXED might be useful in dealing with these sources of error?
e.    Plot the autocorrelation function by time interval using PROC SGPLOT with the penalized B‑spline curve.
1)    What information can be gleaned from this plot that might be useful in building a model in PROC MIXED?
f.    Generate a graph of the model fit statistics by covariance structure. Select the following covariance structures: compound symmetry, unstructured, spatial power, spatial exponential, spatial Gaussian, spatial spherical, and spatial linear. Use ODS to save the model fit statistics 
and graph the AIC, AICC, and BIC statistics.
1)    Which covariance structures appear to have the best fit?
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The linear mixed models presented thus far assume that the covariance parameters are the same across subgroups of subjects. However, PROC MIXED has the flexibility of allowing heterogeneity in the covariance parameters across subgroups of subjects. For example, suppose there is evidence that the variance of the CD4+ cell counts is much greater before seroconversion compared to after seroconversion. A better fitting model might have covariance parameters defined before seroconversion and after seroconversion. The covariance structure still remains the same (in this example the spatial power covariance structure), but the covariance parameters are allowed to change across the two subgroups.

PROC MIXED allows heterogeneity in the residual covariance parameters with the GROUP= option. 
All observations having the same level of the GROUP effect have the same covariance parameters. Each new level of the GROUP effect produces a new set of covariance parameters with the same structure as the original group. 

The covariance structure for repeated measurements is still a block-diagonal covariance structure where the block corresponds to the covariance structure for each subject. However, in this example the GROUP= option now subdivides the block based on the GROUP effect. For example, suppose one subject had four measurements. Two measurements were before seroconversion and two were after seroconversion. Furthermore, you define the GROUP effect as the time before and after seroconversion. The covariance structure within the block for this subject now has variance and covariance parameter estimates before seroconversion and after seroconversion. For two measurements where one is before 
and one is after seroconversion, the covariance is 0. In this example, the GROUP= option indicates 
a covariance structure such that observations within subject and with a different GROUP effect value are assumed to be independent.
[bookmark: _Toc314761120][bookmark: _Toc314816234][bookmark: _Toc314816261][bookmark: _Toc332295145][bookmark: _Toc335062415][bookmark: _Toc335639207][bookmark: _Toc336260754][bookmark: _Toc337126885][bookmark: _Toc391984967][bookmark: _Toc394910348][bookmark: _Toc395875070][bookmark: _Toc424136910][bookmark: _Toc426033216][bookmark: _Toc448483861][bookmark: _Toc473615911][bookmark: _Toc474166394][bookmark: _Toc475972584][bookmark: _Toc477246038][bookmark: _Toc477850203][bookmark: Demo2_11_pg61][bookmark: _Toc217283438][bookmark: _Toc229534720]Heterogeneity in the Covariance Parameters
Example:	Create a plot of the variance of CD4+ cells over time using PROC SGPLOT. Fit a penalized B-spline curve with a smoothness of 50 and 25 knots. Then create the variable timegroup that groups the observations into the appropriate time groups. Finally, fit a longitudinal model 
in PROC MIXED that allows the covariance parameters to vary by timegroup.
/* long02d04.sas */

proc rank data=aids groups=50 out=ranks; 
   var time;  
   ranks timegrp;  
run; 
  
proc means data=ranks nway noprint; 
   var cd4_scale; 
   class timegrp; 
   output out=means var=var mean(time)=meantime; 
run; 

proc sgplot data=means noautolegend;
   pbspline y=var x=meantime / nomarkers smooth=50 nknots=25;
   yaxis values=(0 to 20 by 1) label="Variance";
   xaxis label="Mean Time";
   title 'Variance of Scaled CD4 by Time';
run;
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The graph shows that the variance of CD4+ cells is greater before seroconversion compared to after seroconversion. This makes sense from a subject matter point of view because healthy people usually have more variability in their immune cells than unhealthy people. This is a useful graph to create during your initial data exploration.
data aids;
   set aids;
   timegroup=1*(time le 0)+2*(time gt 0);
run;

proc mixed data=aids;
   class timegroup;
   model cd4_scale = time age cigarettes drug partners depression 
         time*age time*cigarettes time*drug time*partners 
         time*depression time*time time*time*time 
        / ddfm=kr(firstorder) solution;
   repeated / type=sp(pow)(time) local subject=id group=timegroup
              r=13 rcorr=13;
   title 'Longitudinal Model with Heterogeneity in the '
         'Covariance Parameters';
run;
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GROUP=	defines an effect specifying heterogeneity in the residual covariance structure. Continuous variables are permitted as arguments to the GROUP=option. PROC MIXED does not sort by the values of the continuous variable; rather, it considers the data 
to be from a new subject or group whenever the value of the continuous variable changes from the previous observation.
               Longitudinal Model with Heterogeneity in the Covariance Parameters             

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structure         Spatial Power
                     Subject Effect               id
                     Group Effect                 timegroup
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger
The Model Information table shows the group effect is timegroup.
                                    Class Level Information

                    		 Class        Levels    Values

                    		 timegroup         2    1 2

                                          Dimensions

                              Covariance Parameters             5
                              Columns in X                     14
                              Columns in Z                      0
                              Subjects                        369
                              Max Obs per Subject              12
There are now five covariance parameters being estimated rather than three.
                                   Number of Observations

                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0

[bookmark: Demo2_11_pg64]                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1     12668.04910184
                          1              2     11838.24404707    123.48030790
                          2              2     11731.67873760     20.79399338
                          3              2     11675.26706982      2.60777627
                          4              2     11623.53197659      0.00151927
                          5              2     11620.88033698      0.00038964
                          6              1     11619.31012203      0.00001388
                          7              1     11619.25830218      0.00000002
                          8              1     11619.25821833      0.00000000

                                   Convergence criteria met.

                                Estimated R Matrix for Subject 13

  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1   15.8963    9.2300    6.4196
    2    9.2300   15.8963    9.1237
    3    6.4196    9.1237   15.8963
    4                                  9.6153    6.4553    6.1021    5.7820    5.4771    5.1774
    5                                  6.4553    9.6153    6.4629    6.1239    5.8010    5.4836
    6                                  6.1021    6.4629    9.6153    6.4784    6.1367    5.8010
    7                                  5.7820    6.1239    6.4784    9.6153    6.4764    6.1221
    8                                  5.4771    5.8010    6.1367    6.4764    9.6153    6.4629
    9                                  5.1774    5.4836    5.8010    6.1221    6.4629    9.6153
   10                                  4.9044    5.1944    5.4950    5.7992    6.1221    6.4764
   11                                  4.6554    4.9307    5.2161    5.5048    5.8113    6.1477
   12                                  4.4007    4.6610    4.9307    5.2037    5.4934    5.8113

                                Estimated R Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1
                                2
                                3
                                4    4.9044      4.6554      4.4007
                                5    5.1944      4.9307      4.6610
                                6    5.4950      5.2161      4.9307
                                7    5.7992      5.5048      5.2037
                                8    6.1221      5.8113      5.4934
                                9    6.4764      6.1477      5.8113
                               10    9.6153      6.4899      6.1349
                               11    6.4899      9.6153      6.4629
                               12    6.1349      6.4629      9.6153
PROC MIXED estimates the variance and correlation coefficient for the subjects before seroconversion and after seroconversion. The variance estimates (15.90 for time group 1 and 9.62 for time group 2) seem to be quite different across time groups. With timegroup as the GROUP= variable, the measurements before seroconversion are assumed to be independent of the measurements after seroconversion.
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  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1    1.0000    0.5806    0.4038
    2    0.5806    1.0000    0.5739
    3    0.4038    0.5739    1.0000
    4                                  1.0000    0.6714    0.6346    0.6013    0.5696    0.5385
    5                                  0.6714    1.0000    0.6722    0.6369    0.6033    0.5703
    6                                  0.6346    0.6722    1.0000    0.6738    0.6382    0.6033
    7                                  0.6013    0.6369    0.6738    1.0000    0.6736    0.6367
    8                                  0.5696    0.6033    0.6382    0.6736    1.0000    0.6722
    9                                  0.5385    0.5703    0.6033    0.6367    0.6722    1.0000
   10                                  0.5101    0.5402    0.5715    0.6031    0.6367    0.6736
   11                                  0.4842    0.5128    0.5425    0.5725    0.6044    0.6394
   12                                  0.4577    0.4847    0.5128    0.5412    0.5713    0.6044

                                     Estimated R Correlation
                                      Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1
                                2
                                3
                                4    0.5101      0.4842      0.4577
                                5    0.5402      0.5128      0.4847
                                6    0.5715      0.5425      0.5128
                                7    0.6031      0.5725      0.5412
                                8    0.6367      0.6044      0.5713
                                9    0.6736      0.6394      0.6044
                               10    1.0000      0.6750      0.6380
                               11    0.6750      1.0000      0.6722
                               12    0.6380      0.6722      1.0000

                                Covariance Parameter Estimates

                        Cov Parm     Subject    Group          Estimate

                        Variance     id         timegroup 1     13.1181
                        SP(POW)      id         timegroup 1      0.4939
                        Variance     id         timegroup 2      6.8370
                        SP(POW)      id         timegroup 2      0.8970
                        Residual                                 2.7783
The correlations of the measurements within subject after seroconversion are larger.
                                        Fit Statistics

                             -2 Res Log Likelihood         11619.3
                             AIC (Smaller is Better)       11629.3
                             AICC (Smaller is Better)      11629.3  
                             BIC (Smaller is Better)       11648.8
The AIC information criterion is lower than the full model without the group effect (11735.3 to 11629.3).
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                                  DF    Chi-Square      Pr > ChiSq

                                   4       1048.79          <.0001

                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.5629      0.2212    1575      34.19      <.0001
             time                -0.8874      0.1054    1355      -8.42      <.0001
             age                 0.01604     0.01582     717       1.01      0.3109
             cigarettes           0.4577     0.06747    1438       6.78      <.0001
             drug                 0.4348      0.2075    2001       2.10      0.0362
             partners            0.05472     0.02357    2031       2.32      0.0204
             depression         -0.01769    0.008670    2091      -2.04      0.0415
             time*age           -0.01248    0.006109     595      -2.04      0.0415
             time*cigarettes    -0.09965     0.02990    1101      -3.33      0.0009
             time*drug          -0.03838     0.08663    1537      -0.44      0.6578
             time*partners      -0.01153     0.01049    1769      -1.10      0.2718
             time*depression    -0.00029    0.003729    1569      -0.08      0.9370
             time*time           -0.1040     0.03145    1103      -3.31      0.0010
             time*time*time      0.03702    0.006842    1103       5.41      <.0001

                                 Type 3 Tests of Fixed Effects

                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1    1355      70.83    <.0001
                      age                   1     717       1.03    0.3109
                      cigarettes            1    1438      46.01    <.0001
                      drug                  1    2001       4.39    0.0362
                      partners              1    2031       5.39    0.0204
                      depression            1    2091       4.16    0.0415
                      time*age              1     595       4.17    0.0415
                      time*cigarettes       1    1101      11.11    0.0009
                      time*drug             1    1537       0.20    0.6578
                      time*partners         1    1769       1.21    0.2718
                      time*depression       1    1569       0.01    0.9370
                      time*time             1    1103      10.93    0.0010
                      time*time*time        1    1103      29.28    <.0001
The higher order terms for time and the time by age and time by cigarettes interactions are still significant.




After an appropriate covariance structure is selected, model-building efforts should be directed at simplifying the mean structure of the model. Because the model should be hierarchically well-formulated, the first step is to evaluate the interactions. One recommended approach is to eliminate the interactions one at a time, starting with the least significant interaction. If you use the model fit statistics such as AIC, then you must use the ML estimation method. However, after the final model is chosen, refit the model using REML because REML estimators are usually preferred.
Another approach is to compute a likelihood ratio test that compares two models, the full model with all of the interactions and the reduced model with just a subset of terms. The difference between the –2 log likelihoods for the full and reduced models is the value of the test statistic. The likelihood ratio test comparing the full and reduced models is valid only under ML estimation.

If you reduce the mean model simply by examining p-values, then either estimation method is appropriate. However, if you reduce the mean model using model fit statistics such as AIC and BIC, 
then the estimation method must be ML. Model fit statistics under REML are used to select the covariance structure. Likelihood ratio tests under REML can be used to assess the importance 
of the covariance parameter estimates.
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Example:	Using the spatial power covariance structure, fit the full model that allows the covariance parameters to vary by timegroup with all of the main effects, the time by main effect interactions, and the quadratic and cubic effects for time. Use the ML estimation method.
/* long02d05.sas */
proc mixed data=aids method=ml;
   class timegroup;
   model cd4_scale=time age cigarettes drug partners depression
         time*age time*depression time*partners time*drug 
         time*cigarettes time*time time*time*time / solution
         ddfm=kr(firstorder);
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
   title 'Longitudinal Model with Heterogeneity in the '
         'Spatial Power Covariance Parameters';
run;

      Longitudinal Model with Heterogeneity in the Spatial Power Covariance Parameters      

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structure         Spatial Power
                     Subject Effect               id
                     Group Effect                 timegroup
                     Estimation Method            ML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger
The estimation method is now maximum likelihood.
                                    Class Level Information

                     		Class        Levels    Values

                     		timegroup         2    1 2

                                          Dimensions

                              Covariance Parameters             5
                              Columns in X                     14
                              Columns in Z                      0
                              Subjects                        369
                              Max Obs per Subject              12

                                    Number of Observations

[bookmark: Demo2_12_pg70]                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations        -2 Log Like       Criterion

                          0              1     12584.82997708
                          1              2     11760.17221976    125.93204406
                          2              2     11652.56198545     21.25711718
                          3              2     11595.75541363      3.10321895
                          4              2     11543.42016538      0.00176337
                          5              2     11540.49577186      0.00047876
                          6              1     11538.58522785      0.00001937
                          7              1     11538.51370640      0.00000004
                          8              1     11538.51355638      0.00000000

                                   Convergence criteria met.

                                Covariance Parameter Estimates

                        Cov Parm     Subject    Group          Estimate

                        Variance     id         timegroup 1     13.0016
                        SP(POW)      id         timegroup 1      0.4925
                        Variance     id         timegroup 2      6.7492
                        SP(POW)      id         timegroup 2      0.8992
                        Residual                                 2.7836

                                        Fit Statistics

                             -2 Log Likelihood             11538.5
                             AIC (Smaller is Better)       11576.5
                             AICC (Smaller is Better)      11576.8
                             BIC (Smaller is Better)       11650.8
The model fit statistics are not comparable to the ones produced under REML.
                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   4       1046.32          <.0001

                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.5606      0.2204    1584      34.31      <.0001
             time                -0.8866      0.1049    1358      -8.45      <.0001
             age                 0.01604     0.01575     720       1.02      0.3088
             cigarettes           0.4583     0.06720    1446       6.82      <.0001
             drug                 0.4354      0.2068    2012       2.11      0.0354
             partners            0.05473     0.02350    2042       2.33      0.0199
             depression         -0.01767    0.008643    2102      -2.04      0.0410
             time*age           -0.01250    0.006069     588      -2.06      0.0399
[bookmark: Demo2_12_pg71]             time*depression    -0.00033    0.003714    1562      -0.09      0.9299
             time*partners      -0.01150     0.01045    1763      -1.10      0.2713
             time*drug          -0.03889     0.08627    1528      -0.45      0.6522
             time*cigarettes    -0.09966     0.02975    1092      -3.35      0.0008
             time*time           -0.1034     0.03132    1110      -3.30      0.0010
             time*time*time      0.03690    0.006810    1112       5.42      <.0001

                                 Type 3 Tests of Fixed Effects

                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1    1358      71.37    <.0001
                      age                   1     720       1.04    0.3088
                      cigarettes            1    1446      46.52    <.0001
                      drug                  1    2012       4.43    0.0354
                      partners              1    2042       5.43    0.0199
                      depression            1    2102       4.18    0.0410
                      time*age              1     588       4.24    0.0399
                      time*depression       1    1562       0.01    0.9299
                      time*partners         1    1763       1.21    0.2713
                      time*drug             1    1528       0.20    0.6522
                      time*cigarettes       1    1092      11.22    0.0008
                      time*time             1    1110      10.90    0.0010
                      time*time*time        1    1112      29.37    <.0001
The time*drug, time*depression, and time*partners interactions are not significant. The first interaction to eliminate is the least significant interaction, which in this case is time*depression.
Example:	Refit the model without time*depression.
proc mixed data=aids method=ml;
   class timegroup;
   model cd4_scale=time age cigarettes drug partners depression
         time*age time*drug time*partners time*cigarettes time*time
         time*time*time / solution ddfm=kr(firstorder);
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
   title 'Longitudinal Model with Heterogeneity in the '
         'Spatial Power Covariance Parameters';
run;
Partial Output
                                Covariance Parameter Estimates

                        Cov Parm     Subject    Group          Estimate

                        Variance     id         timegroup 1     13.0027
                        SP(POW)      id         timegroup 1      0.4926
                        Variance     id         timegroup 2      6.7504
                        SP(POW)      id         timegroup 2      0.8991
                        Residual                                 2.7831

                                        Fit Statistics

                             -2 Log Likelihood             11538.5
                             AIC (Smaller is Better)       11574.5
[bookmark: Demo2_12_pg72]                             AICC (Smaller is Better)      11574.8
                             BIC (Smaller is Better)       11644.9

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   4       1046.33          <.0001
The AIC information criterion decreased from 11576.5 to 11574.5, which indicates that this model is a better fitting model.
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.5613      0.2203    1588      34.33      <.0001
             time                -0.8869      0.1049    1361      -8.46      <.0001
             age                 0.01600     0.01574     720       1.02      0.3098
             cigarettes           0.4584     0.06718    1442       6.82      <.0001
             drug                 0.4357      0.2068    2011       2.11      0.0352
             partners            0.05487     0.02344    2034       2.34      0.0194
             depression         -0.01809    0.007226    2155      -2.50      0.0124
             time*age           -0.01246    0.006052     582      -2.06      0.0400
             time*drug          -0.03903     0.08625    1531      -0.45      0.6509
             time*partners      -0.01157     0.01042    1758      -1.11      0.2673
             time*cigarettes    -0.09982     0.02969    1088      -3.36      0.0008
             time*time           -0.1035     0.03130    1109      -3.31      0.0010
             time*time*time      0.03691    0.006811    1112       5.42      <.0001
The next interaction term to be eliminated is time*drug.
Example:	Refit the model without time*drug.
proc mixed data=aids method=ml;
   class timegroup;
   model cd4_scale=time age cigarettes drug partners depression
         time*age time*partners time*cigarettes time*time 
         time*time*time / solution ddfm=kr(firstorder);
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
   title 'Longitudinal Model with Heterogeneity in the '
         'Spatial Power Covariance Parameters';
run;
Partial Output
                                Covariance Parameter Estimates

                        Cov Parm     Subject    Group          Estimate

                        Variance     id         timegroup 1     12.9929
                        SP(POW)      id         timegroup 1      0.4921
                        Variance     id         timegroup 2      6.7571
                        SP(POW)      id         timegroup 2      0.8986
                        Residual                                 2.7802
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                             -2 Log Likelihood             11538.7
                             AIC (Smaller is Better)       11572.7
                             AICC (Smaller is Better)      11573.0
                             BIC (Smaller is Better)       11639.2

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   4       1046.89          <.0001
The AIC information criterion decreased from 11574.5 to 11572.7, which indicates that this model is a better fitting model.
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.6025      0.2009    1603      37.84      <.0001
             time                -0.9161     0.08322    1164     -11.01      <.0001
             age                 0.01553     0.01570     718       0.99      0.3232
             cigarettes           0.4617     0.06684    1430       6.91      <.0001
             drug                 0.3807      0.1671    2097       2.28      0.0229
             partners            0.05573     0.02335    2049       2.39      0.0171
             depression         -0.01811    0.007227    2155      -2.51      0.0123
             time*age           -0.01216    0.006021     581      -2.02      0.0439
             time*partners      -0.01245     0.01024    1728      -1.22      0.2243
             time*cigarettes     -0.1013     0.02954    1091      -3.43      0.0006
             time*time           -0.1042     0.03128    1110      -3.33      0.0009
             time*time*time      0.03709    0.006806    1111       5.45      <.0001
The next interaction term to be eliminated is the time*partners interaction.
Example:	Refit the model without time*partners.
proc mixed data=aids method=ml;
   class timegroup;
   model cd4_scale=time age cigarettes drug partners depression 
         time*age time*cigarettes time*time time*time*time / solution
         ddfm=kr(firstorder);
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
   title 'Longitudinal Model with Heterogeneity in the '
         'Spatial Power Covariance Parameters';
run;
Partial Output
                                Covariance Parameter Estimates

                        Cov Parm     Subject    Group          Estimate

                        Variance     id         timegroup 1     12.9299
                        SP(POW)      id         timegroup 1      0.4905
                        Variance     id         timegroup 2      6.7770
                        SP(POW)      id         timegroup 2      0.8984
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                                        Fit Statistics

                             -2 Log Likelihood             11540.2
                             AIC (Smaller is Better)       11572.2
                             AICC (Smaller is Better)      11572.4
                             BIC (Smaller is Better)       11634.8

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   4       1046.33          <.0001
The AIC criterion decreased from 11572.7 to 11572.2, which indicates that this model is a better fitting model. However, do not eliminate terms simply on the basis of the AIC information criterion. Variables with subject matter importance should be kept in the model. Sometimes nonsignificant results are just as important as significant results with regard to the importance to the field of research.
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.6235      0.2003    1602      38.06      <.0001
             time                -0.9199     0.08316    1167     -11.06      <.0001
             age                 0.01604     0.01569     716       1.02      0.3071
             cigarettes           0.4607     0.06679    1425       6.90      <.0001
             drug                 0.3695      0.1670    2100       2.21      0.0270
             partners            0.04155     0.02028    2157       2.05      0.0406
             depression         -0.01791    0.007229    2156      -2.48      0.0133
             time*age           -0.01234    0.006023     581      -2.05      0.0410
             time*cigarettes     -0.1007     0.02954    1089      -3.41      0.0007
             time*time          -0.09778     0.03077    1086      -3.18      0.0015
             time*time*time      0.03619    0.006763    1080       5.35      <.0001
All of the interaction terms are now significant at the 0.05 significance level. The variable age should not be eliminated because it is involved in an interaction. 
Example:	Refit the final model using the REML estimation.
proc mixed data=aids;
   class timegroup;
   model cd4_scale=time age cigarettes drug partners depression 
         time*age time*cigarettes time*time time*time*time / solution
         ddfm=kr(firstorder);
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
   title 'Longitudinal Model with Heterogeneity in the '
         'Spatial Power Covariance Parameters';
run;
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                                Covariance Parameter Estimates

                        Cov Parm     Subject    Group          Estimate

                        Variance     id         timegroup 1     13.0227
                        SP(POW)      id         timegroup 1      0.4921
                        Variance     id         timegroup 2      6.8546
                        SP(POW)      id         timegroup 2      0.8969
                        Residual                                 2.7800

                                        Fit Statistics

                             -2 Res Log Likelihood         11601.2
                             AIC (Smaller is Better)       11611.2
                             AICC (Smaller is Better)      11611.2
                             BIC (Smaller is Better)       11630.7

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   4       1049.09          <.0001
Notice the information criteria are quite different using REML versus ML.
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.6252      0.2009    1594      37.95      <.0001
             time                -0.9200     0.08350    1161     -11.02      <.0001
             age                 0.01605     0.01575     713       1.02      0.3086
             cigarettes           0.4600     0.06702    1419       6.86      <.0001
             drug                 0.3696      0.1674    2090       2.21      0.0274
             partners            0.04155     0.02034    2148       2.04      0.0411
             depression         -0.01789    0.007246    2146      -2.47      0.0136
             time*age           -0.01233    0.006054     585      -2.04      0.0422
             time*cigarettes     -0.1007     0.02966    1094      -3.39      0.0007
             time*time          -0.09826     0.03087    1081      -3.18      0.0015
             time*time*time      0.03628    0.006788    1073       5.34      <.0001
The model with the six main effects, two interactions with time, the quadratic effect of time, and the cubic effect of time is your final model. The results show that recreational drug use has a positive effect on the CD4+ cell count. The number of partners also has a positive relationship. There is also a negative relationship between depression and CD4+ cell count. Finally, time has a cubic relationship with CD4+ cell count, which is what you observed in the graph showing the average trend.




