

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2019. SAS® Certified Professional Prep Guide: Advanced
Programming Using SAS® 9.4. Cary, NC: SAS Institute Inc.

SAS® Certified Professional Prep Guide: Advanced Programming Using SAS