A useful way to explain significant interactions is to graph them. The steps below show how to visualize the interaction between time and age. 
1. Create a data set with plotting points. These points should include the median for each explanatory variable not involved in the interaction, and the 5th, 25th, 50th, 75th, and 95th percentiles of time 
and age. 
2. Concatenate the plotting points data set with the aids data set. 
3. 
Create an output data set in PROC MIXED with the predictions based on . 
4. Graph the predictions of the observations with the plotting points by time and age to illustrate how the slope for time differs by the level of age. 
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Example:	Illustrate the time*cigarettes and time*age interactions. Use all of the values of cigarettes.
/* long02d06.sas */
proc means data=aids noprint;
   var time age;
   output out=percentiles p5=time_p5 age_p5 p25=time_p25 age_p25 
          p50=time_p50 age_p50 p75=time_p75 age_p75 p95=time_p95 
          age_p95; 
run;
The values of interest are the 5th, 25th, 50th, 75th, and 95th percentiles. 
data _null_;
   set percentiles;
   call symput('time_p5',time_p5);
   call symput('time_p25',time_p25);
   call symput('time_p50',time_p50);
   call symput('time_p75',time_p75);
   call symput('time_p95',time_p95);
run;
Macro variables are created for the percentiles of interest.
proc means data=aids noprint;
   var age drug partners depression;
   output out=plot median=age drug partners depression;
run;
The MEANS procedure is used to create a data set with the medians of the numeric variables not involved in the interaction.
data plot;
   set plot;
   do cigarettes = 0 to 4;
     do time = &time_p5,&time_p25,&time_p50,&time_p75,&time_p95;
         timegroup=1*(time le 0) + 2*(time gt 0);
         id+1;
         output;
     end;
   end;
run;
A DATA step with two DO loops creates a data set with the plotting points for the time by cigarette interaction. The data points include the median for each explanatory variable not involved in the interaction, the 5th, 25th, 50th, 75th, and 95th percentiles of time, all the values of cigarettes, and two values of timegroup. An ID variable is also created with values 1 through 25. 
data cigplot;
   set aids plot;
run;

[bookmark: Demo2_13_pg79]ods select none;
proc mixed data=cigplot;
   class timegroup;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*cigarettes time*time time*time*time
         / outpm=cigpred;
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
run;
Selected MODEL statement option:
OUTPM=	creates an output data set that contains predicted means and related quantities. The predicted means are the sum of the xbeta values based on the fixed effects.
	The observations with the plotting points will not be used when PROC MIXED fits the model. However, the output data set will have predicted means for these observations.
ods select all;
proc sgplot data=cigpred;
   pbspline y=pred x=time / group=cigarettes;
   where id le 25;
   yaxis label="Predicted CD4+ Cell Counts in hundreds";
   xaxis label="Time since Seroconversion";
   keylegend / title="Packs of Cigarettes Smoked per Day";
   title 'Interaction Plot of Time by Cigarette Usage';
run;
Only the observations with the plotting points are plotted by using the WHERE statement.
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The graph shows that heavier smokers have a more precipitous decline in CD4+ cell counts than light or nonsmokers. Patients who smoked four packs or more a day had the highest predicted CD4+ cell counts before seroconversion. However, after four years the predicted CD4+ cell counts were nearly equal across the four cigarette groups. These results agree with the individual profiles in the cigarette usage subgroups graph in the exploratory data analysis section.
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   set percentiles;
   call symput('age_p5',age_p5);
   call symput('age_p25',age_p25);
   call symput('age_p50',age_p50);
   call symput('age_p75',age_p75);
   call symput('age_p95',age_p95);
run;

proc means data=aids noprint;
   var cigarettes drug partners depression;
   output out=plot1 median= cigarettes drug partners depression;
run;

data plot1;
   set plot1;
   do age= &age_p5,&age_p25,&age_p50,&age_p75,&age_p95;
     do time = &time_p5,&time_p25,&time_p50,&time_p75,&time_p95;
         timegroup= 1*(time le 0) + 2*(time gt 0);
         id+1;
         output;
     end;
   end;
run;
The next set of programs creates the plotting points for the time*age interaction.
data ageplot;
   set aids plot1;
run;

ods select none;
proc mixed data=ageplot;
   class timegroup;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*cigarettes time*time time*time*time
         / outpm=agepred;
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
run;

ods select all;
proc sgplot data=agepred;
   pbspline y=pred x=time / group=age;
   where id le 25;
   yaxis label="Predicted CD4+ Cell Counts in hundreds";
   xaxis label="Time since Seroconversion";
   keylegend / title="Age in Years relative to arbitrary origin";
   title 'Interaction Plot of Time by Age';
run;
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The graph shows that older men have a more precipitous decline in CD4+ cell counts than younger men. It seems beyond one year after seroconversion, older men have predicted CD4+ cell counts that are lower than younger men. These results are not consistent with the individual profiles with the age subgroups graph in the exploratory data analysis section. The difference is the interaction plot is a multivariate plot while the individual profiles plot is a univariate plot. 



The model development phase found that the time by age interaction and time by cigarettes interaction are significant. The interaction plot of time by cigarettes showed that heavier smokers have a more precipitous decline in CD4+ cell counts than light or nonsmokers. The interaction plot of time by age showed that older men have a more precipitous decline in CD4+ cell counts than younger men. 
The model also validated the graph of the average trend line in the exploratory data analysis section. The graph of the average trend showed that time appeared to have a cubic relationship with CD4+ cell counts. The model showed that the cubic effect of time is significant.
There also seems to be some heterogeneity in the covariance structure. The group effect of time before seroconversion and time after seroconversion improved the fit of the model. The covariance parameter estimates showed that the variance of the measurements before seroconversion is much larger than the variance of the measurements after seroconversion. However, for equally spaced time intervals, the correlation of the measurements before seroconversion is lower than the correlation of the measurements after seroconversion.
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Developing and Interpreting Models
g.    Reduce the mean model by eliminating unnecessary higher-order terms. Use the ML estimation method and the spatial exponential covariance structure. Also add a measurement error component. Use the p-values of the effects along with the AICC statistic to decide which terms to eliminate. Do not eliminate the main effects.
1)    Which reduced model did you choose? Why?
h.    For the reduced model, generate another graph of the model fit statistics by covariance structure. Use the REML estimation method and select only the five spatial covariance structures.
1)    Is the spatial exponential covariance structure still one of the best fits?
2)    Which spatial covariance structure is a good fit for the complex mean model but a relatively poor fit for the reduced model?
i.    Refit the reduced model using the REML estimation method and the spatial exponential covariance structure. Also request the correlations from the R matrix and the parameter estimates for the fixed effects.
1)    Interpret the parameter estimates and inferences for the fixed effects.
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Random Coefficient Models


Thus far the longitudinal models in this course all used the REPEATED statement. However, you should not come to the conclusion that the REPEATED statement is used whenever you have longitudinal data. Some longitudinal models fit the data better using the RANDOM statement. However, it is generally recommended that you start with the REPEATED statement rather than the RANDOM statement because this can reduce the computing time considerably.

When the autocorrelation plot shows an autocorrelation function that cannot be easily modeled using 
the covariance structures in PROC MIXED, a longitudinal model using the RANDOM statement might be useful. These models are called random coefficient models because the regression coefficients for one or more covariates are assumed to be a random sample from some population of possible coefficients. 
In longitudinal models, the random coefficients are the subject-specific parameter estimates. Random coefficient models are useful for highly unbalanced data with many repeated measurements per subject (Verbeke and Molenberghs 1997).

The random coefficient model assumes that the vector of repeated measurements on each subject follows a linear regression model where some of the regression parameters are population-specific (fixed-effects), but other parameters are subject-specific (random-effects). The fixed effect parameter estimates represent the population average. The subject-specific regression coefficients with time as a random effect reflect how the response evolves over time for each subject. These subject-specific models can be very flexible, but in practice polynomials involving time will often suffice. However, extensions of this flexibility, such as fractional polynomial models or extended spline functions, can be considered as well (Verbeke and Molenberghs 2000).
In random coefficient models, the covariance structure for the R matrix is the independent covariance structure, which now accounts for the measurement error.

In random coefficient models, the random regression lines deviate from the population regression line. If you specify the intercept as a random variable, then you enable the intercept for each subject to deviate from the population intercept. If you specify the slope as a random variable, then you enable the slope for each subject to deviate from the population slope. For example, if you specify time as a random effect and a fixed effect in the longitudinal model for the CD4+ cell count data, then you stipulate that there is a relationship between CD4+ cell counts and time and that this relationship can vary across subjects.

In random coefficient models, the fixed effect parameter estimates represent the expected values of the population of intercepts and slopes. The random effects for intercept represent the difference between the intercept for the ith subject and the overall intercept. The random effects for slope represent the difference between the slope for the ith subject and the overall slope. Random coefficient models also have a random effect for the within-subject variation. Because there is not enough data on a single subject to estimate its regression parameters, and to avoid theoretical obstacles, it is assumed that the random effects are normally distributed random variables. The random effects and random errors are also independent of each other.

When you specify the SUBJECT= option in the RANDOM statement, a block-diagonal covariance matrix with identical blocks is created in the G matrix. Complete independence is assumed across subjects. 

In longitudinal models, it is recommended that the unstructured covariance structure be specified 
in the RANDOM statement. PROC MIXED estimates the variances of the intercepts and slopes along with the covariance between the intercepts and slopes in the G matrix. Specifying the unstructured covariance structure indicates that you do not want to impose any structure on the variances for intercepts and variances for slopes, and on the covariance between the intercepts and slopes.
The slide above has two random effects and two subjects, where each block corresponds to a subject. Notice there is complete independence across subjects. If a represents the intercept and b represents time, then the variance estimate for the intercept tells you how much the intercepts vary across subjects. 
The variance estimate for time represents how much the slopes for time vary across subjects. The covariance estimate between the intercept and time represents how the change in the intercepts affects 
the slopes of time. In other words, it indicates whether the CD4+ cell count depletion over time is affected by the subject’s CD4+ cell count at seroconversion. 
In this example, the unstructured covariance structure is appropriate for the G matrix but not the R matrix because the issue regarding unequal time intervals across subjects does not pertain to the G matrix. 
The covariance structure for the G matrix models the error that represents the natural heterogeneity between subjects. The within-subject variability, which is directly related to the spacing of measurements, is modeled by the covariance structure in the R matrix.


A common misconception is that random coefficient models do not take into account the serial correlation error within subject. However, when you specify the intercept and slope (in this example, time) in a RANDOM statement, the V matrix enables the correlations within subject to change over time. The unequal time intervals are taken into account because the Z matrix is used in the computation of the V matrix. The difference between models with random intercepts and slopes and models with a spatial covariance structure for the R matrix is that the random coefficient model indirectly models the serial correlation within subject with the variances and covariances of the intercept and slope. The model with the REPEATED statement directly models the serial correlation within subject by specifying a spatial covariance structure for the R matrix.

When you build a random coefficient model, it is necessary to determine which random effects are needed in the model. Examining the residual profile plots might be helpful, but with 369 subjects the plots can 
be cumbersome. One recommended strategy is to include all the relevant random effects. This ensures that the remaining variability is not due to any missing random effects. However, including high dimensional random effects with an unstructured covariance matrix leads to complicated covariance structures and might result in non-convergence of the algorithms in PROC MIXED (Verbeke 
and Molenberghs 2000).
After a candidate model is selected, a likelihood ratio chi-square test can be computed by comparing 
the candidate model with the reduced model. The mean structure of the model remains the same across both models, but the number of random effects is reduced by one in the reduced model. Verbeke 
and Molenberghs (2000) recommend using the REML estimation method because the REML test statistic performed slightly better than the ML test statistic. A program illustrating the likelihood ratio test 
is shown in an appendix.
	The p-values computed for the likelihood ratio test in this scenario might be slightly biased because the asymptotic null distribution for the likelihood ratio test statistic for testing hypotheses regarding random effects is often a mixture of chi-squared distributions rather than the classical single chi-squared distribution (Verbeke and Molenberghs 2000).
There is also a COVTEST option in PROC MIXED that produces asymptotic standard errors 
and Wald Z-tests for the covariance parameter estimates. However, the sample size requirements for these tests are excessive and often not met (approximately 400 or more subjects).
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Example:	Fit a random coefficient model with random intercepts, and random linear, quadratic, and cubic slopes for time. Include all the two factor interactions with time as the fixed effects. Specify the COVTEST, G, and GCORR options. Also specify the V and VCORR option for subject 13. 
/* long02d07.sas */
proc mixed data=aids covtest; 
   model cd4_scale=time age cigarettes drug partners depression
          time*age time*depression time*drug time*partners 
          time*cigarettes time*time time*time*time / solution 
          ddfm=kr; 
   random intercept time time*time time*time*time / type=un subject=id
          g gcorr v=13 vcorr=13; 
   title 'Random Coefficient Model with Cubic Effect of Time';
run; 
Selected PROC MIXED statement option:
COVTEST	produces asymptotic standard errors and Wald Z-tests for the covariance parameter estimates.
Selected RANDOM statement options:
G	requests that the estimated G matrix be displayed.
GCORR	displays the correlation matrix corresponding to the estimated G matrix. 
V	requests that blocks of the estimated V matrix be displayed. Also, you can specify which subject’s V matrix to display. 
VCORR	displays the correlation matrix corresponding to the blocks of the estimated V matrix. Also, you can specify specify which subject’s correlation matrix to display. 
In the RANDOM statement, you must specify INTERCEPT (or INT) as a random effect to indicate 
the intercept. PROC MIXED does not include the intercept in the RANDOM statement by default 
as it does in the MODEL statement. Furthermore, the effects in the RANDOM statement in combination with the SUBJECT= option make these random effects deviations from the fixed means. The random effects must be in the MODEL statement or else you might assume that the fixed effect’s parameter estimate is 0, which is a questionable assumption. 
                      Random Coefficients Model with Cubic Effect of Time                     

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structure         Unstructured
                     Subject Effect               id
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Kenward-Roger
                     Degrees of Freedom Method    Kenward-Roger
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                                          Dimensions

                              Covariance Parameters            11
                              Columns in X                     14
                              Columns in Z per Subject          4
                              Subjects                        369
                              Max Obs per Subject              12
There are a total of four columns in the Z matrix. These columns represent the intercept, time, time*time, and time*time*time random effects. The 14 columns in the X matrix represent the parameters in the mean model.
                                    Number of Observations

                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1     12668.04910184
                          1              2     11906.71433484    598549.15664
                          2              1     11826.06516534    1503342.7659
                          3              1     11770.20234989    1238618.9132
                          4              1     11760.73740046      0.01597010
                          5              1     11735.44729489      0.00600725
                          6              1     11710.08383953      0.00123057
                          7              1     11704.71596333      0.00016956
                          8              1     11704.02578248      0.00000604
                          9              1     11704.00292721      0.00000001
                         10              1     11704.00288278      0.00000000

                                   Convergence criteria met.

                                       Estimated G Matrix

        Row    Effect            Subject        Col1        Col2        Col3        Col4

          1    Intercept               1      7.1562     -1.0342     -0.2397     0.07635
          2    time                    1     -1.0342      0.8308     0.09795    -0.04079
          3    time*time               1     -0.2397     0.09795     0.02921    -0.00973
          4    time*time*time          1     0.07635    -0.04079    -0.00973    0.003274
The Estimated G Matrix table shows the estimated variances and covariances of the random effects. 
For example, 7.1562 (row 1, column 1) is the variance of the intercepts. The value 0.8308 (row 2, column 2) is the variance of the linear slopes of time. The value -1.0342 (row 1, column 2) is the covariance 
of the intercepts and the linear slopes of time.
                                 Estimated G Correlation Matrix

        Row    Effect            Subject        Col1        Col2        Col3        Col4

          1    Intercept               1      1.0000     -0.4242     -0.5242      0.4988
          2    time                    1     -0.4242      1.0000      0.6288     -0.7821
          3    time*time               1     -0.5242      0.6288      1.0000     -0.9946
[bookmark: Demo2_14_pg96]          4    time*time*time          1      0.4988     -0.7821     -0.9946      1.0000
The Estimated G Correlation Matrix table shows the correlations between random effects. The correlation between the intercepts and the linear slopes of time is -0.4242 (row 1, column 2) while the correlation between the linear slopes of time and the quadratic slopes of time is 0.6288 (row 2, column 3).
                                Estimated V Matrix for Subject 13

  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1   14.5368    9.1018    8.3506    7.4716    6.3868    5.2946    4.3027    3.4378    2.7642
    2    9.1018   13.7358    8.1322    7.3743    6.4232    5.4576    4.5785    3.8147    3.2285
    3    8.3506    8.1322   12.6479    7.0842    6.3338    5.5635    4.8591    4.2477    3.7836
    4    7.4716    7.3743    7.0842   11.6660    6.1635    5.6156    5.1102    4.6706    4.3393
    5    6.3868    6.4232    6.3338    6.1635   10.8896    5.6332    5.3689    5.1361    4.9617
    6    5.2946    5.4576    5.5635    5.6156    5.6332   10.6001    5.5967    5.5677    5.5459
    7    4.3027    4.5785    4.8591    5.1102    5.3689    5.5967   10.7624    5.9367    6.0494
    8    3.4378    3.8147    4.2477    4.6706    5.1361    5.5677    5.9367   11.2207    6.4688
    9    2.7642    3.2285    3.7836    4.3393    4.9617    5.5459    6.0494    6.4688   11.7569
   10    2.4129    2.9402    3.5668    4.1917    4.8898    5.5441    6.1075    6.5768    6.9241
   11    2.4242    2.9887    3.6310    4.2545    4.9382    5.5707    6.1108    6.5592    6.8924
   12    2.9024    3.4769    4.0667    4.5989    5.1515    5.6419    6.0498    6.3846    6.6371

                                Estimated V Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1    2.4129      2.4242      2.9024
                                2    2.9402      2.9887      3.4769
                                3    3.5668      3.6310      4.0667
                                4    4.1917      4.2545      4.5989
                                5    4.8898      4.9382      5.1515
                                6    5.5441      5.5707      5.6419
                                7    6.1075      6.1108      6.0498
                                8    6.5768      6.5592      6.3846
                                9    6.9241      6.8924      6.6371
                               10   12.0659      7.0550      6.7739
                               11    7.0550     12.0148      6.7938
                               12    6.7739      6.7938     11.6555

The Estimated V matrix shows the variances and covariances among the measurements (in this case, subject 13). The V matrix is calculated by the formula . Since the Z matrix has the time values, the variances and covariances estimated in the V matrix are based on the variances and covariances 
of the random effects along with the time values of the measurements. Notice the variances along 
the diagonal are not equal. This was not the case in the model with the spatial power covariance structure (without the GROUP= option) and this illustrates the strength of the random coefficient models.
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  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1    1.0000    0.6441    0.6158    0.5737    0.5076    0.4265    0.3440    0.2692    0.2114
    2    0.6441    1.0000    0.6170    0.5825    0.5252    0.4523    0.3766    0.3073    0.2541
    3    0.6158    0.6170    1.0000    0.5832    0.5397    0.4805    0.4165    0.3566    0.3103
    4    0.5737    0.5825    0.5832    1.0000    0.5468    0.5050    0.4561    0.4082    0.3705
    5    0.5076    0.5252    0.5397    0.5468    1.0000    0.5243    0.4959    0.4646    0.4385
    6    0.4265    0.4523    0.4805    0.5050    0.5243    1.0000    0.5240    0.5105    0.4968
    7    0.3440    0.3766    0.4165    0.4561    0.4959    0.5240    1.0000    0.5402    0.5378
    8    0.2692    0.3073    0.3566    0.4082    0.4646    0.5105    0.5402    1.0000    0.5632
    9    0.2114    0.2541    0.3103    0.3705    0.4385    0.4968    0.5378    0.5632    1.0000
   10    0.1822    0.2284    0.2887    0.3533    0.4266    0.4902    0.5360    0.5652    0.5813
   11    0.1834    0.2326    0.2945    0.3594    0.4317    0.4936    0.5374    0.5649    0.5799
   12    0.2230    0.2748    0.3349    0.3944    0.4573    0.5076    0.5402    0.5583    0.5670

                                     Estimated V Correlation
                                      Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1    0.1822      0.1834      0.2230
                                2    0.2284      0.2326      0.2748
                                3    0.2887      0.2945      0.3349
                                4    0.3533      0.3594      0.3944
                                5    0.4266      0.4317      0.4573
                                6    0.4902      0.4936      0.5076
                                7    0.5360      0.5374      0.5402
                                8    0.5652      0.5649      0.5583
                                9    0.5813      0.5799      0.5670
                               10    1.0000      0.5859      0.5712
                               11    0.5859      1.0000      0.5741
                               12    0.5712      0.5741      1.0000
The Estimated V Correlation Matrix table shows the correlations among the measurements (in this case, subject 13). Since the Z matrix has the time values, the correlations estimated from the V matrix are based on the variances and covariances of the random effects along with the time values of the measurements. The R matrix in this case has an independent covariance structure. Notice the correlations do not have 
to decrease as the time interval increases. This was not the case in the model with the spatial power covariance structure and this illustrates the flexibility of the random coefficient model.
	If intercept is the only random effect, then the correlations would be equal across the measurements within time group (a compound symmetry covariance structure).
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                                                   Standard         Z
               Cov Parm     Subject    Estimate       Error     Value        Pr Z

               UN(1,1)      id           7.1562      0.6927     10.33      <.0001
               UN(2,1)      id          -1.0342      0.2428     -4.26      <.0001
               UN(2,2)      id           0.8308      0.1507      5.51      <.0001
               UN(3,1)      id          -0.2397     0.09042     -2.65      0.0080
               UN(3,2)      id          0.09795     0.03897      2.51      0.0120
               UN(3,3)      id          0.02921     0.01680      1.74      0.0411
               UN(4,1)      id          0.07635     0.02241      3.41      0.0007
               UN(4,2)      id         -0.04079     0.01253     -3.26      0.0011
               UN(4,3)      id         -0.00973    0.004414     -2.20      0.0276
               UN(4,4)      id         0.003274    0.001367      2.40      0.0083
               Residual                  4.9781      0.1831     27.18      <.0001
A total of 11 covariance parameters are estimated in this model. The values correspond to the values 
in the G matrix. The COVTEST option displays the standard error, Z value, and p-value. The results show that the variances and covariances of the random effects are significantly different from 0. 
The residual value of 4.9781 corresponds to the variance estimate in the R matrix. The inferences are unreliable for small sample sizes. With 369 subjects, the asymptotic results should be valid. 
The recommended sample size to meet the asymptotic requirement is 400 or more.
                                        Fit Statistics

                             -2 Res Log Likelihood         11704.0
                             AIC (Smaller is Better)       11726.0
                             AICC (Smaller is Better)      11726.1
                             BIC (Smaller is Better)       11769.0

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                  10        964.05          <.0001
The Null Likelihood Ratio Test compares the fitted model to a model with a V independent covariance structure (in this case, one without a RANDOM statement).
                               Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            8.1186      0.2469     859      32.88      <.0001
             time                -1.1656      0.1072     523     -10.87      <.0001
             age                 0.01396     0.01951     327       0.72      0.4750
             cigarettes           0.3640     0.07538    1001       4.83      <.0001
             drug                 0.1833      0.2063    1869       0.89      0.3744
             partners            0.05915     0.02295    1940       2.58      0.0100
             depression         -0.02706    0.008799    2004      -3.08      0.0021
             time*age           -0.01401    0.006359     237      -2.20      0.0285
             time*depression    0.002205    0.003901     688       0.57      0.5720
             time*drug          0.007280     0.08934     699       0.08      0.9351
             time*partners      -0.01518     0.01063     715      -1.43      0.1539
             time*cigarettes     -0.1182     0.03107     506      -3.80      0.0002
             time*time           -0.1770     0.02806     186      -6.31      <.0001
             time*time*time      0.06031    0.007156     146       8.43      <.0001
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                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1     523     118.12    <.0001
                      age                   1     327       0.51    0.4750
                      cigarettes            1    1001      23.32    <.0001
                      drug                  1    1869       0.79    0.3744
                      partners              1    1940       6.64    0.0100
                      depression            1    2004       9.46    0.0021
                      time*age              1     237       4.85    0.0285
                      time*depression       1     688       0.32    0.5720
                      time*drug             1     699       0.01    0.9351
                      time*partners         1     715       2.04    0.1539
                      time*cigarettes       1     506      14.46    0.0002
                      time*time             1     186      39.79    <.0001
                      time*time*time        1     146      71.03    <.0001
The inferences from the random coefficients model are very similar to the repeated effects model. 
The time*age, time*cigarettes, quadratic effect and cubic effect of time are significant. 
Example:	To compare the random coefficient model with the last repeated effects model, fit a random coefficients model without the time*drug, time*partners, and time*depression interactions and with the GROUP= option. 
proc mixed data=aids; 
   class timegroup; 
   model cd4_scale=time age cigarettes drug partners depression
         time*age time*cigarettes time*time time*time*time / 
         solution ddfm=kr; 
   random intercept time time*time time*time*time / type=un subject=id
          group=timegroup g gcorr v=13 vcorr=13; 
   title 'Random Coefficients Final Model';  
run; 
    
                               Random Coefficients Final Model

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structure         Unstructured
                     Subject Effect               id
                     Group Effect                 timegroup
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Kenward-Roger
                     Degrees of Freedom Method    Kenward-Roger


                                    Class Level Information

                     Class        Levels    Values
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                     timegroup         2    1 2

                                          Dimensions

                              Covariance Parameters            21
                              Columns in X                     11
                              Columns in Z per Subject          8
                              Subjects                        369
                              Max Obs per Subject              12

                                    Number of Observations

                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1     12650.28067427
                          1              2     11621.69179982    10525.543915
                          2              1     11615.72160553      0.00765038
                          3              1     11594.68913868      0.00372117
                          4              1     11577.99517787      0.00112286
                          5              1     11573.11206038      0.00019219
                          6              1     11572.33492058      0.00000888
                          7              1     11572.30167262      0.00000003
                          8              1     11572.30155569      0.00000000

                                   Convergence criteria met.

                                       Estimated G Matrix

    Row  Effect          timegroup  Subject      Col1      Col2      Col3      Col4      Col5

      1  Intercept       1                1   37.2267   77.9624   59.0335   12.8130
      2  time            1                1   77.9624    246.90    196.87   43.1341
      3  time*time       1                1   59.0335    196.87    165.14   37.3923
      4  time*time*time  1                1   12.8130   43.1341   37.3923    8.6589
      5  Intercept       2                1                                           11.5272
      6  time            2                1                                           -9.1612
      7  time*time       2                1                                            3.4119
      8  time*time*time  2                1                                           -0.3790

                                       Estimated G Matrix

                              Row      Col6        Col7        Col8

                                1
                                2
                                3
                                4
                                5   -9.1612      3.4119     -0.3790
                                6   13.0029     -4.7445      0.5156
                                7   -4.7445      1.7910     -0.1968
[bookmark: Demo2_14_pg101]                                8    0.5156     -0.1968     0.02173
The Estimated G Matrix shows the estimated variances and covariances of the random effects by time groups. For example, 37.2267 (row 1, column 1) is the variance of the intercepts in time group 1 and 11.5272 (row 5, column 5) is the variance of the intercepts in time group 2. The value 246.90 (row 2, column 2) is the variance of the linear slopes of time in time group 1 and 13.0029 (row 6, column 6) 
is the variance of the linear slopes of time in time group 2. The value 77.9624 (row 1, column 2) is the covariance of the intercepts and the linear slopes of time in time group 1 and -9.1612 (row 5, column 6) 
is the covariance of the intercepts and the linear slopes of time in time group 2.
                                 Estimated G Correlation Matrix

    Row  Effect          timegroup  Subject      Col1      Col2      Col3      Col4      Col5

      1  Intercept       1                1    1.0000    0.8132    0.7529    0.7137
      2  time            1                1    0.8132    1.0000    0.9750    0.9329
      3  time*time       1                1    0.7529    0.9750    1.0000    0.9888
      4  time*time*time  1                1    0.7137    0.9329    0.9888    1.0000
      5  Intercept       2                1                                            1.0000
      6  time            2                1                                           -0.7483
      7  time*time       2                1                                            0.7509
      8  time*time*time  2                1                                           -0.7572

                                 Estimated G Correlation Matrix

                              Row      Col6        Col7        Col8

                                1
                                2
                                3
                                4
                                5   -0.7483      0.7509     -0.7572
                                6    1.0000     -0.9831      0.9700
                                7   -0.9831      1.0000     -0.9976
                                8    0.9700     -0.9976      1.0000
The Estimated G Correlation Matrix table shows the correlations between random effects by time groups. The correlation between the intercepts and the linear slopes of time is 0.8132 (row 1, column 2) in time group 1 and -0.7483 (row 5, column 6) in time group 2. This is an artifact of how time was coded. In time group 1, the intercept is the last time point (time points are negative and the intercept is at time 0). Therefore, negative slope coefficients lead to smaller intercepts. However, in time group 2, the intercept is the first time point. Thus, negative slope coefficients lead to larger intercepts.
                                Estimated V Matrix for Subject 13

  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1   15.2504   11.1374    8.6274
    2   11.1374   15.1591    9.4204
    3    8.6274    9.4204   18.9172
    4                                 11.3069    5.9626    4.7703    4.3101    4.3199    4.6196
    5                                  5.9626    8.5403    5.1209    5.0603    5.1282    5.2643
    6                                  4.7703    5.1209    8.5408    5.5883    5.7265    5.8110
    7                                  4.3101    5.0603    5.5883    9.0802    6.1443    6.2553
    8                                  4.3199    5.1282    5.7265    6.1443    9.5835    6.6234
    9                                  4.6196    5.2643    5.8110    6.2553    6.6234   10.0702
   10                                  4.9821    5.3898    5.8390    6.2852    6.7203    7.1265
[bookmark: Demo2_14_pg102]   11                                  5.2123    5.4426    5.8197    6.2690    6.7567    7.2475
   12                                  5.1246    5.3558    5.7516    6.2312    6.7578    7.2936

                                Estimated V Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1
                                2
                                3
                                4    4.9821      5.2123      5.1246
                                5    5.3898      5.4426      5.3558
                                6    5.8390      5.8197      5.7516
                                7    6.2852      6.2690      6.2312
                                8    6.7203      6.7567      6.7578
                                9    7.1265      7.2475      7.2936
                               10   10.5925      7.6528      7.7427
                               11    7.6528     11.0814      8.0615
                               12    7.7427      8.0615     11.3736
The Estimated V Matrix table shows the variances and covariances among the measurements by time groups (in this case, for subject 13). For example, the variance of the first measurement in time group 1 
is 15.2504 (row 1, column 1) and the covariance of the first and second measurements in time group 1 
is 11.1374 (row 1, column 2). The variance of the first measurement in time group 2 is 11.3064 (row 4, column 4) and the covariance of the first and second measurements in time group 2 is 5.9626 (row 4, column 5). The model assumes that the measurements in time group 1 are independent of the measurements in time group 2.
                         Estimated V Correlation Matrix for Subject 13

  Row      Col1      Col2      Col3      Col4      Col5      Col6      Col7      Col8      Col9

    1    1.0000    0.7325    0.5079
    2    0.7325    1.0000    0.5563
    3    0.5079    0.5563    1.0000
    4                                  1.0000    0.6068    0.4854    0.4254    0.4150    0.4329
    5                                  0.6068    1.0000    0.5996    0.5746    0.5669    0.5677
    6                                  0.4854    0.5996    1.0000    0.6346    0.6330    0.6266
    7                                  0.4254    0.5746    0.6346    1.0000    0.6587    0.6542
    8                                  0.4150    0.5669    0.6330    0.6587    1.0000    0.6742
    9                                  0.4329    0.5677    0.6266    0.6542    0.6742    1.0000
   10                                  0.4552    0.5667    0.6139    0.6409    0.6670    0.6900
   11                                  0.4657    0.5595    0.5982    0.6250    0.6557    0.6861
   12                                  0.4519    0.5434    0.5836    0.6132    0.6473    0.6815

[bookmark: Demo2_14_pg103]                                     Estimated V Correlation
                                      Matrix for Subject 13

                              Row     Col10       Col11       Col12

                                1
                                2
                                3
                                4    0.4552      0.4657      0.4519
                                5    0.5667      0.5595      0.5434
                                6    0.6139      0.5982      0.5836
                                7    0.6409      0.6250      0.6132
                                8    0.6670      0.6557      0.6473
                                9    0.6900      0.6861      0.6815
                               10    1.0000      0.7064      0.7054
                               11    0.7064      1.0000      0.7181
                               12    0.7054      0.7181      1.0000
The Estimated V Correlation Matrix table shows the correlations among the measurements by time groups (in this case, for subject 13). For example, the correlation between the first and second measurements in time group 1 is 0.7325 (row 1, column 2) and the correlation between the first 
and second measurements in time group 2 is 0.6068 (row 4, column 5). The correlation between 
the measurements in time group 1 and time group 2 is 0.
                                Covariance Parameter Estimates

                        Cov Parm     Subject    Group          Estimate

                        UN(1,1)      id         timegroup 1     37.2267
                        UN(2,1)      id         timegroup 1     77.9624
                        UN(2,2)      id         timegroup 1      246.90
                        UN(3,1)      id         timegroup 1     59.0335
                        UN(3,2)      id         timegroup 1      196.87
                        UN(3,3)      id         timegroup 1      165.14
                        UN(4,1)      id         timegroup 1     12.8130
                        UN(4,2)      id         timegroup 1     43.1341
                        UN(4,3)      id         timegroup 1     37.3923
                        UN(4,4)      id         timegroup 1      8.6589
                        UN(1,1)      id         timegroup 2     11.5272
                        UN(2,1)      id         timegroup 2     -9.1612
                        UN(2,2)      id         timegroup 2     13.0029
                        UN(3,1)      id         timegroup 2      3.4119
                        UN(3,2)      id         timegroup 2     -4.7445
                        UN(3,3)      id         timegroup 2      1.7910
                        UN(4,1)      id         timegroup 2     -0.3790
                        UN(4,2)      id         timegroup 2      0.5156
                        UN(4,3)      id         timegroup 2     -0.1968
                        UN(4,4)      id         timegroup 2     0.02173
                        Residual                                 3.1488

                                        Fit Statistics

                             -2 Res Log Likelihood         11572.3
                             AIC (Smaller is Better)       11614.3
                             AICC (Smaller is Better)      11614.7
                             BIC (Smaller is Better)       11696.4

[bookmark: Demo2_14_pg104]                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                  20       1077.98          <.0001
The AIC information criterion (11614.3) is very close to the AIC of the repeated-effects model (11611.2).
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.4522      0.2008    1360      37.11      <.0001
             time                -0.8090     0.08273     363      -9.78      <.0001
             age                 0.01739     0.01562     592       1.11      0.2663                                
             cigarettes           0.4763     0.06558    1168       7.26      <.0001
             drug                 0.4204      0.1682    2004       2.50      0.0125
             partners            0.03617     0.02052    2065       1.76      0.0781
             depression         -0.01847    0.007342    2002      -2.52      0.0119
             time*age           -0.01311    0.006324     241      -2.07      0.0393
             time*cigarettes     -0.1098     0.03013     584      -3.64      0.0003
             time*time           -0.1216     0.02755     175      -4.41      <.0001
             time*time*time      0.03639    0.006627     133       5.49      <.0001

                                 Type 3 Tests of Fixed Effects

                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1     363      95.63    <.0001
                      age                   1     592       1.24    0.2663
                      cigarettes            1    1168      52.76    <.0001
                      drug                  1    2004       6.25    0.0125
                      partners              1    2065       3.11    0.0781
                      depression            1    2002       6.33    0.0119
                      time*age              1     241       4.30    0.0393
                      time*cigarettes       1     584      13.27    0.0003
                      time*time             1     175      19.48    <.0001
                      time*time*time        1     133      30.16    <.0001
The inferences in the random coefficients model are very similar to the inference in the repeated-effects model.




One objective in the AIDS study is to estimate the time course of CD4+ cell depletion for individual subjects. However, the individual profile plots showed that the observed CD4+ levels are highly variable over time. Part of the reason might be due to the large residual variability error component. Therefore, estimating individual profiles without taking account of the error associated with residual variability 
in CD4+ cell determinations might be unreliable. 
In PROC MIXED, you can compute predicted response values that are empirical best linear unbiased predictions (EBLUPs). These predictions can be interpreted as a weighted mean of the population average profile and the observed data profile. The general formula is



Notice that the numerator of  is the residual covariance matrix and the denominator is the overall covariance matrix. Therefore, if the residual variability is large in comparison to the between-subject variability, more weight is given to the overall average profile compared to the observed data. However, 
if the residual variability is small in comparison to the between-subject variability, more weight is given to the observed data profile (Verbeke and Molenberghs 2000).
	EBLUPs are also called empirical Bayes estimators.


PROC MIXED computes EBLUPs for the response variable in two ways. When you use the RANDOM statement with the OUTP= option in the MODEL statement, the predicted values from the original data are . Predicted values for data points other than those observed can be obtained by using missing dependent variables in your input data set.

Another way to compute EBLUPs for the response variable is to use the OUTP= option in the MODEL statement with the REPEATED statement with the SUBJECT= option. Simply concatenate the original data with the observations with missing response variable values. The predictions for these observations are EBLUPs. However, if the new observation is independent of the data used in fitting the model (the subject has no previous observations), then the EBLUP equals . 
The standard errors for EBLUPs with the REPEATED statement are larger than those for the RANDOM statement (unless you use the NEWOBS option in the MODEL statement when you have a RANDOM statement). The reason for this discrepancy is not that one is more accurate than the other. If you think 
of an observation as Y = Signal + Noise (with noise representing measurement error), the RANDOM statement predicts the signal (unless you use the NEWOBS option) while the REPEATED statement predicts the sum of signal and noise. The signal is predicted with greater precision than the sum of signal and noise. 
EBLUPs are not only useful for forecasting time series, but also in generating predictions based 
on changes in the covariate patterns. For example, you can generate predictions on CD4+ cell counts based on the changes in cigarette consumption.
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Example:	Compute EBLUPs and Xbetas with the random coefficients model with the cubic effect 
of time. Forecast the CD4+ cell count for subject 10145 at time 5.30 and graph the individual profile of subject 10145 along with the EBLUPs and Xbetas.
/* long02d08.sas */
data aids1; 
   input time age cigarettes drug partners depression id 
         timegroup;                    
datalines; 
5.30 4.4 0 1 -3 -7 10145 2 
; 
run;
The covariate values for subject 10145 were held fixed from their last observation period and timegroup is set at 2.
data forecast; 
   set aids aids1;
run; 

ods select none;
proc mixed data=forecast; 
   class timegroup id;
   model cd4_scale=time age cigarettes drug partners 
         depression time*age time*cigarettes time*time 
         time*time*time  / ddfm=res 
             outp=predblup(rename=(pred=eblup)) 
             outpm=predxbeta(rename=(pred=xbeta));; 
   random intercept time time*time time*time*time / 
          type=un subject=id group=timegroup;
run;
Selected MODEL statement options: 
OUTP=		specifies an output data set with EBLUPs.
OUTPM=	specifies an output data set with Xbetas.
	The degrees of freedom calculations are based on the residual method (DDFM=RES) to save on computing time.
data predict; 
   merge predblup predxbeta;  
run;  

ods select all;
options nolabel;
proc sgplot data=predict;
   series y=cd4_scale x=time / markers;
   series y=eblup x=time / markers;
[bookmark: Demo2_15_pg109]   series y=xbeta x=time / markers;
   where id=10145;
   yaxis label="Predicted CD4+ Cell Counts in hundreds";
   xaxis label="Time since Seroconversion";
   title 'Subject 10145 Response Profile';
   title2 h=0.8 'with XBetas, Data Values, and EBLUPs';
   title3 h=0.7 'Generated from Random Coefficients Model';
run;

The EBLUPs follow the data values before seroconversion indicating that the between-subject variability is much greater than the within-subject variability. However, the EBLUPs follow the Xbetas after seroconversion indicating that the between-subject variability is much smaller than the within-subject variability. The EBLUP at time 5.3 seems to be very close to the Xbeta at 5.3.
Example:	Compute EBLUPs and Xbetas with the model with the REPEATED statement that had heterogeneity and spatial power covariance structure. Forecast the CD4+ cell count for subject 10145 at time 5.30 and graph the individual profile of subject 10145 along with the EBLUPs and Xbetas.
ods select none;
proc mixed data=forecast; 
   class timegroup id; 
[bookmark: Demo2_15_pg110]   model cd4_scale=time age cigarettes drug partners
                   depression time*age time*cigarettes 
                   time*time time*time*time / ddfm=res 
                   outp=predblup(rename=(pred=eblup))    
                   outpm=predxbeta(rename=(pred=xbeta)); 
   repeated / type=sp(pow)(time) local subject=id 
              group=timegroup;
run;  
Selected MODEL statement option: 
OUTP=	specifies an output data set containing predicted values and related quantities. Specifications that have a REPEATED statement with the SUBJECT= option and missing response variables compute predicted values using EBLUPs.
data predict;
   merge predblup predxbeta;
run; 

ods select all;
proc sgplot data=predict;
   series y=cd4_scale x=time / markers;
   series y=eblup x=time / markers;
   series y=xbeta x=time / markers;
   where id=10145;
   yaxis label="Predicted CD4+ Cell Counts in hundreds";
   xaxis label="Time since Seroconversion";
   title 'Subject 10145 Response Profile';
   title2 h=0.8 'with XBetas, Data Values, and EBLUPs';
   title3 h=0.7 'Generated from Model with Repeated Statement';
run;
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Recall that when using the OUTP= option with the SUBJECT= option in the REPEATED statement, the EBLUPs are only computed for time points that have missing response values. Therefore, the EBLUP is only computed for time point 5.3. The EBLUPs and Xbetas are different from the previous graph because the V matrices for the two models are different. If the random coefficients model has the same V matrix and the same mean model as the model with the REPEATED statement, then the EBLUPs at time 5.3 would be the same.




You can also fit a model in PROC MIXED with both the RANDOM and REPEATED statements. However, this model is generally not recommended in practice. Diggle, Heagerty, Liang, and Zeger (2002) argue that, in applications, the effect of serial correlation is very often dominated by the combination of random effects and measurement error. They recommend that no models simultaneously include serial correlation as well as random effects other than intercepts. Verbeke and Molenberghs (2000) also claim that models that include several random effects, serial correlation, and measurement error will often have estimation problems.

Convergence problems in PROC MIXED arise from estimating the covariance parameters in the model, not the fixed effects. For example, when the covariance parameters are on a different scale, the algorithm in PROC MIXED might have trouble converging. Furthermore, if there is very little variability in the time effects the variance of the random slopes might approach 0, which might generate numerical difficulties.

When fitting complicated covariance structures, you often need to specify starting values (using the PARMS statement) in order for PROC MIXED to converge. Requesting a grid search over several values of these parameters is recommended. Sometimes it is useful to use the Fisher scoring method, which uses the expected Hessian matrix, which consists of second derivatives of the objective function with respect to the covariance parameters, instead of the observed one.
	Other recommendations can be found in the online SAS documentation in the Convergence Problems section of PROC MIXED.
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Example:	Fit a longitudinal model with the RANDOM and REPEATED statements. Specify the group effect and only the interactions that were significant in the random coefficients model.
/* long02d09.sas */
proc mixed data=aids covtest; 
   class timegroup; 
   model cd4_scale=time age cigarettes drug partners depression 
         time*age time*cigarettes time*time time*time*time / solution
         ddfm=kr(firstorder); 
   random intercept time time*time time*time*time/ type=un subject=id; 
   repeated / type=sp(pow)(time) local subject=id group=timegroup; 
   title 'Longitudinal Model with Random Effects and '
         'Serial Correlation'; 
run; 
  
               Longitudinal Model with Random Effects and Serial Correlation                

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structures        Unstructured,
                                                  Spatial Power
                     Subject Effects              id, id
                     Group Effect                 timegroup
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger
The covariance structures are now an unstructured covariance structure and a spatial power covariance structure.
                                    Class Level Information

                     Class        Levels    Values

                     timegroup         2    1 2

                                          Dimensions

                              Covariance Parameters            15
                              Columns in X                     11
                              Columns in Z per Subject          4
                              Subjects                        369
                              Max Obs per Subject              12

[bookmark: Demo2_16_pg116]                                    Number of Observations

                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1     12650.28067427
                          1              2     12266.99621099    38594.655773
                          2              1     12189.83366851    74110.722854
                          3              1     12140.37942938    32264.055111
                          4              1     12095.41712550    642385.13078
                          5              1     12037.70974721    2649327.2638
                          6              1     11975.05255510    1356563.0471
                          7              3     11874.39052840       .
                          8              1     11825.73904305       .
                          9              1     11699.28700966       .
                         10              1     11594.57830896       .
                         11              3     11526.55157663       .
                         12              4     11511.03788261       .
                         13              3     11502.89876486       .
                         14              1     11496.21859975       .
                         15              1     11494.28586873       .
                         16              2     11493.40764086      0.00037097
                         17              2     11492.86168202       .
                         18              1     11491.90004455      0.00024427
                         19              2     11491.81327410       .
                         20              4     11490.43193681       .
                         21              2     11490.28644277      0.00000077
                         22              1     11490.28372598      0.00000000

                                   Convergence criteria met.
Even with the complicated covariance structures, the model converged. However, the note in the log indicates a potential problem.

Whenever the Log window shows the note that the estimated G matrix is not positive definite, you are most likely to see a zero variance component estimate. Sometimes a zero variance component estimate can indicate an inappropriate model, such as an over-parameterized model, and you might want to respecify the model to make sure you are not accounting for the same variance in different parameters.
                                Covariance Parameter Estimates

                                                          Standard         Z
       Cov Parm     Subject    Group          Estimate       Error     Value        Pr Z

       UN(1,1)      id                          5.7569      0.6924      8.31      <.0001
       UN(2,1)      id                         -0.3687      0.2466     -1.50      0.1348
       UN(2,2)      id                          0.4004      0.1692      2.37      0.0090
       UN(3,1)      id                         -0.1603     0.08312     -1.93      0.0537
[bookmark: Demo2_16_pg117]       UN(3,2)      id                         0.08452     0.03535      2.39      0.0168
       UN(3,3)      id                               0           .       .         .
       UN(4,1)      id                         0.03732     0.01723      2.17      0.0303
       UN(4,2)      id                        -0.02035     0.01032     -1.97      0.0486
       UN(4,3)      id                        -0.00358    0.003668     -0.98      0.3287
       UN(4,4)      id                        0.001305    0.001048      1.25      0.1065
       Variance     id         timegroup 1      8.1452      1.0360      7.86      <.0001
       SP(POW)      id         timegroup 1      0.2262     0.08215      2.75      0.0059
       Variance     id         timegroup 2      1.1327      0.6201      1.83      0.0339
       SP(POW)      id         timegroup 2      0.4702      0.3246      1.45      0.1475
       Residual                                 2.6566      0.3407      7.80      <.0001
The variances for the intercepts and the linear effect of time are significant. However, the variance estimate for the quadratic effect of time is 0. When you have a variance parameter estimate of 0, one recommendation is to drop that random effect from the model. Because the quadratic effect of time will be dropped, then the cubic effect of time should also be dropped.
                                        Fit Statistics

                             -2 Res Log Likelihood         11490.3
                             AIC (Smaller is Better)       11518.3
                             AICC (Smaller is Better)      11518.5
                             BIC (Smaller is Better)       11573.0

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                  13       1160.00          <.0001
The AIC information criterion is the lowest of any model thus far. The random coefficients model had 
an AIC value of 11614.3.
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.7053      0.2259     805      34.11      <.0001
             time                -1.0408     0.08028     357     -12.96      <.0001
             age                 0.01409     0.01895     316       0.74      0.4578
             cigarettes           0.3505     0.07400     864       4.74      <.0001
             drug                 0.2686      0.1699    2011       1.58      0.1140
             partners            0.04775     0.02055    2056       2.32      0.0202
             depression         -0.01715    0.007419    2013      -2.31      0.0209
             time*age           -0.01247    0.006231     233      -2.00      0.0465
             time*cigarettes     -0.1049     0.03024     518      -3.47      0.0006
             time*time          -0.09233     0.02818     381      -3.28      0.0011
             time*time*time      0.03767    0.006723     186       5.60      <.0001

                                 Type 3 Tests of Fixed Effects

                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1     357     168.07    <.0001
                      age                   1     316       0.55    0.4578
                      cigarettes            1     864      22.43    <.0001
[bookmark: Demo2_16_pg118]                      drug                  1    2011       2.50    0.1140
                      partners              1    2056       5.40    0.0202
                      depression            1    2013       5.34    0.0209
                      time*age              1     233       4.01    0.0465
                      time*cigarettes       1     518      12.04    0.0006
                      time*time             1     381      10.74    0.0011
                      time*time*time        1     186      31.39    <.0001
The inferences for the fixed effects are similar to the random coefficients model.
Example:	Refit the longitudinal model without the quadratic and cubic effects of time in the RANDOM statement.
proc mixed data=aids covtest; 
   class timegroup; 
   model cd4_scale=time age cigarettes drug partners depression
         time*age time*cigarettes time*time time*time*time / solution
         ddfm=kr(firstorder); 
   random intercept time / type=un subject=id; 
   repeated / type=sp(pow)(time) local subject=id group=timegroup; 
   title 'Longitudinal Model with Random Effects and '
         'Serial Correlation';
run; 

                 Longitudinal Model with Random Effects and Serial Correlation                

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     WORK.AIDS
                     Dependent Variable           cd4_scale
                     Covariance Structures        Unstructured,
                                                  Spatial Power
                     Subject Effects              id, id
                     Group Effect                 timegroup
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information

                     Class        Levels    Values

                     timegroup         2    1 2

                                          Dimensions

                              Covariance Parameters             8
                              Columns in X                     11
                              Columns in Z per Subject          2
                              Subjects                        369
                              Max Obs per Subject              12
The Z matrix has only two columns in this model.
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                          Number of Observations Read            2376
                          Number of Observations Used            2376
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1     12650.28067427
                          1              4     11860.81110568    196.02454031
                          2              1     11688.87754208     42.26586415
                          3              1     11566.25877989       .
                          4              2     11529.61932012      5.55286390
                          5              2     11519.58037978      2.07258899
                          6              2     11509.30705045      0.17852318
                          7              2     11505.84039590      0.00048014
                          8              2     11504.19719227      0.00023349
                          9              2     11503.52177894      0.00001620
                         10              1     11503.46258346      0.00000009
                         11              1     11503.46226161      0.00000000

                                   Convergence criteria met.

                                Covariance Parameter Estimates

                                                          Standard         Z
       Cov Parm     Subject    Group          Estimate       Error     Value        Pr Z

       UN(1,1)      id                          5.1340      0.6045      8.49      <.0001
       UN(2,1)      id                         -0.1736      0.1366     -1.27      0.2036
       UN(2,2)      id                          0.2149     0.06590      3.26      0.0006
       Variance     id         timegroup 1      7.9399      0.8688      9.14      <.0001
       SP(POW)      id         timegroup 1      0.1971     0.06965      2.83      0.0047
       Variance     id         timegroup 2      1.5141      0.5168      2.93      0.0017
       SP(POW)      id         timegroup 2      0.5059      0.2173      2.33      0.0199
       Residual                                 2.6003      0.3190      8.15      <.0001
The results of the Covariance Parameter Estimates table show that the variance of the intercepts is significant. This indicates that there is significant variation of the intercepts between subjects. The variance of the linear effect of time is also significant. This indicates that there is significant variation in the slopes of time between subjects. However, the covariance of the intercepts and the linear effect of time is not significant. Therefore, the subject’s CD4+ cell count depletion over time is not affected by the subject’s CD4+ cell count at seroconversion.
The results also show that the variances of the residuals in the R matrix for time group 1 and time group 2 are significant. The variances appear to be different from each other across time groups. Furthermore, for equally spaced time intervals, the correlation among measurements in time group 1 is much smaller than the correlation among measurements in time group 2. 
                                        Fit Statistics

                             -2 Res Log Likelihood         11503.5
                             AIC (Smaller is Better)       11519.5
                             AICC (Smaller is Better)      11519.5
                             BIC (Smaller is Better)       11550.7
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                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   7       1146.82          <.0001
The AIC information criterion is very close to the model with the random effects of time*time and time*time*time (11518.3). However, the BIC information criterion is lower (11550.7 versus 11573.0) because the model with the four random effects had seven more covariance parameter estimates (15 to 8).
                                   Solution for Fixed Effects

                                            Standard
             Effect             Estimate       Error      DF    t Value    Pr > |t|

             Intercept            7.7302      0.2223     875      34.78      <.0001
             time                -1.0433     0.07757     664     -13.45      <.0001
             age                 0.01524     0.01902     338       0.80      0.4236
             cigarettes           0.3562     0.07391     895       4.82      <.0001
             drug                 0.2702      0.1697    2038       1.59      0.1115
             partners            0.04505     0.02050    2099       2.20      0.0281
             depression         -0.01811    0.007396    2079      -2.45      0.0144
             time*age           -0.01326    0.006234     237      -2.13      0.0344
             time*cigarettes     -0.1081     0.03009     550      -3.59      0.0004
             time*time          -0.08501     0.02921    1005      -2.91      0.0037
             time*time*time      0.03698    0.006630     941       5.58      <.0001

                                 Type 3 Tests of Fixed Effects

                                          Num     Den
                      Effect               DF      DF    F Value    Pr > F

                      time                  1     664     180.88    <.0001
                      age                   1     338       0.64    0.4236
                      cigarettes            1     895      23.22    <.0001
                      drug                  1    2038       2.54    0.1115
                      partners              1    2099       4.83    0.0281
                      depression            1    2079       6.00    0.0144
                      time*age              1     237       4.53    0.0344
                      time*cigarettes       1     550      12.92    0.0004
                      time*time             1    1005       8.47    0.0037
                      time*time*time        1     941      31.12    <.0001
The inferences of the fixed effects are similar to the model with the four random effects.


In conclusion, the random coefficient models might be useful to fit longitudinal models, especially when there is a large error component due to random effects. The model still enables the correlations within subject to change over time. However, the correlations are estimated using the variances and covariances of the random effects along with the time values for the subjects.
The final CD4+ cell count model has both a RANDOM and REPEATED statement with an unstructured G matrix and a spatial power covariance structure for the R matrix. The variances of the intercepts and linear effects of time were significantly different from 0. This means that the CD4+ cell count values 
at seroconversion vary across subjects and the depletion of CD4+ cell counts over time vary across subjects. Heterogeneity in the R matrix is also evident in the model.
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Fitting Random Coefficient Models
j.    Fit a random coefficient model with a random intercept and hours. Specify the fixed effects 
as hours, drug, and baseline. Use an unstructured covariance structure and print out the G matrix, the correlation matrix based on the V matrix, the parameter estimates for the fixed effects, and the parameter estimates for the random effects. Use the Kenward-Roger method for computing degrees of freedom. 
1)    Interpret the G matrix. What conclusions can you reach regarding your random effects?
2)    What does the residual covariance parameter estimate represent?
3)    How does the AICC value compare to the reduced model fit in the last exercise? 
4)    How does the correlation matrix based on the V matrix compare to the correlation matrix based on the R matrix for the reduced model in the last exercise?
5)    Interpret the parameter estimates for the random effects for Subject 1.
k.    Fit a model with both the REPEATED and RANDOM statements. Specify a random intercept 
and hours, and use the unstructured covariance structure. Print the G matrix, the correlation matrix based on the V matrix, and the parameter estimates for the fixed effects. Specify the spatial exponential covariance structure for the R matrix, add a measurement error component, and use the FIRSTORDER suboption. 
1)    Interpret the covariance parameter estimates.
2)    Did the correlations based on the V matrix change?
3)    Is this a better model than the random coefficients model?
4)    Did the inferences from the fixed effects change from the random coefficients model? 
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In ordinary least squares regression models, model assessment usually revolves around residual analysis, overall measures of goodness-of-fit, and influence analysis. Model assessment is especially important 
in linear mixed models because likelihood-based estimation methods are particularly sensitive to unusual observations. After you detect these observations, you should examine them and determine whether they are erroneous. If these observations are legitimate, then they might represent important new findings. They also might indicate that your current model is inadequate.

The differences between the influence and residual analysis in the ordinary least squares models 
and the linear mixed model come from the fact that the estimates of the fixed effects and the predictions of the random effects depend on the estimates of the covariance parameters. If there are no random effects and the model uses an independent covariance structure, then the general linear mixed model reduces 
to the ordinary least squares model and the residual and influence measures are well known.

The fixed effects are affected when you remove observations because of the change in covariance parameters and the change in the regressor space. 

Conditional residuals are subject-specific residuals that are useful in detecting outlying subjects 
and in determining whether the random effects are selected properly. If you choose the right random effects, the conditional residuals should be small. For example, if you choose a random intercept but you should have a random slope in the model, the subject-specific residuals show the model misspecification. 
Marginal residuals are population-averaged residuals that are helpful in diagnosing whether the fixed effect part of the model is selected properly. They are also helpful in diagnosing the fit of the model averaged across all subjects. For example, if you were to predict the response of the next subject in your study, the only way of measuring the quality of the prediction is by using the marginal residuals.

The raw residuals are usually not well suited to examine model assumptions and to detect outliers 
and influential observations. For example, if the variances of the observations differ, then a data point with a smaller raw residual and the smaller variance might be more troublesome than a data point with 
a large residual and the larger variance. To account for the unequal variance of the residuals, various studentizations are applied (Schabenberger 2004). 

A common recommendation when detecting unusual observations is to use externally studentized residuals with a benchmark value of plus or minus 2. Examination of the scaled residuals is also helpful in diagnosing departures from normality (Schabenberger 2004). 

The basic procedure for quantifying influence is shown above. It is important to note that influence analyses are performed under the assumption that the chosen model is correct. Changing the model structure can alter the conclusions (Schabenberger 2004).

An overall influence statistic measures the change in the objective function being minimized. In ordinary least squares regression, the residual sums of squares serves that purpose. In linear mixed models fit 
by maximum likelihood or restricted maximum likelihood, an overall influence measure is the likelihood distance. This statistic gives the amount by which the log-likelihood of the full data changes if one were to evaluate it at the reduced-data estimates.
The PRESS residual is the difference between the observed value and the predicted marginal mean, where the predicted value is obtained without the observations in question. The sum of the PRESS residuals is the PRESS statistic. The DFFITS statistic is the change in predicted values due to removal 
of a single data point standardized by the externally estimated standard error of the predicted value 
in the full data.
The primary difference between Cook’s D and Multivariate DFFITS (MDFFITS) is that MDFFITS uses an externalized estimate of the variance of the parameter estimates while Cook’s D does not. For both statistics, you are concerned about large values, indicating that the change in the parameter estimate is large relative to the variability of the estimate. 
The benchmarks of no influence for the COVTRACE and COVRATIO statistics are 0 for 
the covariance trace and 1 for the covariance ratio. The variance matrix that is used in the computation 
of COVTRACE and COVRATIO for covariance parameters is obtained from the inverse Hessian matrix.

Influence diagnostics are performed by noniterative or iterative methods. The noniterative diagnostics rely on recomputation formulas under the assumption that covariance parameters or their ratios remain fixed. With the possible exception of a profiled (factored out) residual variance, no covariance parameters are updated. This is the default behavior because of its computational efficiency. However, the impact of an observation on the overall analysis can be underestimated if its effect on covariance parameters is not assessed. Toward this end, iterative methods can be applied to gauge the overall impact of observations and to obtain influence diagnostics for the covariance parameter estimates. 

When you use the SOLUTION option in the RANDOM statement, a table of the random effect parameter estimates, which are deviations from the population parameter estimates, is produced. These estimates are the empirical best linear unbiased predictors (EBLUPs). They can be interpreted as deviations from the population average, which might be helpful for detecting subjects or groups of subjects that are having 
a different time course. Furthermore, these estimates can be used in the prediction of subject-specific profiles. If you use ODS and save the parameter estimates of the random effects to a SAS data set, you can create histograms and scatter plots for diagnostic purposes.
The random effects for intercept represent the variability in subject-specific intercepts not explained 
by the covariates included in the model. The distribution of the random effects is assumed to be normal. You might be able to check this assumption by plotting the intercept parameter estimates.
However, both the residual error and the covariate structure play an important role in the shape 
of the distribution of random effects. If the residual variability is large compared to the random effects variability, then the observed distribution of the random effects might not reflect the true distributional shape of the random effects. In fact, Verbeke and Molenberghs (2000) show that when the within-subject variability is large in comparison to the between-subject variability, the histogram of random effect parameter estimates shows less variability than is actually present in the population of random effects. Therefore, these histograms might be misleading.
Verbeke and Molenberghs (2000) suggest that the nonnormality of the random effects can only 
be detected by comparing the results obtained under the normality assumption with results obtained from fitting a linear mixed model with relaxed distributional assumptions for the random effects. This will not be a trivial task to accomplish. Therefore, what are the consequences of ignoring the normality assumption of the random effects?

If the model is correctly specified and the covariance structure is appropriate, then the violation 
of the normality assumption of the random effects has little effect on the estimation of the fixed effect parameter estimates and their standard errors. Verbeke and Lesaffre (1997) performed extensive simulations comparing the corrected standard errors of the fixed effects (using an estimator that corrects for possible nonnormality of the random effects) to the uncorrected standard errors of the fixed effects. The results showed that the two standard errors were very similar regardless of the distribution. However, when the normality assumption is violated, the corrected standard errors for the random effects are clearly superior to the uncorrected ones. It is data dependent on whether the standard errors increase or decrease.
Therefore, if interest is only in the inference of the fixed effects, then valid inferences are obtained even when the random effects are incorrectly assumed to be normally distributed. If interest is in the inference of the random effects, then you should explore whether the assumed normal distribution is appropriate. Verbeke and Molenberghs (2000) suggest that if you are interested in detecting subgroups in the random effects population, then you should take as many measurements as possible, at the beginning and 
at the end of the study to obtain maximal spread of the time points.
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Example:	Fit the model with the REPEATED and RANDOM statements. The model includes the six main effects, two interactions, and the two polynomial terms for time. Specify the spatial power covariance structure and the group effect of timegroup in the REPEATED statement. Specify time and intercept in the RANDOM statement along with the unstructured covariance structure. Specify plots of the likelihood distances, the PRESS statistics, influence statistics, and residuals (raw, student, Pearson, and scaled). Use iterative analysis with 
the maximum number of iterations set to 5 and use the FIRSTORDER suboption. Identify potentially influential subjects and observations.
/* long02d10.sas */
ods graphics / imagemap=on tipmax=2400;
ods output influence=influence;
proc mixed data=aids noclprint plots=(distance(useindex) 
         press(useindex) influenceestplot(useindex) residualpanel(box)
         studentpanel(box) pearsonpanel(box) vcirypanel(box));
   class timegroup id;
   model cd4_scale=time age cigarettes drug partners depression 
       time*age time*cigarettes time*time time*time*time 
     / solution ddfm=kr(firstorder) influence(effect=id iter=5) vciry;
   random intercept time / type=un subject=id;
   repeated / type=sp(pow)(time) local subject=id group=timegroup;
   title "Longitudinal Model with Random Effects and Serial "
         "Correlation";
run;
Select ODS GRAPHICS statement options:
IMAGEMAP=ON|OFF	controls data tips and drill down generation. Data tips are pieces of explanatory text that appear when you hold the mouse pointer over the data portions of a graph contained in an HTML page.
TIPMAX=<n>	specifies the maximum number of distinct mouse-over areas allowed before data tips are disabled
Selected PROC MIXED statement options:
NOCLPRINT<=number>	suppresses the display of the “Class Level Information” table 
if you do not specify number. If you do specify number, only levels with totals that are less than number are listed in the table.
PLOTS=	requests that the MIXED procedure produce statistical graphics via the Output Delivery System. 
[bookmark: Demo2_17_pg134]Selected PLOTS= suboptions:
DISTANCE<(option)>	requests a plot of the likelihood or restricted likelihood distance. When influence diagnostics are requested with set selection according to an effect, the USEINDEX option enables you 
to replace the formatted tick values on the horizontal axis with integer indices of the effect levels in order to reduce the space taken up by the horizontal plot axis. 
INFLUENCEESTPLOT<(options)>	requests panels of the fixed effect deletion estimates 
in an influence analysis, provided that the INFLUENCE option 
is specified in the MODEL statement. 
RESIDUALPANEL<(options)>	requests a panel of raw residuals. By default, the conditional residuals are produced. 
STUDENTPANEL<(options)>	requests a panel of studentized residuals. By default, 
the conditional residuals are produced. 
PEARSONPANEL<(options)>	requests a panel of Pearson residuals. By default, the conditional residuals are produced. 
PRESS<(option)>	requests a plot of PRESS residuals or PRESS statistics. These 
are based on “leave-one-out” or “leave-set-out” prediction of the marginal mean. 
VCIRYPANEL<(options)>	requests a panel of residual graphics based on the scaled residuals. 
Residual plot option:
BOX	replaces the inset of summary statistics in the lower right corner of the panel with a box plot of the residual.
Selected MODEL statement options:
INFLUENCE<(options)>	specifies that influence and case deletion diagnostics are to be computed.
VCIRY	requests that responses and marginal residuals be scaled 
by the inverse Cholesky root of the marginal variance-covariance matrix. The variables ScaledDep and ScaledResid are added 
to the OUTPM= data set. 
Selected INFLUENCE suboptions:
EFFECT=	specifies an effect according to which observations are grouped. Observations sharing the same level of the effect are removed from the analysis as a group. The effect must contain only classification variables, but they do not need to be contained 
in the model.
[bookmark: Demo2_17_pg135]ITER=n	controls the maximum number of additional iterations PROC MIXED performs to update the fixed-effects and covariance parameter estimates following data point removal. If you specify a number greater than 0, then statistics such as DFFITS, MDFFITS, and the likelihood distances measure the impact 
of observation(s) on all aspects of the analysis. 
	Compared to noniterative updates, the computations for iterative influence analysis are more involved. In particular for large data sets and/or a large number of random effects, iterative updates require considerably more resources. A one-step (ITER=1) or two-step update might 
be a good compromise. The output includes the number of iterations performed, which is less than  if the iteration converges. If the process does not converge in  iterations, you should 
be careful in interpreting the results, especially if n is fairly large.
Partial Output

The scaled residuals appear normally distributed with a few outliers. The random scatter around the zero reference line indicates no problems with the choice of the covariance structure.
[bookmark: Demo2_17_pg136]
The conditional residuals appear normally distributed with a few extreme outliers. 
[bookmark: Demo2_17_pg137]
The conditional studentized residuals appear normally distributed with a few extreme outliers.
[bookmark: Demo2_17_pg138]
The conditional Pearson residuals appear normally distributed with a few extreme outliers.
Partial Output
                           Influence Diagnostics for Levels of id

                                                                                      Cook's
           Number of                                                                       D
          Observations                  PRESS   Cook's                                   Cov
    id      in Level    Iterations  Statistic        D  MDFFITS  COVRATIO  COVTRACE    Parms

   10092        4            2         573.55  0.01029  0.01045    0.8989    0.1052  0.26788
   10131       10            2        1018.82  0.01221  0.01231    0.8906    0.1129  0.63267
   10132        8            2          74.94  0.00159  0.00158    1.0311    0.0308  0.00568
   10135        4            2          51.99  0.00530  0.00527    0.9918    0.0080  0.01967
   10145       12            2          92.61  0.00083  0.00083    1.0536    0.0524  0.03892

[bookmark: Demo2_17_pg139]                            Influence Diagnostics for Levels of id

                                                             RMSE
                       MDFFITS                            without    Restricted
                           Cov    COVRATIO    COVTRACE    deleted    Likelihood
                 id      Parms    CovParms    CovParms      level      Distance

                10092  0.28166      0.8069      0.1781    1.61803        0.3663
                10131  0.69023      0.6142      0.4022    1.59015        0.8724
                10132  0.00548      1.0643      0.0675    1.61062        0.0268
                10135  0.02012      0.9588      0.0397    1.61083        0.0761
                10145  0.03863      1.1020      0.0995    1.61888        0.0501
Since an iterative analysis was specified, the Influence Diagnostics for Levels of ID table shows the overall impact of each cluster representing a subject and the influence diagnostics for the covariance parameter estimates. Because the maximum number of iterations was set to five, for each deletion set the covariance parameters were updated up to five times. It should be noted that for every deletion set, 
PROC MIXED converged in less than 5 iterations (maximum number was 3). 
	RMSE is an estimate of the root mean square error with the cluster deleted.

[bookmark: Demo2_17_pg140]The plot of the restricted likelihood distance clearly shows several influential clusters. Cluster 30148 has the largest restricted likelihood distance. You should examine influential clusters and determine whether they are erroneous. If these clusters are legitimate, then they might represent important new findings. They also might indicate that your current model is inadequate.
	By viewing the tooltip information, you can see that patient 30148 had extremely large CD4+ cell counts.

Several clusters have a large effect on the fixed effects and covariance parameters. These clusters warrant further investigation. They can point to a model breakdown and lead to the development of a better model (Schabenberger 2004).
[bookmark: Demo2_17_pg141]
The PRESS statistic measures the influence on the fitted and predicted values. The USEINDEX option uses as the horizontal axis label the index of the effect level rather than the formatted value(s). Several clusters appear influential.
[bookmark: Demo2_17_pg142]
The fixed effects deletion estimates plot gives a detailed picture on how the individual parameter estimates react to the removal of each cluster. Some of the parameters clearly are affected.
[bookmark: Demo2_17_pg143]
Some of the clusters clearly influenced the interactions in the model.
[bookmark: Demo2_17_pg144]
The plot of the covariance parameter deletion estimates gives a detailed picture of how the individual covariance parameters react to the removal of the clusters. 
[bookmark: Demo2_17_pg145]
Some of the clusters clearly influenced the covariance parameters.
Identify potentially influential clusters based on relatively extreme values for the press and likelihood distance statistics. 
data aids_inf(keep=id cd4_scale time age cigarettes 
                   drug partners depression press rld);
   merge aids influence;
   by id;
   if rld gt 1 | press gt 1000 ;
run;

data aids_id;
   set aids_inf;
   by id;
   if first.id;
run;
The first DATA step merges the aids and influence data sets into the aids_inf data set and subsets to observations with restricted likelihood distance statistics greater than 1 or PRESS statistics greater than 1000. The second DATA step, creates the aids_id data set and retains only the first observation for each subject.
[bookmark: Demo2_17_pg146]proc print data=aids_id;
   var id press rld;
   title2 'Potentially Influential Subjects';
run;

proc print data=aids_inf;
   where cd4_scale gt 20 |cd4_scale lt 5;
   var id cd4_scale time press rld;
   title2 'Potentially Influential Observations'; 
   title3 'With CD4_Scale Counts above 20 or below 5';
run;
title;
The first PROC PRINT prints potentially influential subjects and the second PROC PRINT prints potentially influential observations with extreme CD4_scale counts.  
PROC PRINT Output
                                     
                                Potentially Influential Subjects

                               Obs       id      PRESS       RLD

                                1     10131    1018.82    0.8724
                                2     10171     293.87    1.0724
                                3     10191     540.85    1.4686
                                4     10770     491.59    1.3524
                                5     11165    1189.43    1.4748
                                6     30148     629.13    3.8442
                                7     31036     371.33    1.4496
_______________________________________________________________________________________________

Potentially Influential Observations
                           With CD4_Scale Counts above 20 or below 5

                                      cd4_
                     Obs       id    scale      time        PRESS       RLD

                       2    10131    22.71     0.24914    1018.82    0.8724
                      11    10171     2.18    -1.27036     293.87    1.0724
                      12    10171    22.41    -0.73922     293.87    1.0724
                      15    10171     4.99     0.70910     293.87    1.0724
                      16    10171     3.82     1.74401     293.87    1.0724
                      18    10191    31.84    -0.24367     540.85    1.4686
                      23    10191     3.68     2.71595     540.85    1.4686
                      33    11165    23.35    -1.22656    1189.43    1.4748
                      38    11165    24.34     3.38672    1189.43    1.4748
                      41    30148    30.15     0.26010     629.13    3.8442
                      51    31036    27.02    -0.19165     371.33    1.4496

Based on the PRESS statistic and the restricted likelihood distance, seven subjects might be considered influential. Two subjects, 10171 and 10191, have both extremely high and extremely low cd4_scale counts. Subject 10770 has no extreme counts. 



In conclusion, model assessment is a critical part of model building. Residual and influence statistic plots can indicate whether you have a misspecified model, and can assist you in detecting erroneous data 
or important new findings. If the objectives of your study are to obtain accurate inferences of the fixed effects in your model, then the normality assumptions regarding the random effects are not important.
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Assessing the Model
l.    Fit a repeated measures model with the main effects and use the spatial exponential covariance structure with the local option. Specify plots of the likelihood distances, the PRESS statistics, influence statistics, and marginal residuals (student, Pearson, and scaled) using the MARGINAL and BOX residual plot options. Use iterative analysis and set the maximum number of iterations to 5 and use the FIRSTORDER suboption.
1)    Do the residual plots indicate model misspecification?
2)    Are there any patients that should be investigated?
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Chapter Summary
The general linear mixed model extends the general linear model by the addition of random effect parameters and by allowing a more flexible specification of the covariance matrix of the random errors. For example, general linear mixed models allow for both correlated error terms and error terms with heterogeneous variances. 
The general linear mixed model can easily be fitted to longitudinal data. The model assumes that 
the vector of repeated measurements on each subject follows a linear regression model where some 
of the regression parameters are population-specific (fixed-effects) whereas other parameters are subject-specific (random-effects). The subject-specific regression coefficients reflect how the response evolves over time for each subject.
Estimation is more difficult in the mixed model than in the general linear model. Not only do you have fixed effects as in the general linear model, but you also have to estimate the covariance matrix 
of the random effects, and the covariance matrix of the random errors. Ordinary least squares is no longer the best method because the distributional assumptions regarding the random error terms are too restrictive. Generalized least squares is used because it takes into account the covariance structures 
of the random effects and random errors. 
PROC MIXED implements two likelihood-based methods to estimate the covariance parameters: maximum likelihood (ML) and restricted maximum likelihood (REML). The difference between ML 
and REML is the construction of the likelihood function. However, the two methods are asymptotically equivalent and often give very similar results. The distinction between ML and REML becomes important only when the number of fixed effects is relatively large. In that case, the comparisons unequivocally favor REML.
When finding reasonable estimates for the covariance structures, if you choose a structure that is too
simple, then you risk increasing the Type I error rate 
complex, then you sacrifice power and efficiency.
The Kenward-Roger degrees of freedom adjustment is superior, or at worst equal, to the Satterthwaite 
and default DDFM options. For the more complex covariance structures, the Type I error rate inflation is extremely severe unless the KR adjustment is used. It is recommended that the KR adjustment be used along with the FIRSTORDER suboption as the standard operating procedure for longitudinal models.
Longitudinal models usually have three sources of random variation. The between-subject variability 
is represented by the random effects. The within-subject variability is represented by the serial correlation. The correlation between the measurements within subject usually depends on the time interval between the measurements and decreases as the length of the interval increases. Finally, there 
is potentially also measurement error in the measurement process.
The covariance structure that is appropriate for your model is directly related to which component 
of variability is the dominant component. For example, if the serial correlation among the measurements is minimal, then the random effects probably account for most of the variability in the data 
and the remaining error components have a very simple covariance structure.
After a candidate-mean model is selected, fitting the model using ordinary least squares regression 
and examining the residuals might help determine the appropriate covariance structure. A function consisting of ordinary least squares that describes the association among repeated measurements 
and is easily estimated with irregular observation times is the sample variogram.
The data values in the sample variogram are calculated from the observed half-squared differences between pairs of residuals within individuals, where the residuals are ordinary least squares residuals based on the mean model, and the corresponding time differences.  The vertical axis in the variogram represents the residual variability within subject over time. The scatter plot contains a smoothed nonparametric curve, which estimates the general pattern in the sample variogram. This curve can be used to decide whether the mixed model should include serial correlation. If a serial correlation component 
is warranted, the fitted curve can be used in selecting the appropriate serial correlation function. The fitted curve can also be used to determine whether measurement error and random effects are evident 
in the model.
You can also use the information criteria (such as the AIC and BIC) produced by PROC MIXED as a tool to help you select the most appropriate covariance structure. The smaller the information criteria value, the better the model. However, only choose the covariance structures that make sense given the data. 
For data with unequally spaced time points and different time points across subjects, only compound symmetry and the spatial covariance structures are appropriate covariance structures. If the time points are equally spaced, then the AR(1) and Toeplitz covariance structures could be examined. If the time points were unequally spaced but have the same time points across subjects, then the unstructured covariance structure could be examined.
PROC MIXED allows heterogeneity in the residual covariance parameters with the GROUP= option. 
All observations having the same level of the GROUP effect have the same covariance parameters. Each new level of the GROUP effect produces a new set of covariance parameters with the same structure 
as the original group.
After an appropriate covariance structure is selected, model-building efforts should be directed 
at simplifying the mean structure of the model. Because the model should be hierarchically well formulated, the first step is to evaluate the interactions. One recommended approach is to eliminate the interactions one at a time, starting with the least significant interaction. If you use the model fit statistics such as AIC, then you must use the ML estimation method. However, after the final model is chosen, refit the model using REML because REML estimators are superior.
When the sample variogram clearly shows that the random effects error component is much larger than the serial correlation error component, a longitudinal model using the RANDOM statement might 
be useful. These models are called random coefficient models because the regression coefficients for one or more covariates are assumed to be a random sample from some population of possible coefficients. 
In longitudinal models, the random coefficients are the subject-specific parameter estimates. Random coefficient models are useful for highly unbalanced data with many repeated measurements per subject.
In random coefficient models, the fixed effect parameter estimates represent the expected values 
of the population of intercepts and slopes. The random effects for intercept represent the difference between the intercept for the ith subject and the overall intercept. The random effects for slope represent the difference between the slope for the ith subject and the overall slope. Random coefficient models also have a random error term for the within-subject variation.
In longitudinal models, it is recommended that the unstructured covariance structure be specified 
in the RANDOM statement. PROC MIXED estimates the variances of the intercepts and slopes along with the covariance between the intercepts and slopes in the G matrix. Specifying the unstructured covariance structure indicates that you do not want to impose any structure on the variances for intercepts and variances for slopes, and on the covariance between the intercepts and slopes.
In PROC MIXED, you can compute predicted response values using empirical best linear unbiased predictions (EBLUPs). These predictions can be interpreted as a weighted mean of the population average profile and the observed data profile. If the residual variability is large in comparison to the between-subject variability, more weight is given to the overall average profile compared to the observed data. However, if the residual variability is small in comparison to the between-subject variability, more weight will be given to the observed data profile.
You can also fit a model in PROC MIXED with both the RANDOM and REPEATED statements. However, this model is generally not recommended in practice. These models tend to have convergence and estimation problems, especially with complex covariance structures.
The purpose of model diagnostics is to compare the data with the fitted model to highlight any systematic discrepancies. Conditional residual plots can be used to detect outliers and whether the random effects are properly selected. Marginal residual plots can be used to diagnose whether you selected the fixed effect part of the model properly. Model diagnostics are especially important in linear mixed models because likelihood-based estimation methods are particularly sensitive to unusual observations.
If the model is correctly specified and the covariance structure is appropriate, then the violation 
of the normality assumption of the random effects has little effect on the estimation of the fixed effect parameter estimates and their standard errors. However, violation of the normality assumption 
of the random effects clearly affects the standard errors and parameter estimates of the random effects.
General form of the MIXED procedure:
PROC MIXED DATA=SAS-data-set <options>;
         CLASS variables;
         MODEL response=<fixed effects></options>;
         RANDOM random effects </options>;
         REPEATED <repeated effect> </options>;
RUN;
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Solutions
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1. Fitting a General Linear Mixed Model
a.    Fit a general linear mixed model with the three main effects, the three two-factor interactions, and the quadratic and cubic effects of hours. Request the parameter estimates and the Kenward-Roger method for computing the degrees of freedom. In the REPEATED statement, request 
the unstructured covariance structure and the R matrix along with the correlations computed from the R matrix.
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline hours*drug hours*baseline 
                   drug*baseline hours*hours hours*hours*hours 
                   / solution ddfm=kr; 
   repeated / type=un subject=patient r rcorr; 
   title 'Longitudinal Model with Unstructured Covariance Structure'; 
run; 
 
                  Longitudinal Model with Unstructured Covariance Structure                   

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     LONG.HEARTRATE
                     Dependent Variable           heartrate
                     Covariance Structure         Unstructured
                     Subject Effect               patient
                     Estimation Method            REML
                     Residual Variance Method     None
                     Fixed Effects SE Method      Kenward-Roger
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information

                       Class    Levels    Values

                       drug          3    a b p

                                          Dimensions

                              Covariance Parameters            15
                              Columns in X                     15
                              Columns in Z                      0
                              Subjects                         24
                              Max Obs per Subject               5

                                    Number of Observations

                          Number of Observations Read             120
                          Number of Observations Used             120
[bookmark: Solution2_23_pg153]                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1       810.76784735
                          1              2       736.70254878      0.00009683
                          2              1       736.67527615      0.00000056
                          3              1       736.67512447      0.00000000


                                   Convergence criteria met.

                                Estimated R Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1     90.3624     62.4418     52.6105     44.2552     34.4153
                   2     62.4418     74.0500     58.1545     52.3782     30.2378
                   3     52.6105     58.1545     91.3261     70.5043     44.9735
                   4     44.2552     52.3782     70.5043     80.2893     44.6240
                   5     34.4153     30.2378     44.9735     44.6240     54.6143

                          Estimated R Correlation Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1      1.0000      0.7633      0.5791      0.5196      0.4899
                   2      0.7633      1.0000      0.7072      0.6793      0.4755
                   3      0.5791      0.7072      1.0000      0.8234      0.6368
                   4      0.5196      0.6793      0.8234      1.0000      0.6739
                   5      0.4899      0.4755      0.6368      0.6739      1.0000

                                Covariance Parameter Estimates

                                Cov Parm    Subject    Estimate

                                UN(1,1)     patient     90.3624
                                UN(2,1)     patient     62.4418
                                UN(2,2)     patient     74.0500
                                UN(3,1)     patient     52.6105
                                UN(3,2)     patient     58.1545
                                UN(3,3)     patient     91.3261
                                UN(4,1)     patient     44.2552
                                UN(4,2)     patient     52.3782
                                UN(4,3)     patient     70.5043
                                UN(4,4)     patient     80.2893
                                UN(5,1)     patient     34.4153
                                UN(5,2)     patient     30.2378
                                UN(5,3)     patient     44.9735
                                UN(5,4)     patient     44.6240
                                UN(5,5)     patient     54.6143

                                        Fit Statistics

                             -2 Res Log Likelihood           736.7
[bookmark: Solution2_23_pg154]                             AIC (Smaller is Better)         766.7
                             AICC (Smaller is Better)        771.9
                             BIC (Smaller is Better)         784.3

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                  14         74.09          <.0001

                                   Solution for Fixed Effects

                                                 Standard
        Effect               drug    Estimate       Error      DF    t Value    Pr > |t|

        Intercept                     14.5068     24.6470    21.5       0.59      0.5623
        hours                         -1.5366     20.7420    40.1      -0.07      0.9413
        drug                 a        15.9716     30.4845    18.4       0.52      0.6066
        drug                 b        18.4247     29.1195    18.4       0.63      0.5347
        drug                 p              0           .       .        .         .
        baseline                       0.7847      0.2879    21.4       2.73      0.0125
        hours*drug           a        -8.1887      4.4701      20      -1.83      0.0819
        hours*drug           b        -4.5604      4.4364      20      -1.03      0.3162
        hours*drug           p              0           .       .        .         .
        hours*baseline                -0.2567      0.1477      20      -1.74      0.0977
        baseline*drug        a        -0.1430      0.3623      18      -0.39      0.6977
        baseline*drug        b        -0.1327      0.3409      18      -0.39      0.7016
        baseline*drug        p              0           .       .        .         .
        hours*hours                   65.4685     39.6707      23       1.65      0.1125
        hours*hours*hours            -46.4064     25.2000      23      -1.84      0.0785


                                 Type 3 Tests of Fixed Effects

                                           Num     Den
                     Effect                 DF      DF    F Value    Pr > F

                     hours                   1    39.3       0.08    0.7784
                     drug                    2    18.5       0.21    0.8088
                     baseline                1    16.1      17.36    0.0007
                     hours*drug              2      20       1.69    0.2106
                     hours*baseline          1      20       3.02    0.0977
                     baseline*drug           2      18       0.10    0.9090
                     hours*hours             1      23       2.72    0.1125
                     hours*hours*hours       1      23       3.39    0.0785
1)   The unstructured covariance structure is legitimate for this example because the time intervals are the same across patients.
2)   The R matrix represents the residual covariance matrix. The value in row 1 and column 1 represents the variance of the first measurement. The value in row 2 and column 2 represents the variance of the second measurement. The value in row 1 and column 2 represents 
the covariance of the first and second measurements.
3)   The R correlation matrix consists of the correlations of the measurements within patient. It seems that the autocorrelations decrease over time, especially early in the clinical trial.
4)   [bookmark: Solution2_23_pg155]The null model likelihood ratio test compares the fitted model to a model with an independent covariance structure. The test is significant, which indicates that the unstructured covariance structure does a better job modeling the residual error compared to the independent covariance structure.
5)   There are no higher-order terms significant at the .05 level.
b.    Fit the same model but with the compound symmetry covariance structure.
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline hours*drug hours*baseline 
                   drug*baseline hours*hours hours*hours*hours 
                   / solution ddfm=kr; 
   repeated / type=cs subject=patient r rcorr; 
   title 'Longitudinal Model with Compound Symmetry Covariance '
         'Structure'; 
run; 

                 Longitudinal Model with Compound Symmetry Covariance Structure                

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     LONG.HEARTRATE
                     Dependent Variable           heartrate
                     Covariance Structure         Compound Symmetry
                     Subject Effect               patient
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Kenward-Roger
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information

                       Class    Levels    Values

                       drug          3    a b p

                                          Dimensions

                              Covariance Parameters             2
                              Columns in X                     15
                              Columns in Z                      0
                              Subjects                         24
                              Max Obs per Subject               5

                                    Number of Observations

                          Number of Observations Read             120
                          Number of Observations Used             120
                          Number of Observations Not Used           0

[bookmark: Solution2_23_pg156]                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1       810.76784735
                          1              1       754.42562477      0.00000000

                                   Convergence criteria met.

                                Estimated R Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1     77.7052     49.5195     49.5195     49.5195     49.5195
                   2     49.5195     77.7052     49.5195     49.5195     49.5195
                   3     49.5195     49.5195     77.7052     49.5195     49.5195
                   4     49.5195     49.5195     49.5195     77.7052     49.5195
                   5     49.5195     49.5195     49.5195     49.5195     77.7052

                          Estimated R Correlation Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1      1.0000      0.6373      0.6373      0.6373      0.6373
                   2      0.6373      1.0000      0.6373      0.6373      0.6373
                   3      0.6373      0.6373      1.0000      0.6373      0.6373
                   4      0.6373      0.6373      0.6373      1.0000      0.6373
                   5      0.6373      0.6373      0.6373      0.6373      1.0000

                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                CS           patient     49.5195
                                Residual                 28.1857

                                        Fit Statistics

                             -2 Res Log Likelihood           754.4
                             AIC (Smaller is Better)         758.4
                             AICC (Smaller is Better)        758.5
                             BIC (Smaller is Better)         760.8

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   1         56.34          <.0001

[bookmark: Solution2_23_pg157]                                   Solution for Fixed Effects

                                                 Standard
        Effect               drug    Estimate       Error      DF    t Value    Pr > |t|

        Intercept                     22.3320     21.7045    19.1       1.03      0.3164
        hours                         -1.2646     18.7375      90      -0.07      0.9463
        drug                 a        -2.8043     27.8947    18.1      -0.10      0.9210
        drug                 b        13.4716     26.6388    18.1       0.51      0.6192
        drug                 p              0           .       .        .         .
        baseline                       0.6901      0.2538      19       2.72      0.0136
        hours*drug           a        -8.5539      3.3601      90      -2.55      0.0126
        hours*drug           b        -4.3841      3.3348      90      -1.31      0.1920
        hours*drug           p              0           .       .        .         .
        hours*baseline                -0.2631      0.1110      90      -2.37      0.0199
        baseline*drug        a        0.08656      0.3326      18       0.26      0.7976
        baseline*drug        b       -0.07400      0.3129      18      -0.24      0.8157
        baseline*drug        p              0           .       .        .         .
        hours*hours                   66.4745     45.5629      90       1.46      0.1481
        hours*hours*hours            -47.2876     30.9261      90      -1.53      0.1298

                                 Type 3 Tests of Fixed Effects

                                           Num     Den
                     Effect                 DF      DF    F Value    Pr > F

                     hours                   1      90       0.09    0.7642
                     drug                    2    18.1       0.26    0.7701
                     baseline                1    21.9      26.95    <.0001
                     hours*drug              2      90       3.24    0.0437
                     hours*baseline          1      90       5.62    0.0199
                     baseline*drug           2      18       0.16    0.8572
                     hours*hours             1      90       2.13    0.1481
                     hours*hours*hours       1      90       2.34    0.1298
1)   The compound symmetry covariance structure can be used with any longitudinal data because the covariance structure assumes equal correlations regardless of the time interval. Therefore, it can handle equally or unequally spaced time intervals. However, it is usually a poor choice because the correlations usually decrease with an increasing time interval.
2)   The AICC statistic is much lower for the model with the compound symmetry covariance structure because the penalty is much less severe. The model with the unstructured covariance structure is estimating 15 covariance parameters while the model with the compound symmetry covariance structure is estimating only 2. Obviously the 13 extra covariance parameters do not add much to the model fit.
3)   The model with the compound symmetry covariance structure has two higher-order terms significant at the .05 level and the model with the unstructured covariance structure had no significant higher-order terms at this alpha level. The differences between the two models regarding inference are due to the fact that the unstructured covariance structure is probably too complex for the longitudinal data in this example. Therefore, you sacrifice power and efficiency. However, the compound symmetry covariance structure is probably too simple for the longitudinal data in this example. Thus, you increase the Type I error.
c.    [bookmark: Solution2_23_pg158]Fit the same model but with the spatial power covariance structure. Because you are using the spatial power covariance structure, and add a measurement error component and use the FIRSTORDER suboption.
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline hours*drug hours*baseline 
                   drug*baseline hours*hours hours*hours*hours 
                   / solution ddfm=kr(firstorder); 
   repeated / type=sp(pow)(hours) local subject=patient r rcorr; 
   title 'Longitudinal Model with Spatial Power Covariance Structure'; 
run; 

                   Longitudinal Model with Spatial Power Covariance Structure                  

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     LONG.HEARTRATE
                     Dependent Variable           heartrate
                     Covariance Structure         Spatial Power
                     Subject Effect               patient
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information

                       Class    Levels    Values

                       drug          3    a b p


                                          Dimensions

                              Covariance Parameters             3
                              Columns in X                     15
                              Columns in Z                      0
                              Subjects                         24
                              Max Obs per Subject               5

                                    Number of Observations

                          Number of Observations Read             120
                          Number of Observations Used             120
                          Number of Observations Not Used           0

[bookmark: Solution2_23_pg159]                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1       810.76784735
                          1              2       774.20384832      1.92981521
                          2              4       761.08247978      1.03422286
                          3              4       759.04559900      2.98907683
                          4              1       758.17432643      0.31771101
                          5              1       757.90332970      0.01420522
                          6              2       756.59661708      0.03981076
                          7              2       754.17270042      0.18554890
                          8              2       750.40180026      0.11827784
                          9              2       748.22207185      0.00199477
                         10              2       747.61827563      0.00005801
                         11              1       747.60224474      0.00000001

                                   Convergence criteria met.

                                Estimated R Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1     75.5796     57.8958     52.1462     44.5744     32.5696
                   2     57.8958     75.5796     54.3741     46.4789     33.9611
                   3     52.1462     54.3741     75.5796     51.6036     37.7057
                   4     44.5744     46.4789     51.6036     75.5796     44.1106
                   5     32.5696     33.9611     37.7057     44.1106     75.5796

                          Estimated R Correlation Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1      1.0000      0.7660      0.6900      0.5898      0.4309
                   2      0.7660      1.0000      0.7194      0.6150      0.4493
                   3      0.6900      0.7194      1.0000      0.6828      0.4989
                   4      0.5898      0.6150      0.6828      1.0000      0.5836
                   5      0.4309      0.4493      0.4989      0.5836      1.0000

                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     60.3694
                                SP(POW)      patient      0.5339
                                Residual                 15.2102

                                        Fit Statistics

                             -2 Res Log Likelihood           747.6
                             AIC (Smaller is Better)         753.6
                             AICC (Smaller is Better)        753.8
                             BIC (Smaller is Better)         757.1

[bookmark: Solution2_23_pg160]                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         63.17          <.0001

                                   Solution for Fixed Effects

                                                 Standard
        Effect               drug    Estimate       Error      DF    t Value    Pr > |t|

        Intercept                     18.8832     21.3867    22.1       0.88      0.3868
        hours                          0.2408     19.1330    78.8       0.01      0.9900
        drug                 a         3.9404     26.7200    18.9       0.15      0.8843
        drug                 b        15.7498     25.5218    18.9       0.62      0.5445
        drug                 p              0           .       .        .         .
        baseline                       0.7283      0.2498    21.9       2.92      0.0081
        hours*drug           a        -8.8914      4.5933    29.4      -1.94      0.0626
        hours*drug           b        -4.3778      4.5587    29.4      -0.96      0.3447
        hours*drug           p              0           .       .        .         .
        hours*baseline                -0.2700      0.1518    29.4      -1.78      0.0857
        baseline*drug        a        0.01147      0.3178    18.6       0.04      0.9716
        baseline*drug        b        -0.1019      0.2990    18.6      -0.34      0.7371
        baseline*drug        p              0           .       .        .         .
        hours*hours                   64.4389     39.1773    69.4       1.64      0.1045
        hours*hours*hours            -46.0162     26.6628    70.8      -1.73      0.0887

                                 Type 3 Tests of Fixed Effects

                                           Num     Den
                     Effect                 DF      DF    F Value    Pr > F

                     hours                   1      81       0.05    0.8242
                     drug                    2    18.9       0.23    0.7936
                     baseline                1    29.7      24.45    <.0001
                     hours*drug              2    29.4       1.87    0.1715
                     hours*baseline          1    29.4       3.16    0.0857
                     baseline*drug           2    18.6       0.10    0.9019
                     hours*hours             1    69.4       2.71    0.1045
                     hours*hours*hours       1    70.8       2.98    0.0887

1)   The variance plus the residual is an estimate of the variance of the measurements. 
The LOCAL option adds an additional variance parameter, which in general adds an observational error to the time series structure. The spatial power parameter estimate becomes a correlation coefficient when it is raised to the power of the value of the time interval.
2)   The AICC statistic is lower because the spatial power covariance structure is a better fit 
to the residual error. The unstructured covariance structure is too complex while the compound symmetry covariance structure is too simple.
3)   No higher-order terms are significant for this model. These inferences differ from the model with the compound symmetry covariance structure because using the compound symmetry covariance structure inflated the Type I error.
[bookmark: Solution2_23_pg161]Evaluating Covariance Structures
d.    Include the VARIOGRAM and VARIANCE macros (programs long02d02a.sas and long02d02b.sas). Pass the necessary information to the macros to create the varioplot data set and to estimate the process variance. Specify as explanatory variables the three main effects, 
the three two-factor interactions, and the quadratic and cubic effects of hours. Create a plot 
of the sample variogram using PROC SGPLOT and fit a penalized B-spline curve with a smoothing factor of 50 and 5 knots, fit a vertical reference line at the estimate of the process variance, specify a vertical axis of 0 to 100, and specify a horizontal axis of 0 to 1.
%include ".\long02d02a.sas";
%include ".\long02d02b.sas";

%variogram(data=long.heartrate,resvar=heartrate,clsvar=drug,
           expvars=hours drug baseline hours*drug hours*baseline 
           drug*baseline hours*hours hours*hours*hours,id=patient, 
           time=hours,maxtime=5);

%variance(data=long.heartrate,id=patient,resvar=heartrate,
          clsvar=drug,expvars=hours drug baseline hours*drug
          hours*baseline drug*baseline hours*hours hours*hours*hours, 
          subjects=24,maxtime=5);
 
                       Variogram-Based Estimate of the Process Variance                      

                          Obs    nonmissing      total      average
                            1        6900       443706.95    64.3054

proc sgplot data=varioplot noautolegend;
   scatter y=variogram x=time_interval / markerattrs=(color=cyan
        symbol=circle);
   pbspline y=variogram x=time_interval / nomarkers smooth=50 nknots=5
        lineattrs=(color=blue pattern=1 thickness=3);
   refline 64.3 / label="Process Variance";
   xaxis values=(0 to 1 by .1) label='Time Interval';
   yaxis values=(0 to 100 by 10) label='Variogram Values'; 
   title 'Sample Variogram of Heart Rate Data';
run;
[bookmark: Solution2_23_pg162]
1)   The sample variogram clearly shows that the heart rate data have some measurement error, 
a relatively small error component dealing with serial correlation, and a relatively large error component dealing with the random effects.
2)   The LOCAL option should be used along with a covariance structure that allows 
the correlations to change over unequal time intervals. Random coefficients models might 
be useful also. 
e.    Plot the autocorrelation function by time interval using PROC SGPLOT with the penalized B‑spline curve
data varioplot;
   set varioplot;
   autocorr=1-(variogram/64.31);
run;

proc sgplot data=varioplot noautolegend;
   pbspline y=autocorr x=time_interval / nomarkers smooth=50 nknots=5
        lineattrs=(color=blue pattern=1 thickness=3);
   xaxis values=(0 to 1 by .1) label='Time Interval';
   yaxis values=(0 to 1 by .1) label='Autocorrelation Values'; 
   title 'Autocorrelation Plot of Heart Rate Data';
run;
[bookmark: Solution2_23_pg163]
1)   The autocorrelation function clearly decreases over time and it does not decrease to 0 within the range of the data. This supports the recommendation that a covariance structure that handles serial correlation is needed in the model. 
f.    Generate a graph of the model fit statistics by covariance structure. Select the following covariance structures: compound symmetry, unstructured, spatial power, spatial exponential, spatial Gaussian, spatial spherical, and spatial linear. Use ODS to save the model fit statistics 
and graph the AIC, AICC, and BIC statistics.
ods select none;
proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline hours*drug hours*baseline 
       drug*baseline hours*hours hours*hours*hours;
   repeated / type=cs subject=patient;
   ods output fitstatistics=csmodel;
run;

proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline hours*drug hours*baseline 
     drug*baseline hours*hours hours*hours*hours;
   repeated / type=un subject=patient;
[bookmark: Solution2_23_pg164]   ods output fitstatistics=unstmodel;
run;

proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline hours*drug hours*baseline
     drug*baseline hours*hours hours*hours*hours;
   repeated / type=sp(pow)(hours) local subject=patient;
   ods output fitstatistics=powmodel;
run;

proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline hours*drug hours*baseline 
     drug*baseline hours*hours hours*hours*hours;
   repeated / type=sp(lin)(hours) local subject=patient;
   ods output fitstatistics=linmodel;
run;

proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline hours*drug hours*baseline
      drug*baseline hours*hours hours*hours*hours;
   repeated / type=sp(gau)(hours) local subject=patient;
   ods output fitstatistics=gaumodel;
run;

proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline hours*drug hours*baseline 
      drug*baseline hours*hours hours*hours*hours;
   repeated / type=sp(exp)(hours) local subject=patient;
   ods output fitstatistics=expmodel;
run;

proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline hours*drug hours*baseline 
      drug*baseline hours*hours hours*hours*hours;
   repeated / type=sp(sph)(hours) local subject=patient;
   ods output fitstatistics=sphmodel;
run;

ods select all;

data model_fit;
   length model $ 7 type $ 4;
   set csmodel   (in=cs)
       unstmodel (in=un)
       powmodel  (in=pow)
       linmodel  (in=lin)
[bookmark: Solution2_23_pg165]       gaumodel  (in=gau)
       expmodel  (in=exp)
       sphmodel  (in=sph);
   if substr(descr,1,1) in ('A','B');
   if substr(descr,1,3) = 'AIC' then type='AIC';
   if substr(descr,1,4) = 'AICC' then type='AICC';
   if substr(descr,1,3) = 'BIC' then type='BIC';
   if cs then model='CS';
   if un then model='UNSTR';
   if pow then model='SpPow';
   if lin then model='SpLin';
   if exp then model='SpExp';
   if gau then model='SpGau';
   if sph then model='SpSph';
run;

proc sgplot data=model_fit;
   scatter y=value x=model / group=type;
   xaxis label='Covariance Structure';
   yaxis values=(750 to 800 by 10) label='Model Fit Values';
   title 'Model Fit Statistics by Covariance Structure';
run;

1)   [bookmark: Solution2_23_pg166]The spatial exponential, spatial power, and spatial spherical covariance structures appear 
to model the residual error the best.
Developing and Interpreting Models
g.    Reduce the mean model by eliminating unnecessary higher-order terms. Use the ML estimation method and the spatial exponential covariance structure. Also add a measurement error component and use the FIRSTORDER suboption. Use the p-values of the effects along with 
the AICC statistic to decide which terms to eliminate. Do not eliminate the main effects.
proc mixed data=long.heartrate method=ml; 
   class drug; 
   model heartrate=hours drug baseline hours*drug hours*baseline 
                   drug*baseline hours*hours hours*hours*hours 
                   / solution ddfm=kr(firstorder); 
   repeated / type=sp(exp)(hours) local subject=patient; 
   title 'Longitudinal Model with Spatial Exponential '
         'Covariance Structure'; 
run; 
Partial Output
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     45.1236
                                SP(EXP)      patient      1.4965
                                Residual                 15.6998

                                        Fit Statistics

                             -2 Log Likelihood               777.5
                             AIC (Smaller is Better)         807.5
                             AICC (Smaller is Better)        812.1
                             BIC (Smaller is Better)         825.2

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         59.27          <.0001

                                   Solution for Fixed Effects

                                                 Standard
        Effect               drug    Estimate       Error      DF    t Value    Pr > |t|

        Intercept                     19.1258     18.6882    29.7       1.02      0.3144
        hours                        -0.04792     18.2905    89.1      -0.00      0.9979
        drug                 a         3.4651     23.2660    24.9       0.15      0.8828
        drug                 b        15.6648     22.2231      25       0.70      0.4874
        drug                 p              0           .       .        .         .
        baseline                       0.7259      0.2182    29.4       3.33      0.0024
        hours*drug           a        -8.8224      4.2468    30.6      -2.08      0.0462
        hours*drug           b        -4.3803      4.2148    30.6      -1.04      0.3068
        hours*drug           p              0           .       .        .         .
[bookmark: Solution2_23_pg167]        hours*baseline                -0.2688      0.1403    30.6      -1.92      0.0649
        baseline*drug        a        0.01602      0.2767    24.6       0.06      0.9543
        baseline*drug        b        -0.1007      0.2603    24.6      -0.39      0.7021
        baseline*drug        p              0           .       .        .         .
        hours*hours                   64.8515     38.5571    69.4       1.68      0.0971
        hours*hours*hours            -46.2738     26.2275    70.8      -1.76      0.0820

                                 Type 3 Tests of Fixed Effects

                                           Num     Den
                     Effect                 DF      DF    F Value    Pr > F

                     hours                   1    91.2       0.06    0.8049
                     drug                    2      25       0.31    0.7334
                     baseline                1    39.4      31.53    <.0001
                     hours*drug              2    30.6       2.16    0.1328
                     hours*baseline          1    30.6       3.67    0.0649
                     baseline*drug           2    24.6       0.14    0.8688
                     hours*hours             1    69.4       2.83    0.0971
                     hours*hours*hours       1    70.8       3.11    0.0820
The first term to eliminate is baseline*drug.
proc mixed data=long.heartrate method=ml; 
   class drug; 
   model heartrate=hours drug baseline hours*drug hours*baseline 
                   hours*hours hours*hours*hours 
                   / solution ddfm=kr(firstorder); 
   repeated / type=sp(exp)(hours) local subject=patient; 
   title 'Longitudinal Model with Spatial Exponential '
         'Covariance Structure'; 
run; 
Partial Output
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     45.6064
                                SP(EXP)      patient      1.5098
                                Residual                 15.6751

                                        Fit Statistics

                             -2 Log Likelihood               777.8
                             AIC (Smaller is Better)         803.8
                             AICC (Smaller is Better)        807.2
                             BIC (Smaller is Better)         819.1
The AICC statistic went down compared to the last model (807.2 versus 812.1). 
                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         60.36          <.0001

[bookmark: Solution2_23_pg168]                                   Solution for Fixed Effects

                                                 Standard
        Effect               drug    Estimate       Error      DF    t Value    Pr > |t|

        Intercept                     22.4088     10.7112    40.3       2.09      0.0428
        hours                        -0.04391     18.2957      89      -0.00      0.9981
        drug                 a         4.6062      3.7021    39.9       1.24      0.2207
        drug                 b         7.2213      3.6742    39.9       1.97      0.0564
        drug                 p              0           .       .        .         .
        baseline                       0.6872      0.1223    39.9       5.62      <.0001
        hours*drug           a        -8.8234      4.2516    30.7      -2.08      0.0464
        hours*drug           b        -4.3803      4.2195    30.7      -1.04      0.3073
        hours*drug           p              0           .       .        .         .
        hours*baseline                -0.2688      0.1405    30.7      -1.91      0.0651
        hours*hours                   64.8465     38.5412    69.6       1.68      0.0969
        hours*hours*hours            -46.2707     26.2169      71      -1.76      0.0819

                                 Type 3 Tests of Fixed Effects

                                           Num     Den
                     Effect                 DF      DF    F Value    Pr > F

                     hours                   1    91.1       0.06    0.8051
                     drug                    2    39.9       1.98    0.1520
                     baseline                1    39.9      31.55    <.0001
                     hours*drug              2    30.7       2.15    0.1333
                     hours*baseline          1    30.7       3.66    0.0651
                     hours*hours             1    69.6       2.83    0.0969
                     hours*hours*hours       1      71       3.11    0.0819
The next term to eliminate is hours*drug.
proc mixed data=long.heartrate method=ml; 
   class drug; 
   model heartrate=hours drug baseline hours*baseline hours*hours 
                   hours*hours*hours / solution ddfm=kr(firstorder); 
   repeated / type=sp(exp)(hours) local subject=patient; 
   title 'Longitudinal Model with Spatial Exponential '
         'Covariance Structure'; 
run; 
Partial Output
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     48.2952
                                SP(EXP)      patient      1.2718
                                Residual                 14.8558

                                        Fit Statistics

                             -2 Log Likelihood               781.9
                             AIC (Smaller is Better)         803.9
[bookmark: Solution2_23_pg169]                             AICC (Smaller is Better)        806.4
                             BIC (Smaller is Better)         816.9

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         59.08          <.0001
The AICC continues to decrease from the last model (806.4 versus 807.2). 
                                   Solution for Fixed Effects

                                                 Standard
        Effect               drug    Estimate       Error      DF    t Value    Pr > |t|

        Intercept                     25.9221     10.7828    40.9       2.40      0.0208
        hours                         -7.3938     18.3709    93.4      -0.40      0.6883
        drug                 a         0.4899      3.1441      25       0.16      0.8774
        drug                 b         5.1518      3.1204      25       1.65      0.1112
        drug                 p              0           .       .        .         .
        baseline                       0.6695      0.1247    41.3       5.37      <.0001
        hours*baseline                -0.2310      0.1464    38.3      -1.58      0.1228
        hours*hours                   64.3983     38.8316    72.8       1.66      0.1015
        hours*hours*hours            -45.9905     26.4297    74.2      -1.74      0.0860

                                 Type 3 Tests of Fixed Effects

                                           Num     Den
                     Effect                 DF      DF    F Value    Pr > F

                     hours                   1    93.4       0.16    0.6883
                     drug                    2      25       1.66    0.2095
                     baseline                1    41.3      28.83    <.0001
                     hours*baseline          1    38.3       2.49    0.1228
                     hours*hours             1    72.8       2.75    0.1015
                     hours*hours*hours       1    74.2       3.03    0.0860
The next term to eliminate is hours*baseline.
proc mixed data=long.heartrate method=ml;
   class drug; 
   model heartrate=hours drug baseline hours*hours hours*hours*hours 
                   / solution ddfm=kr(firstorder); 
   repeated / type=sp(exp)(hours) local subject=patient;
   title 'Longitudinal Model with Spatial Exponential '
         'Covariance Structure';
run;
Partial Output
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     50.0626
                                SP(EXP)      patient      1.1649
                                Residual                 14.3339

[bookmark: Solution2_23_pg170]                                        Fit Statistics

                             -2 Log Likelihood               784.3
                             AIC (Smaller is Better)         804.3
                             AICC (Smaller is Better)        806.4
                             BIC (Smaller is Better)         816.1

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         58.47          <.0001
The AICC statistic remains unchanged.
                                   Solution for Fixed Effects

                                                 Standard
        Effect               drug    Estimate       Error      DF    t Value    Pr > |t|

        Intercept                     35.0154      9.1766      26       3.82      0.0008
        hours                        -26.4309     13.8591    75.8      -1.91      0.0603
        drug                 a         0.4797      3.1547    25.2       0.15      0.8804
        drug                 b         5.1328      3.1309    25.2       1.64      0.1135
        drug                 p              0           .       .        .         .
        baseline                       0.5598      0.1043    25.2       5.37      <.0001
        hours*hours                   64.1033     39.0188    74.1       1.64      0.1046
        hours*hours*hours            -45.8060     26.5669    75.5      -1.72      0.0888

                                 Type 3 Tests of Fixed Effects

                                           Num     Den
                     Effect                 DF      DF    F Value    Pr > F

                     hours                   1    75.8       3.64    0.0603
                     drug                    2    25.2       1.64    0.2133
                     baseline                1    25.2      28.84    <.0001
                     hours*hours             1    74.1       2.70    0.1046
                     hours*hours*hours       1    75.5       2.97    0.0888
The next term to eliminate is the cubic effect of hours.
proc mixed data=long.heartrate method=ml; 
   class drug; 
   model heartrate=hours drug baseline hours*hours
             / solution ddfm=kr(firstorder); 
   repeated / type=sp(exp)(hours) local subject=patient; 
   title 'Longitudinal Model with Spatial Exponential '
         'Covariance Structure'; 
run; 
Partial Output
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     50.0158
                                SP(EXP)      patient      1.1361
[bookmark: Solution2_23_pg171]                                Residual                 14.9260

                                        Fit Statistics

                             -2 Log Likelihood               787.3
                             AIC (Smaller is Better)         805.3
                             AICC (Smaller is Better)        806.9
                             BIC (Smaller is Better)         815.9

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq
                                   2         56.54          <.0001
The AICC statistic increases from the last model (806.9 versus 806.4). Although the AICC statistic increases, evaluate only the main effects model. If the AICC statistic is higher for the main effects model compared to the model with the cubic effect of hours, then the quadratic and cubic effect of hours will remain in the final model.
                                   Solution for Fixed Effects

                                              Standard
           Effect         drug    Estimate       Error      DF    t Value    Pr > |t|

           Intercept               34.1108      9.1472    25.8       3.73      0.0010
           hours                   -4.5579      5.6500    62.8      -0.81      0.4229
           drug           a         0.4782      3.1488    25.2       0.15      0.8805
           drug           b         5.1382      3.1251    25.2       1.64      0.1126
           drug           p              0           .       .        .         .
           baseline                 0.5601      0.1041    25.2       5.38      <.0001
           hours*hours             -2.5806      5.1737    65.2      -0.50      0.6196

                                 Type 3 Tests of Fixed Effects

                                        Num     Den
                        Effect           DF      DF    F Value    Pr > F

                        hours             1    62.8       0.65    0.4229
                        drug              2    25.2       1.65    0.2114
                        baseline          1    25.2      28.97    <.0001
                        hours*hours       1    65.2       0.25    0.6196
The next term to eliminate is the quadratic effect of hours.
proc mixed data=long.heartrate method=ml; 
   class drug; 
   model heartrate=hours drug baseline / solution ddfm=kr(firstorder);  
   repeated / type=sp(exp)(hours) local subject=patient; 
   title 'Longitudinal Model with Spatial Exponential '
         'Covariance Structure';  
run; 
[bookmark: Solution2_23_pg172]Partial Output
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     50.1438
                                SP(EXP)      patient      1.1235
                                Residual                 14.8717

                                        Fit Statistics

                             -2 Log Likelihood               787.5
                             AIC (Smaller is Better)         803.5
                             AICC (Smaller is Better)        804.8
                             BIC (Smaller is Better)         813.0

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         56.42          <.0001

                                   Solution for Fixed Effects

                                             Standard
            Effect       drug    Estimate       Error      DF    t Value    Pr > |t|

            Intercept             34.3564      9.1304    25.7       3.76      0.0009
            hours                 -7.2144      1.8866    40.3      -3.82      0.0004
            drug         a         0.4770      3.1472    25.2       0.15      0.8807
            drug         b         5.1364      3.1235    25.2       1.64      0.1125
            drug         p              0           .       .        .         .
            baseline               0.5600      0.1040    25.2       5.38      <.0001

                                 Type 3 Tests of Fixed Effects

                                       Num     Den
                         Effect         DF      DF    F Value    Pr > F

                         hours           1    40.3      14.62    0.0004
                         drug            2    25.2       1.65    0.2112
                         baseline        1    25.2      28.99    <.0001
1)   The AICC statistic is the smallest of any model (804.8 versus 806.4). Therefore, the main effects model will be the final model. Furthermore, none of the higher-order terms are significant in the reduced models.
h.    For the reduced model, generate another graph of the model fit statistics by covariance structure. Use the REML estimation method and only select the five spatial covariance structures.
ods select none; 
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline; 
   repeated / type=sp(pow)(hours) local subject=patient;
   ods output fitstatistics=powmodel;
[bookmark: Solution2_23_pg173]run; 
 
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline; 
   repeated / type=sp(lin)(hours) local subject=patient;
   ods output fitstatistics=linmodel; 
run; 
 
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline; 
   repeated / type=sp(gau)(hours) local subject=patient;
   ods output fitstatistics=gaumodel; 
run;  
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline;    
   repeated / type=sp(exp)(hours) local subject=patient;
   ods output fitstatistics=expmodel; 
run; 
 
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline;    
   repeated / type=sp(sph)(hours) local subject=patient;
   ods output fitstatistics=sphmodel; 
run; 
ods select all; 
 
data model_fit1; 
   length model $ 7 type $ 4;  
   set powmodel (in=pow) 
       linmodel (in=lin) 
       gaumodel (in=gau) 
       expmodel (in=exp) 
       sphmodel (in=sph); 
   if substr(descr,1,1) in ('A','B');  
   if substr(descr,1,3)='AIC' then type='AIC'; 
   if substr(descr,1,4)='AICC' then type='AICC'; 
   if substr(descr,1,3)='BIC' then type='BIC'; 
   if pow then model='SpPow'; 
   if lin then model='SpLin'; 
   if exp then model='SpExp'; 
   if gau then model='SpGau'; 
   if sph then model='SpSph'; 
run; 

proc sgplot data=model_fit1;
   scatter y=value x=model / group=type;
   xaxis label='Covariance Structure';
[bookmark: Solution2_23_pg174]   yaxis values=(750 to 820 by 10) label='Model Fit Values';
   title 'Model Fit Statistics by Covariance Structure';
run;

1)   The spatial exponential covariance structure is still one of the best fits.
2)   The spatial power covariance structure appears to be a relatively poor fit in the reduced model compared to its fit for the complex mean model.
i.    Refit the reduced model using the REML estimation method and the spatial exponential covariance structure. Also request the correlations from the R matrix and the parameter estimates for the fixed effects.
proc mixed data=long.heartrate; 
   class drug; 
   model heartrate=hours drug baseline / solution ddfm=kr(firstorder); 
   repeated / type=sp(exp)(hours) local subject=patient rcorr; 
   title 'Reduced Model with Spatial Exponential '
         'Covariance Structure'; 
run; 

[bookmark: Solution2_23_pg175]                  Reduced Model with Spatial Exponential Covariance Structure                 

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     LONG.HEARTRATE
                     Dependent Variable           heartrate
                     Covariance Structure         Spatial Exponential
                     Subject Effect               patient
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information

                       Class    Levels    Values

                       drug          3    a b p

                                          Dimensions

                              Covariance Parameters             3
                              Columns in X                      6
                              Columns in Z                      0
                              Subjects                         24
                              Max Obs per Subject               5

                                    Number of Observations

                          Number of Observations Read             120
                          Number of Observations Used             120
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1       837.26507957
                          1              3       785.92913529      0.02297363
                          2              1       785.86160625      0.00010724
                          3              1       785.86105917      0.00000068
                          4              1       785.85806809      0.00000064
                          5              1       785.82588950      0.00000074
                          6              2       784.63431676      0.01037039
                          7              2       782.40898562      0.03544906
                          8              2       779.55195994      0.08082419
                          9              2       777.85987594      0.00284395
                         10              1       776.84834470      0.00088709
                         11              1       776.54727936      0.00014216
                         12              1       776.50260059      0.00000542
                         13              1       776.50102828      0.00000001

                                   Convergence criteria met.

[bookmark: Solution2_23_pg176]                          Estimated R Correlation Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1      1.0000      0.7564      0.6659      0.5501      0.3754
                   2      0.7564      1.0000      0.7007      0.5789      0.3950
                   3      0.6659      0.7007      1.0000      0.6575      0.4487
                   4      0.5501      0.5789      0.6575      1.0000      0.5431
                   5      0.3754      0.3950      0.4487      0.5431      1.0000

                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     58.1964
                                SP(EXP)      patient      1.3084
                                Residual                 14.9215

                                        Fit Statistics

                             -2 Res Log Likelihood           776.5
                             AIC (Smaller is Better)         782.5
                             AICC (Smaller is Better)        782.7
                             BIC (Smaller is Better)         786.0

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         60.76          <.0001

                                   Solution for Fixed Effects

                                             Standard
            Effect       drug    Estimate       Error      DF    t Value    Pr > |t|

            Intercept             34.4030      9.9663    21.2       3.45      0.0024
            hours                 -7.2180      1.9221    37.4      -3.76      0.0006
            drug         a         0.4884      3.4374    20.9       0.14      0.8884
            drug         b         5.1223      3.4115    20.9       1.50      0.1482
            drug         p              0           .       .        .         .
            baseline               0.5594      0.1136    20.9       4.92      <.0001

                                 Type 3 Tests of Fixed Effects

                                       Num     Den
                         Effect         DF      DF    F Value    Pr > F

                         hours           1    37.4      14.10    0.0006
                         drug            2    20.9       1.38    0.2744
                         baseline        1    20.9      24.25    <.0001
1)   [bookmark: Solution2_23_pg177]The parameter estimate for hours indicates that for every one-unit increase in hours, the heart rate decreases 7.218. The linear effect of hours is significant at the .05 level. The parameter estimates for drug are contrasts of drug a to the placebo and drug b to the placebo. Both parameter estimates are not significant. Finally, the parameter estimate for baseline indicates that for every one-unit increase in baseline, the heart rate increases 0.5594. The linear effect of baseline is significant.
Fitting Random Coefficient Models
j.    Fit a random coefficient model with a random intercept and hours. Specify the fixed effects as hours, drug, and baseline. Use an unstructured covariance structure and print out the G matrix, the correlation matrix based on the V matrix, the parameter estimates for the fixed effects, and the parameter estimates for the random effects. Use the Kenward-Roger method for computing degrees of freedom.
proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline / solution ddfm=kr;
   random intercept hours / solution type=un subject=patient g vcorr;
   title 'Random Coefficients Model for Heart Rate Data';
run;
 
                        Random Coefficients Model for Heart Rate Data                        

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     LONG.HEARTRATE
                     Dependent Variable           heartrate
                     Covariance Structure         Unstructured
                     Subject Effect               patient
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Kenward-Roger
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information

                       Class    Levels    Values

                       drug          3    a b p

                                          Dimensions

                              Covariance Parameters             4
                              Columns in X                      6
                              Columns in Z per Subject          2
                              Subjects                         24
                              Max Obs per Subject               5

[bookmark: Solution2_23_pg178]                                    Number of Observations

                          Number of Observations Read             120
                          Number of Observations Used             120
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1       837.26507957
                          1              2       779.82841658      0.00000027
                          2              1       779.82833922      0.00000000

                                   Convergence criteria met.

                                       Estimated G Matrix

                       Row    Effect       Subject        Col1        Col2

                         1    Intercept          1     61.5600    -28.6486
                         2    hours              1    -28.6486     40.9628

                          Estimated V Correlation Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1      1.0000      0.7063      0.6814      0.6218      0.4307
                   2      0.7063      1.0000      0.6803      0.6279      0.4508
                   3      0.6814      0.6803      1.0000      0.6387      0.5010
                   4      0.6218      0.6279      0.6387      1.0000      0.5700
                   5      0.4307      0.4508      0.5010      0.5700      1.0000

                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                UN(1,1)      patient     61.5600
                                UN(2,1)      patient    -28.6486
                                UN(2,2)      patient     40.9628
                                Residual                 24.3608

                                        Fit Statistics

                             -2 Res Log Likelihood           779.8
                             AIC (Smaller is Better)         787.8
                             AICC (Smaller is Better)        788.2
                             BIC (Smaller is Better)         792.5

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   3         57.44          <.0001

[bookmark: Solution2_23_pg179]                                   Solution for Fixed Effects

                                             Standard
            Effect       drug    Estimate       Error      DF    t Value    Pr > |t|

            Intercept             36.0465     10.7606    20.4       3.35      0.0031
            hours                 -7.0273      1.8179      23      -3.87      0.0008
            drug         a        -0.4524      3.7153      20      -0.12      0.9043
            drug         b         4.9365      3.6873      20       1.34      0.1957
            drug         p              0           .       .        .         .
            baseline               0.5434      0.1228      20       4.43      0.0003

                                  Solution for Random Effects

                                               Std Err
          Effect       Subject    Estimate        Pred      DF    t Value    Pr > |t|

          Intercept          1     -0.5824      3.9258    47.8      -0.15      0.8827
          hours              1      6.2144      5.1155    19.1       1.21      0.2392
          Intercept          2     -9.3745      5.1353    28.8      -1.83      0.0783
          hours              2      6.9608      5.0798    20.1       1.37      0.1857
          Intercept          3      3.6104      3.8344    50.4       0.94      0.3509
          hours              3      1.9287      5.1178      19       0.38      0.7104
          Intercept          4     -2.6542      3.9673    46.7      -0.67      0.5068
          hours              4      5.4088      5.1144    19.1       1.06      0.3034
          Intercept          5      4.6528      3.8521    49.9       1.21      0.2328
          hours              5     -3.2198      5.1173      19      -0.63      0.5367
          Intercept          6     -3.0242      4.3040    39.2      -0.70      0.4864
          hours              6     -0.4872      5.1054    19.4      -0.10      0.9250
          Intercept          7      9.0722      4.4444    36.8       2.04      0.0484
          hours              7    -13.8765      5.1014    19.5      -2.72      0.0134
          Intercept          8     -9.6469      4.5356    35.4      -2.13      0.0405
          hours              8      2.6089      5.0987    19.6       0.51      0.6146
          Intercept          9      8.7755      3.9258    47.8       2.24      0.0301
          hours              9     -4.9120      5.1155    19.1      -0.96      0.3489
          Intercept         10     -8.8075      3.9673    46.7      -2.22      0.0313
          hours             10      4.1213      5.1144    19.1       0.81      0.4303
          Intercept         11     -6.1570      3.8733    49.3      -1.59      0.1183
          hours             11      2.3786      5.1168    19.1       0.46      0.6473
          Intercept         12     -1.8738      4.3308    38.7      -0.43      0.6677
          hours             12      3.5793      5.1046    19.4       0.70      0.4915
          Intercept         13     12.1104      3.8521    49.9       3.14      0.0028
          hours             13     -5.6917      5.1173      19      -1.11      0.2799
          Intercept         14     -1.4728      4.5356    35.4      -0.32      0.7473
          hours             14     -2.7726      5.0987    19.6      -0.54      0.5927
          Intercept         15    -11.7795      4.0524    44.6      -2.91      0.0057
          hours             15     -0.5029      5.1122    19.2      -0.10      0.9227
          Intercept         16     -0.8941      3.9258    47.8      -0.23      0.8208
          hours             16      3.4455      5.1155    19.1       0.67      0.5087
          Intercept         17      6.7537      3.9673    46.7       1.70      0.0953
          hours             17     -0.1474      5.1144    19.1      -0.03      0.9773
          Intercept         18     12.4426      4.0524    44.6       3.07      0.0036
          hours             18     -5.7778      5.1122    19.2      -1.13      0.2723
          Intercept         19      1.0815      3.8733    49.3       0.28      0.7812
          hours             19      2.3698      5.1168    19.1       0.46      0.6485
          Intercept         20     -1.9984      4.1126    43.2      -0.49      0.6295
          hours             20      1.9023      5.1106    19.2       0.37      0.7138
[bookmark: Solution2_23_pg180]          Intercept         21      6.5694      3.8733    49.3       1.70      0.0962
          hours             21      0.1229      5.1168    19.1       0.02      0.9811
          Intercept         22      2.6070      3.8733    49.3       0.67      0.5041
          hours             22     -2.4711      5.1168    19.1      -0.48      0.6346
          Intercept         23     -7.3873      3.8521    49.9      -1.92      0.0609
          hours             23     -3.1270      5.1173      19      -0.61      0.5484
          Intercept         24     -2.0229      3.8468      50      -0.53      0.6013
          hours             24      1.9448      5.1175      19       0.38      0.7081

                                 Type 3 Tests of Fixed Effects

                                       Num     Den
                         Effect         DF      DF    F Value    Pr > F

                         hours           1      23      14.94    0.0008
                         drug            2      20       1.32    0.2903
                         baseline        1      20      19.59    0.0003
1)   The G matrix consists of the variances and covariances of the random effects. The value in column 1 and row 1 represents the variance of the intercepts. The value in column 2 and row 2 represents the variance of the slopes for hours. The value in column 2 and row 1 represents the covariance of the intercepts and the slopes of hours. 
The information gleaned from the G matrix is that the intercepts and the slopes for hours are negatively correlated. 
2)   The residual covariance estimate represents the error that remains after the fixed effects 
and random effects are accounted for. This will be modeled by the R matrix, which has 
an independent covariance structure.
3)   The AICC statistic is slightly larger than the reduced model in the last exercise (788.2 versus 782.7).
4)   The correlations from the V matrix appear to decrease at a slower rate when compared 
to the correlations from the R matrix from the reduced model in the last exercise.
5)   The parameter estimates for the random effects represents deviations from the fixed effects. Therefore, subject 1 deviates –0.5824 from the population intercept and 6.2144 from 
the population slope for hours. The equation for subject 1 (who is taking the placebo) 
is Y = 35.46 – 0.8129 * hours + 0.5434 * baseline.
k.    Fit a model with both the REPEATED and RANDOM statements. Specify a random intercept and hours, and use the unstructured covariance structure. Print the G matrix, the correlation matrix based on the V matrix, and the parameter estimates for the fixed effects. Specify the spatial exponential covariance structure for the R matrix, add a measurement error component, and use the FIRSTORDER suboption. 
proc mixed data=long.heartrate;
   class drug;
   model heartrate=hours drug baseline / solution ddfm=kr(firstorder);
   random intercept hours / type=un subject=patient g vcorr;
   repeated / type=sp(exp)(hours) local subject=patient;
   title 'Model with REPEATED and RANDOM statements for '
         'Heart Rate Data';
run;
   
[bookmark: Solution2_23_pg181]              Model with REPEATED and RANDOM statements for Heart Rate Data                

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     LONG.HEARTRATE
                     Dependent Variable           heartrate
                     Covariance Structures        Unstructured, Spatial
                                                  Exponential
                     Subject Effects              patient, patient
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information

                       Class    Levels    Values

                       drug          3    a b p

                                          Dimensions

                              Covariance Parameters             6
                              Columns in X                      6
                              Columns in Z per Subject          2
                              Subjects                         24
                              Max Obs per Subject               5

                                    Number of Observations

                          Number of Observations Read             120
                          Number of Observations Used             120
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1       837.26507957
                          1              4       779.85976042      0.00000144
                          2              1       779.82838462      0.00000000

                   Convergence criteria met but final hessian is not positive
                                           definite.

                                       Estimated G Matrix

                       Row    Effect       Subject        Col1        Col2

                         1    Intercept          1     61.5916    -28.7131
                         2    hours              1    -28.7131     41.1190

[bookmark: Solution2_23_pg182]                          Estimated V Correlation Matrix for Subject 1

                 Row        Col1        Col2        Col3        Col4        Col5

                   1      1.0000      0.7065      0.6815      0.6218      0.4301
                   2      0.7065      1.0000      0.6804      0.6279      0.4503
                   3      0.6815      0.6804      1.0000      0.6388      0.5007
                   4      0.6218      0.6279      0.6388      1.0000      0.5700
                   5      0.4301      0.4503      0.5007      0.5700      1.0000
                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                UN(1,1)      patient     61.5916
                                UN(2,1)      patient    -28.7131
                                UN(2,2)      patient     41.1190
                                Variance     patient     23.3153
                                SP(EXP)      patient           0
                                Residual                  1.0317

                                        Fit Statistics

                             -2 Res Log Likelihood           779.8
                             AIC (Smaller is Better)         789.8
                             AICC (Smaller is Better)        790.4
                             BIC (Smaller is Better)         795.7

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   4         57.44          <.0001

                                   Solution for Fixed Effects

                                             Standard
            Effect       drug    Estimate       Error      DF    t Value    Pr > |t|

            Intercept             36.0411     10.7621    20.4       3.35      0.0031
            hours                 -7.0273      1.8194    22.9      -3.86      0.0008
            drug         a        -0.4507      3.7158      20      -0.12      0.9047
            drug         b         4.9374      3.6878      20       1.34      0.1957
            drug         p              0           .       .        .         .
            baseline               0.5435      0.1228      20       4.43      0.0003

                                 Type 3 Tests of Fixed Effects

                                       Num     Den
                         Effect         DF      DF    F Value    Pr > F

                         hours           1    22.9      14.92    0.0008
                         drug            2      20       1.32    0.2904
                         baseline        1      20      19.59    0.0003
1)   [bookmark: Solution2_23_pg183]The first covariance parameter estimate represents the variance of the intercepts. The second covariance parameter estimate represents the covariance of the intercepts and the linear effect of hours. The third covariance parameter estimate represents the variance of the linear effect of hours. Adding the fourth and sixth estimates represents the variance of the residuals 
in the spatial exponential covariance structure. Finally, the fifth estimate is the parameter estimate in the spatial exponential covariance structure, which is used to compute the correlations within subject.
2)   The correlations in the V matrix show very little change from the random coefficients model.
3)   Because the parameter estimate for the spatial exponential covariance structure is essentially 0, the REPEATED statement is not needed. The AICC statistic also increased from the random coefficients model (790.4 versus 788.2). The final Hessian matrix is also not positive definite. Therefore, this model is an inferior model.
4)   The inferences for the fixed effects have not changed. 
Assessing the Model
l.    Fit a repeated measures model with the main effects and use the spatial exponential covariance structure with the local option. Specify plots of the likelihood distances, the PRESS statistics, influence statistics, and marginal residuals (student, Pearson, and scaled) using the MARGINAL and BOX residual plot options. Use iterative analysis and set the maximum number of iterations to 5 and use the FIRSTORDER suboption
proc mixed data=long.heartrate plots=(distance press 
       studentpanel(marginal box) pearsonpanel(marginal box)
       vcirypanel(box));
   class drug patient;
   model heartrate=hours drug baseline / solution ddfm=kr(firstorder) 
             influence(effect=patient iter=5) vciry ;
   repeated / type=sp(exp)(hours) local subject=patient;
   title 'Reduced Model with Spatial Exponential Covariance '
         'Structure';
run;

                  Reduced Model with Spatial Exponential Covariance Structure                 

                                      The Mixed Procedure

                                       Model Information

                     Data Set                     LONG.HEARTRATE
                     Dependent Variable           heartrate
                     Covariance Structure         Spatial Exponential
                     Subject Effect               patient
                     Estimation Method            REML
                     Residual Variance Method     Profile
                     Fixed Effects SE Method      Prasad-Rao-Jeske-
                                                  Kackar-Harville
                     Degrees of Freedom Method    Kenward-Roger

                                    Class Level Information
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                      drug            3    a b p
                      patient        24    201 202 203 204 205 206 207
                                           208 209 210 211 212 214 215
                                           216 217 218 219 220 221 222
                                           223 224 232

                                          Dimensions

                              Covariance Parameters             3
                              Columns in X                      6
                              Columns in Z                      0
                              Subjects                         24
                              Max Obs per Subject               5

                                    Number of Observations

                          Number of Observations Read             120
                          Number of Observations Used             120
                          Number of Observations Not Used           0

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          0              1       837.26507957
                          1              3       785.92913529      0.02297363
                          2              1       785.86160625      0.00010724
                          3              1       785.86105917      0.00000068
                          4              1       785.85806809      0.00000064

                                       Iteration History

                  Iteration    Evaluations    -2 Res Log Like       Criterion

                          5              1       785.82588950      0.00000074
                          6              2       784.63431676      0.01037039
                          7              2       782.40898562      0.03544906
                          8              2       779.55195994      0.08082419
                          9              2       777.85987594      0.00284395
                         10              1       776.84834470      0.00088709
                         11              1       776.54727936      0.00014216
                         12              1       776.50260059      0.00000542
                         13              1       776.50102828      0.00000001

                                   Convergence criteria met.

                                 Covariance Parameter Estimates

                                Cov Parm     Subject    Estimate

                                Variance     patient     58.1964
                                SP(EXP)      patient      1.3084
                                Residual                 14.9215

[bookmark: Solution2_23_pg185]                                        Fit Statistics

                             -2 Res Log Likelihood           776.5
                             AIC (Smaller is Better)         782.5
                             AICC (Smaller is Better)        782.7
                             BIC (Smaller is Better)         786.0

                                Null Model Likelihood Ratio Test

                                  DF    Chi-Square      Pr > ChiSq

                                   2         60.76          <.0001

                                   Solution for Fixed Effects

                                             Standard
            Effect       drug    Estimate       Error      DF    t Value    Pr > |t|

            Intercept             34.4030      9.9663    21.2       3.45      0.0024
            hours                 -7.2180      1.9221    37.4      -3.76      0.0006
            drug         a         0.4884      3.4374    20.9       0.14      0.8884
            drug         b         5.1223      3.4115    20.9       1.50      0.1482
            drug         p              0           .       .        .         .
            baseline               0.5594      0.1136    20.9       4.92      <.0001

                                 Type 3 Tests of Fixed Effects

                                       Num     Den
                         Effect         DF      DF    F Value    Pr > F

                         hours           1    37.4      14.10    0.0006
                         drug            2    20.9       1.38    0.2744
                         baseline        1    20.9      24.25    <.0001
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                                                                                       Cook's
            Number of                                                                       D
           Observations                  PRESS   Cook's                                   Cov
  patient    in Level    Iterations  Statistic        D  MDFFITS  COVRATIO  COVTRACE    Parms

    201         5             3         346.69  0.02039  0.02080    1.3429    0.3241  0.41778
    202         5             2         582.64  0.12426  0.08446    1.6021    0.5888  0.05447
    203         5             2         218.93  0.02589  0.02258    1.2847    0.2645  0.05289
    204         5             2         145.46  0.00992  0.00965    1.4847    0.4236  0.04256
    205         5             3         349.72  0.00541  0.00530    1.4103    0.3747  0.39051
    206         5             1          79.88  0.01172  0.00903    1.5991    0.5143  0.08795
    207         5             5         597.44  0.09034  0.11970    1.2459    0.3203  5.85585
    208         5             2         846.67  0.14161  0.11394    1.0878    0.1169  0.07529
    209         5             3         614.78  0.05875  0.05214    1.0983    0.1041  0.45325
    210         5             2         473.65  0.04646  0.04045    1.1797    0.1783  0.03734
    211         5             2         230.49  0.02326  0.02004    1.3174    0.2920  0.06368
    212         5             2         113.60  0.00692  0.00652    1.6346    0.5410  0.03482
    214         5             3         802.36  0.07050  0.06577    0.9321    0.0587  0.06502
    215         5             2         153.51  0.02356  0.01823    1.6191    0.5411  0.02485
    216         5             3        1492.50  0.18322  0.19012    0.5220    0.5858  0.38449
    217         5             2         138.92  0.00775  0.00688    1.4847    0.4213  0.03722
    218         5             3         369.64  0.04765  0.04158    1.1761    0.1769  0.05811
    219         5             3        1098.13  0.13886  0.13179    0.7626    0.2470  0.15530
    220         5             1          75.92  0.01136  0.00977    1.4442    0.3896  0.08556
    221         5             2          51.80  0.00340  0.00294    1.5859    0.4979  0.07743
    222         5             2         459.32  0.03493  0.03072    1.1915    0.1869  0.02644
    223         5             2          78.40  0.00227  0.00197    1.5093    0.4375  0.07651
    224         5             3         787.31  0.07198  0.06782    0.8914    0.1042  0.20543
    232         5             2         123.15  0.00580  0.00496    1.4723    0.4114  0.04848

[bookmark: Solution2_23_pg190]                          Influence Diagnostics for Levels of patient

                                                              RMSE
                        MDFFITS                            without    Restricted
                            Cov    COVRATIO    COVTRACE    deleted    Likelihood
               patient    Parms    CovParms    CovParms      level      Distance

                 201    0.18358       2.136       1.268    3.96249        0.4057
                 202    0.04808       1.525       0.467    4.00411        0.6873
                 203    0.05022       1.184       0.183    3.91143        0.1808
                 204    0.03515       1.632       0.563    3.94414        0.0913
                 205    0.19130       1.851       0.989    3.93270        0.2971
                 206    0.07894       1.289       0.272    3.91769        0.1402
                 207    0.53799      14.927      18.106    4.33641        2.3829
                 208    0.07591       0.988       0.005    3.93340        0.8413
                 209    0.52075       0.600       0.437    3.45189        0.8352
                 210    0.03392       1.200       0.193    3.93848        0.2693
                 211    0.06232       1.167       0.175    3.89764        0.1788
                 212    0.03094       1.168       0.168    3.81900        0.0658
                 214    0.07918       0.756       0.210    3.75219        0.4530
                 215    0.02229       1.260       0.242    3.88864        0.1391
                 216    0.56515       0.484       0.545    3.79909        1.6522
                 217    0.03398       1.150       0.153    3.80802        0.0723
                 218    0.07114       0.945       0.015    3.85246        0.3108
                 219    0.19650       0.571       0.453    3.74474        0.9723
                 220    0.07547       1.375       0.338    3.94864        0.1359
                 221    0.07225       1.099       0.125    3.78695        0.0896
                 222    0.02713       0.909       0.074    3.75556        0.1994
                 223    0.07063       1.082       0.111    3.76707        0.0865
                 224    0.21509       0.630       0.406    3.61617        0.6081
                 232    0.04247       1.545       0.495    3.95526        0.0735
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12. None of the residual plots indicate model misspecification.
4)    Patients 207, 216, and 219 warrant investigation.
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General Linear Mixed Model

y

 

where 



is the design matrix of random variables



is the vector of random-effect 

parameters



is no longer required to be independent and 

homogeneous.
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Autocorrelation Function
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2.06 Multiple Choice Poll

Which one of the following statements is true regarding serial correlation?

a. It represents the between-subject variability.

b. It is usually an increasing function of the time separation between 

measurements.

c. It can be approximated by the autocorrelation function.

d. It can be accounted for by the compound symmetry covariance 

structures.
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Example Calculations

Subject Time Response Residual

1               1                4                     2

1               3                5                    -1

1 4                9                     1

Comparison VariogramValue Time Interval

T(1) –T(2)               4.5 2.0

T(1) –T(3)               0.5                           3.0

T(2) –T(3)               2.0                           1.0
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Example Calculations

Subject Time Residual
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Variogram with Serial Correlation Only
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Variogram with Serial Correlation 

and Measurement Error
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Variogram with Serial Correlation, Measurement Error, 

and Random Effects
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2.07 Multiple Choice Poll

What can you conclude if the intercept of the fitted nonparametric curve in 

the sample variogram has values much greater than 0?

a. Serial correlation error needs to be addressed in the covariance 

structure.

b. Measurement error needs to be addressed in the covariance structure.

c. Random effects error needs to be addressed in the covariance structure.

d. It is irrelevant because the slope of the fitted nonparametric curve 

determines the source of the error component.
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Information Criteria

•

Akaike Information Criterion (AIC) tends to choose more complex models.

•

Schwarz’s Bayesian Information Criterion (BIC) tends to choose simpler 

models.

•

Because excessively simple models have inflated Type I error rates, AIC 

appears to be the most desirable in practice.
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Selecting Covariance Structures
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2.08 Multiple Choice Poll

Which of the following structures is not appropriate in an unbalanced design 

with unequally spaced time points and different time points across subjects?

a. Compound symmetry

b. Unstructured

c. Spatial power

d. Spatial Gaussian
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Summary of Selecting Covariance Structures

•

Results from the sample variogramindicate that measurement error, serial 

correlation, and error associated with random effects are evident in the 

model.

•

Spatial exponential, spatial linear, spatial power, and spatial spherical all 

seem to have the best model fit statistics.

•

Spatial power is the selected covariance structure.
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2.09 Multiple Choice Poll

Which of the following is indicated if the fitted nonparametric curve has a 

slope of 0 in the sample variogram?

a. There is no measurement error component.

b. There is no random error component.

c. There is no serial correlation component (correlations do not change 

over time).

d. Nothing is indicated, because the slope is irrelevant to the identification 

of the source of error.
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Objectives

•

Illustrate how to specify heterogeneity in the residual covariance parameters.

•

Fit a parsimonious mean model.

•

Create an interaction plot.
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Heterogeneity in the Covariance Parameters

Time from Seroconversion

Before After

2

B



12

T

b



13

T

b



14

T

b



23

T

b



24

T

b



34

T

b



1

1

1

1

2

A



12

T

a



13

T

a



14

T

a



23

T

a



24

T

a



34

T

a



1

1

1

1


image97.emf
Copyright © SAS Institute Inc. All rights reserved.

72

GROUP= Option

The GROUP= option

•

defines the effect specifying heterogeneity in the residual covariance 

parameters

•

can result in strange covariance patterns. Therefore, you must exercise 

caution using the GROUP effect

•

can greatly increase the number of estimated covariance parameters, 

which might adversely affect the optimization process.
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Example for One Subject

T

1

T

2

T

3

T

4

T

1

T

2

T

3

T

4

2

A



2

A



2

B



2

B



12

T

2

BB



12

T

2

BB



34

T

2

AA



34

T

2

AA



0

0


image99.png
Variance

Variance of Scaled CD4 by Time

Mean Time





oleObject1.bin

image100.emf
Copyright © SAS Institute Inc. All rights reserved.

75

2.10 Multiple Choice Poll

Which one of the following statements is true regarding PROC MIXED?

a. Continuous variables are not permitted as arguments to the 

GROUP=option.

b. PROC MIXED has the flexibility of allowing the type of covariance 

structure to change across subgroups of subjects within the same model.

c. Observations with a different GROUP effect value are assumed to be 

independent even if they are within-subject observations. 

d. The number of values for the effect in the GROUP= option does not 

impact the number of estimated covariance parameters.
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Model Development

•

Use REML and a complex mean model to choose the appropriate 

covariance structure.

•

Use ML to eliminate unnecessary terms one at a time from the complex 

mean model.

•

Refit the final model using REML.
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ML versus REML

•

Differences in the model fit statistics under REML reflect differences in the 

covariance parameter estimates.

•

Differences in the model fit statistics under ML reflect differences in all the 

parameter estimates.

•

When comparing different mean models, differences under ML are a better 

reflection of the importance of the fixed effects than differences under 

REML.
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2.11 Multiple Choice Poll

Which one of the following statements is true regarding ML and REML 

estimation methods?

a. Use ML to choose the appropriate covariance structure.

b. Differences in the model fit statistics under REML reflect differences in 

the covariance estimates.

c. The likelihood ratio test comparing the full and reduced mean models is 

valid only under REML estimation.

d. You can use either estimation method when you reduce the mean model 

using model fit statistics such as AIC and BIC.
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Illustrating Interactions

The model has two significant interactions:

•

time*age

•

time*cigarettes

How do you interpret them?
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Summary of Model Development

•

The interactions time*ageand time*cigarettes are significant.

•

The variable timeappears to have a cubic relationship with CD4+ cell 

counts.

•

Measurements taken before seroconversion seem to have different 

covariance parameter estimates (larger variances and smaller correlations) 

than measurements taken after seroconversion (smaller variances and 

larger correlations).
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Objectives

•

Explain the concepts behind the random coefficient models.

•

Fit a random coefficient model in PROC MIXED.

•

Compute empirical best linear unbiased predictions (EBLUP).

•

Examine the common causes of nonconvergencein PROC MIXED and some 

solutions.

•

Fit a model with both repeated and random effects in PROC MIXED.
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Models with Only the REPEATED Statement

•

No random effects are included in the model.

•

Covariance structure for the data is completely determined by the 

covariance structure for the residual error.

•

There is an Rmatrix but no Gmatrix.

•

Usually, the model of choice when the longitudinal data are obtained at 

fixed points in time and when the within-subject correlations are 

adequately modeled using a specified covariance structure.
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Random Coefficient Models

•

Random effects representing natural heterogeneity between subjects are 

used to describe the covariance structure of the data.

•

The regression coefficients for one or more covariates are assumed to be a 

random sample from some population of possible coefficients.

•

There is an Rand a Gmatrix.

•

These models are useful for highly unbalanced data with many repeated 

measurements per subject.

•

Usually, these are the model of choice when the longitudinal data are not 

obtained at fixed points in time and the within-subject correlations are not 

adequately modeled by a specified covariance structure.
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Random Coefficient Model

where         represents:

•

the population average

•
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Random Coefficient Model


image114.emf
Copyright © SAS Institute Inc. All rights reserved.

93

Random Coefficient Model
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2.12 Multiple Choice Poll

Which one of the following statements is true regarding random coefficient 

models in longitudinal data analysis?

a. The random effects and random errors are normally distributed and can 

be correlated with each other.

b. The random coefficients are subject-specific deviations from the 

population parameter estimates.

c. There is an R matrix but no G matrix.

d. There is a G matrix but no R matrix.
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Random Coefficient Models 

versus Repeated Models

•

Random intercept-only models do not enable correlations within subject to 

change over time. TheVmatrix has compound symmetry structure.

•

Models with random intercept and slope enable the correlations within 

subject to change over time. TheVmatrix has a structure that enables 

the correlations to change over time.
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Eliminating Random Effects

•

Include the relevant random effects.

•

Delete one random effect from the model, in a hierarchical way, starting 

from the highest-order effect.

•

Construct a likelihood ratio test comparing the two models.

•

Use the REML estimation method.
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2.13 Multiple Choice Poll

When is the V matrix the same in the random coefficient model and a model 

with the REPEATED statement and several time points?

a. Random coefficient model has a random intercept and slope, and the 

repeated model has spatial power covariance structure.

b. Random coefficient model has a random intercept and slope, and the 

repeated model has compound symmetry covariance structure.

c. Random coefficient model has only a random intercept, and the 

repeated model has compound symmetry covariance structure.

d. Random coefficient model has only a random intercept, and the 

repeated model has spatial power covariance structure.
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Empirical Best Linear Unbiased Predictions

•

EBLUPs are predictions that take into account the residual variability and 

between-subject variability.

•

If the within-subject variability is large in comparison to between-subject 

variability for an individual profile, then the response values are unreliable 

and the predictions move toward the population mean.

•

If the within-subject variability is small in comparison to between-subject 

variability for an individual profile, then the response values are reliable and 

the predictions move toward the observed data.

•

This feature is useful for forecasting time series.


image123.wmf
-1-1

iiii

ˆ

ˆ

RV(RV)

i

iini

Yy

b

=C+I-


oleObject35.bin

image124.wmf
1

ii

RV

-


oleObject36.bin

image125.emf
Copyright © SAS Institute Inc. All rights reserved.

104

Empirical Best Linear Unbiased Predictions

PROC MIXED computes EBLUPs for the response variable in two ways:

•

Using the RANDOM statement with the OUTP= option in the MODEL 

statement.

•

Using the REPEATED statement with the OUTP= option in the MODEL 

statement and the SUBJECT= option in the REPEATED statement. Only 

observations with missing response values will have EBLUPs.
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MIXED Procedure

General form of the MIXED procedure:

PROC MIXED DATA=SAS-data-set <options>;

CLASSvariables;

MODELresponse=<fixed effects></ options>;

RANDOMrandomeffects </ options>;

REPEATED <repeated effect> </ options>;

RUN;


image126.wmf
ˆ

ˆ

bg

C+Z


oleObject37.bin

image127.wmf
ˆ

b

C


oleObject38.bin

image128.png
Predicted CD4+ Cell Counts in hundreds

Subject 10145 Response Profile
wih XBetas, Data Valuss, and EBLUPS

150
1254
100
75 e
/ Ry SN\
/ e
4
50

Time since Seroconversion

—o— cddscale ——— ebip —x— xbela





image129.png
Predicted CD4+ Cell Counts in hundreds

Subject 10145 Response Profile
wih XBetaz, Data Valuss, and EBLUPS
Conmcto o Mt Reptod St

1501 /
125
100

*—

T
/ N A\ »
< T
50 Ny
0 2 !

Time since Seroconversion

—o— cddscale ——— ebip —x— xbela





image130.emf
Copyright © SAS Institute Inc. All rights reserved.

106

2.14 Multiple Choice Poll

When computing EBLUPs for random coefficient models, if the within-subject 

variability is large in comparison to the between-subject variability for an 

individual profile, then which of the following is true?

a. The response values are unreliable and the predictions move toward the 

population mean.

b. The response values are reliable and the predictions move toward the 

observed data.

c. The predictions are the same as the population average because EBLUPs 

do not take into account within-subject variability.

d. Only observations with missing response values will have EBLUPs.
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Models with Repeated and Random Effects

These models

•

take into account random effects, serial correlation, and measurement 

error

•

enable the user to fit a large variety of covariance structures

•

often have estimation and convergence problems

•

are not generally recommended as a longitudinal model


image132.emf
Copyright © SAS Institute Inc. All rights reserved.

109

Common Causes of Nonconvergence

•

Two of the covariance parameters are several orders of magnitude apart.

•

Data values are extremely large or extremely small.

•

There is little variability in time effects.

•

There is not enough data to estimate the specified covariance structure.

•

Linear dependencies exist among parameters.

•

There is a misspecified model or violation of model assumptions.
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Recommendations to Deal with Nonconvergence

•

Use the PARMS statement to specify initial values.

•

Rescale the data to improve stability.

•

Specify the SCORING= option to invoke Fisher’s scoring estimation method.

•

Tune the MAXITER= and MAXFUNC= options in the PROC MIXED statement.

•

Make sure no observations from the same subject are producing identical 

rows in the Ror Vmatrix.

•

Reduce the number of terms in the model.
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Model Assumptions in PROC MIXED

•

Random effects and error terms are normally distributed with means of 0.

•

Random effects and error terms are independent of each other.

•

The relationship between the response variable and predictor variables is 

linear.
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Summary of Random Coefficient Models

•

Random coefficient models are an alternative way to model longitudinal 

data.

•

Random coefficient models provide subject-specific parameter estimates.

•

In the demonstration, the model fit statistics are similar for the random 

coefficient model and the model with only the REPEATED statement.

•

The model with both the RANDOM and REPEATED statements had the best 

fit.

•

The unstructured and spatial power covariance structures are selected with 

intercept and time as the random effects.
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2.15 Multiple Choice Poll

What covariance structure does the R matrix have in the first random 

coefficient model?

a. Unstructured

b. Independent

c. Compound symmetry

d. Spatial power
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Objectives

•

Explain the linear mixed model residual and influence diagnostic statistics.

•

Examine how the violation of assumptions regarding the random effects 

influences the inference of the model.

•

Create residual and influence diagnostic plots.
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Mixed Model Assessment

The following are common questions that deal with mixed model 

assessment.

•

Are the model assumptions validated?

•

Is the covariation of the observations modeled properly?

•

Are the results sensitive to specific data points and clusters?


image139.emf
Copyright © SAS Institute Inc. All rights reserved.

120

Mixed Model Diagnostics

•

Standard residual and influence diagnostics for linear models can now be 

extended to linear mixed models.

•

Diagnostics in linear mixed models are more complicated by the fact that 

the estimates of the fixed effects depend on the estimates of the 

covariance parameters.

•

With longitudinal data, it is usually more important to measure the 

influence of a set of observations on the analysis, not just the influence of 

individual observations.
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Influence Diagnostics

Removing observations in linear mixed models can affect the following:

•

the covariance parameters and their precision

•

the fixed effects and their precision

•

both covariance parameters and fixed effects.

To gauge the full impact of a set of observations on the analysis, covariance 

parameters need to be updated, which requires refitting the model.
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Types of Residuals

Models with random effects can produce two types of residuals:

•

A marginal residual is the difference between the observed data and the 

estimated marginal mean

•

A conditional residual is the difference between the observed data and the 

predicted value of the observation
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Types of Residuals

•

Studentizedresiduals are computed by dividing a residual by an estimate of 

its standard deviation.

•

Internally studentizedresiduals uses all the observations in the standard 

error computation.

•

Externally studentizedresiduals excludes the removed observation when 

computing the standard error.

•

Pearson-type residuals are computed by dividing a residual by the 

estimated standard deviation of the response variable.

•

Scaled residuals are computed by multiplying the marginal residuals by the 

inverse Choleskyroot of the marginal variance-covariance matrix. 
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Residual Analysis

•

Studentizedresiduals and the Pearson residuals are useful for detecting 

potential outliers.

•

Scaled residuals are useful for evaluating the appropriateness of the 

covariance structure of your model.
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Influence Diagnostics

The INFLUENCE option in the MODEL statement does the following:

1.Fits the model to the data and obtains estimates of all parameters

2.Removes one or more data points from the analysis and computes 

updated estimates of model parameters

3.Contrasts quantities of interest to determine how the absence of the 

observations changes the analysis, based on full-and reduced-data 

estimates
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The Nature of the Influence
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Iterative and Noniterative Influence Analysis

Iterative influence analysis

•

refits the model and iteratively re-estimates the covariance parameters when 

the observations in questions are removed

•

generally is a better approach but is computationally intensive.

Noniterativeinfluence analysis

•

relies on closed-form update formulas for the fixed effects without updating 

the covariance parameters

•

is computationally efficient and is the default analysis.
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Assessing Normality of the Random Effects
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Violation of Random Effect Assumptions

•

Fixed effect parameter estimates and standard errors are robust with 

respect to the misspecification of the random effects distribution.

•

Violation of the normality assumption clearly affects the standard errors of 

the random effects.

•

Parameter estimates of the random effects are also affected by the 

normality assumption.
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2.16 Multiple Choice Poll

Which one of the following statements is true regarding mixed model 

assessment?

a. A conditional residual is the difference between the observed data and 

the estimated marginal mean.

b. Marginal residuals are useful in determining whether the random effects 

are selected properly.

c. Violation of the normality assumption of the random effects will bias the 

fixed effect parameter estimates and SEs.

d. Violation of the normality assumption of the random effects will bias the 

random effect parameter estimates and SEs.
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2.01 Multiple Choice Poll

Which of the following characteristics do general linear models and general 

linear mixed models have in common?

a. Both models support fixed and random effects.

b. Both models can handle correlated error terms.

c. Both models assume that the error terms are normally distributed.

d. None of the above.
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Summary of Model Assessment

•

There are several influential clusters that should be investigated.

•

There are no systematic trends in the residuals that indicate a misspecified

model.

•

The distribution of residuals appears to be normally distributed.
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Estimation in Mixed Models for Fixed Effects

Variance-covariance matrix of the observations involves 

•

the covariance structure of the random effects, denoted as G

•

the covariance structure of the random errors, denoted as R.

Ordinary least squares is no longer the best method.
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2.01 Multiple Choice Poll –Correct Answer

Which of the following characteristics do general linear models and general 

linear mixed models have in common?

a. Both models support fixed and random effects.

b. Both models can handle correlated error terms.

c. Both models assume that the error terms are normally distributed.

d. None of the above.
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2.02 Multiple Choice Poll –Correct Answer

Why is ordinary least squares not the preferred estimation method for fixed 

effects in general linear mixed models?

a. Ordinary least squares does not support random effects.

b. Ordinary least squares does not support correlated error terms.

c. Ordinary least squares does not support nonnormal distribution of error 

terms.

d. Both a and b.
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2.03 Multiple Choice Poll –Correct Answer

Which one of the following statements is true regarding the restricted 

maximum likelihood (REML) method?

a. REML handles strong correlations among the responses less effectively 

than maximum likelihood.

b. REML parameter estimates have a downward bias that the maximum 

likelihood parameter estimates do not have.

c. REML parameter estimates approximate maximum likelihood parameter 

estimates as the number of fixed effects becomes large.

d. REML parameter estimates are less sensitive to outliers in the data than 

maximum likelihood parameter estimates.
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2.04 Multiple Choice Poll –Correct Answer

Which one of the following covariance structures is not appropriate for 

unequally spaced time points in a balanced design?

a. AR(1)

b. Compound Symmetry

c. Unstructured

d. Spatial Power
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2.05 Multiple Choice Poll –Correct Answer

What happens to the inferences in the model when a covariance structure is 

too complex given the relationships in the data? 

a. The inferences have a larger Type I error rate.

b. The inferences have less power and efficiency.

c. The inferences are biased.

d. The inferences are not affected.
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Estimation in Mixed Models for Fixed Effects 

Estimated generalized least squares (EGLS)

•

takes into account the covariance structures Gand R

•

requires a reasonable estimate of Gand R

•

is the solution for fixed effects.

The formula for EGLS is

where

11
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ˆˆ

() VVY

 
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2.06 Multiple Choice Poll –Correct Answer

Which one of the following statements is true regarding serial correlation?

a. It represents the between-subject variability.

b. It is usually an increasing function of the time separation between 

measurements.

c. It can be approximated by the autocorrelation function.

d. It can be accounted for by the compound symmetry covariance 

structures.
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2.07 Multiple Choice Poll –Correct Answer

What can you conclude if the intercept of the fitted nonparametric curve in 

the sample variogram has values much greater than 0?

a. Serial correlation error needs to be addressed in the covariance 

structure.

b. Measurement error needs to be addressed in the covariance structure.

c. Random effects error needs to be addressed in the covariance structure.

d. It is irrelevant because the slope of the fitted nonparametric curve 

determines the source of the error component.
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2.08 Multiple Choice Poll –Correct Answer

Which of the following structures is not appropriate in an unbalanced design 

with unequally spaced time points and different time points across subjects?

a. Compound symmetry

b. Unstructured

c. Spatial power

d. Spatial Gaussian
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2.09 Multiple Choice Poll –Correct Answer

Which of the following is indicated if the fitted nonparametric curve has a 

slope of 0 in the sample variogram?

a. There is no measurement error component.

b. There is no random error component.

c. There is no serial correlation component (correlations do not change 

over time).

d. Nothing is indicated, because the slope is irrelevant to the identification 

of the source of error.
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2.10 Multiple Choice Poll –Correct Answer

Which one of the following statements is true regarding PROC MIXED?

a. Continuous variables are not permitted as arguments to the 

GROUP=option.

b. PROC MIXED has the flexibility of allowing the type of covariance 

structure to change across subgroups of subjects within the same model.

c. Observations with a different GROUP effect value are assumed to be 

independent even if they are within-subject observations. 

d. The number of values for the effect in the GROUP= option does not 

impact the number of estimated covariance parameters.
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2.11 Multiple Choice Poll –Correct Answer

Which one of the following statements is true regarding ML and REML 

estimation methods?

a. Use ML to choose the appropriate covariance structure.

b. Differences in the model fit statistics under REML reflect differences in 

the covariance estimates.

c. The likelihood ratio test comparing the full and reduced mean models is 

valid only under REML estimation.

d. You can use either estimation method when you reduce the mean model 

using model fit statistics such as AIC and BIC.
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2.12 Multiple Choice Poll –Correct Answer

Which one of the following statements is true regarding random coefficient 

models in longitudinal data analysis?

a. The random effects and random errors are normally distributed and can 

be correlated with each other.

b. The random coefficients are subject-specific deviations from the 

population parameter estimates.

c. There is an R matrix but no G matrix.

d. There is a G matrix but no R matrix.
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2.13 Multiple Choice Poll –Correct Answer

When is the V matrix the same in the random coefficient model and a model 

with the REPEATED statement and several time points?

a. Random coefficient model has a random intercept and slope, and the 

repeated model has spatial power covariance structure.

b. Random coefficient model has a random intercept and slope, and the 

repeated model has compound symmetry covariance structure.

c. Random coefficient model has only a random intercept, and the 

repeated model has compound symmetry covariance structure.

d. Random coefficient model has only a random intercept, and the 

repeated model has spatial power covariance structure.
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2.14 Multiple Choice Poll –Correct Answer

When computing EBLUPs for random coefficient models, if the within-subject 

variability is large in comparison to the between-subject variability for an 

individual profile, then which of the following is true?

a. The response values are unreliable and the predictions move toward the 

population mean.

b. The response values are reliable and the predictions move toward the 

observed data.

c. The predictions are the same as the population average because EBLUPs 

do not take into account within-subject variability.

d. Only observations with missing response values will have EBLUPs.
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2.15 Multiple Choice Poll –Correct Answer

What covariance structure does the R matrix have in the first random 

coefficient model?

a. Unstructured

b. Independent

c. Compound symmetry

d. Spatial power
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2.16 Multiple Choice Poll –Correct Answer

Which one of the following statements is true regarding mixed model 

assessment?

a. A conditional residual is the difference between the observed data and 

the estimated marginal mean.

b. Marginal residuals are useful in determining whether the random effects 

are selected properly.

c. Violation of the normality assumption of the random effects will bias the 

fixed effect parameter estimates and SEs.

d. Violation of the normality assumption of the random effects will bias the 

random effect parameter estimates and SEs.
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Maximum Likelihood Estimation
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ML versus REML

•

Both are based on the likelihood principle, which has the properties of 

consistency, asymptotic normality, and efficiency.

•

REML corrects for the downward bias in the ML parameters in Gand R.

•

REML handles strong correlations among the responses more effectively.

•

REML is less sensitive to outliers in the data compared to ML.

•

The differences between ML and REML estimation increase as the number 

of fixed effects in the model increases and the number of subjects 

decreases.
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2.02 Multiple Choice Poll

Why is ordinary least squares not the preferred estimation method for fixed 

effects in general linear mixed models?

a. Ordinary least squares does not support random effects.

b. Ordinary least squares does not support correlated error terms.

c. Ordinary least squares does not support nonnormal distribution of error 

terms.

d. Both a and b.
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Selecting the Appropriate Covariance Structure

When finding reasonable estimates for R, 

•

if you choose a structure that is too simple, then you risk increasing the 

Type I error rate 

•

if you choose a structure that is too complex, then you sacrifice power and 

efficiency.
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2.03 Multiple Choice Poll

Which one of the following statements is true regarding the restricted 

maximum likelihood (REML) method?

a. REML handles strong correlations among the responses less effectively 

than maximum likelihood.

b. REML parameter estimates have a downward bias that the maximum 

likelihood parameter estimates do not have.

c. REML parameter estimates approximate maximum likelihood parameter 

estimates as the number of fixed effects becomes large.

d. REML parameter estimates are less sensitive to outliers in the data than 

maximum likelihood parameter estimates.
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Unstructured Covariance
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First-Order Autoregressive AR(1)
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Toeplitz
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Spatial Power
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Spatial Gaussian
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2.04 Multiple Choice Poll

Which one of the following covariance structures is not appropriate for 

unequally spaced time points in a balanced design?

a. AR(1)

b. Compound Symmetry

c. Unstructured

d. Spatial Power
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Issues with Degrees of Freedom Estimates

•

For unbalanced data, the denominator degrees of freedom must be 

estimated from the data.

•

The default degrees of freedom provided by the MIXED procedure might 

not always be appropriate.

•

The Kenward-Roger (KR) method of computing the denominator degrees of 

freedom is recommended as the standard operating procedure for 

longitudinal models.
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Kenward-Roger DF Adjustment

Kenward-Roger (KR) method of computing the denominator degrees of 

freedom

•

adjusts the variance-covariance matrix of fixed and random effects

•

was shown to be superior or, at worst, equal to the other degrees of 

freedom adjustments in terms of Type I error control

•

should be used for the more complex covariance structures because the 

Type I error rate inflation was extremely severe without the KR adjustment
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Kenward-Roger DF Adjustment

The KR adjustment might have undesirable consequences when covariance 

matrices have nonzero second derivatives.

•

Adjustment can lead to shrinkage of standard errors.

•

An adjusted covariance matrix might not be positive definite.

•

Results are not invariant under reparameterization.
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Objectives

•

Learn the concepts regarding the general linear mixed model.

•

Illustrate the various covariance structures available in the MIXED 

procedure.

•

Fit a general linear mixed model in PROC MIXED.
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DDFM=KR(FIRSTORDER)

The FIRSTORDER suboption

•

eliminates the second derivatives from the calculation of the covariance 

matrix adjustment 

•

might be preferred for covariance structures that have nonzero second 

derivatives such as the spatial covariance structures.
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General Linear Model

y

 

where 

y

is the vector of observed responses



is the design matrix of predictor variables



is the vector of regression parameters



is the vector of random errors.
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2.05 Multiple Choice Poll

What happens to the inferences in the model when a covariance structure is 

too complex given the relationships in the data? 

a. The inferences have a larger Type I error rate.

b. The inferences have less power and efficiency.

c. The inferences are biased.

d. The inferences are not affected.


image58.emf
Copyright © SAS Institute Inc. All rights reserved.

42

Objectives

•

Learn the concepts regarding the sample variogram.

•

Create a plot of a sample variogram.

•

Plot the goodness-of-fit statistics for the appropriate covariance structures.
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Importance of Covariance Structures

Covariance structures

•

model all the variability in the data, which cannot be explained by the fixed 

effects

•

represent the background variability that the fixed effects are tested against

•

must be carefully selected to obtain valid inferences for the parameters of 

the fixed effects.
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Sources of Error

Random Effects Reflects how much subject-specific profiles deviate 

from the average profile, or thebetween-subject 

variability.

Serial Correlation Is usually a decreasing function of the time separation 

betweenmeasurements. This represents the within 

subject variability.

Measurement Error For some measurements, there mightbe a certain level 

of variation in the measurement process itself.
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Selecting Appropriate Covariance Structures

•

Select a covariance structure that best fits the true covariance of the data.

•

Create a scatter plot called the sample variogram.

•

Use likelihood ratio tests to test whether adding parameters to the 

covariance structure causes a statistically significant improvement in the 

model.

•

Compare models based on measures of fit that are adjusted for the number 

of covariance parameters.


image62.emf
Copyright © SAS Institute Inc. All rights reserved.

46

Data Values in Sample Variogram

2

1

()

2

ijkijik

vrr



by

ijkijik

utt




image63.emf
Copyright © SAS Institute Inc. All rights reserved.

47

Process Variance
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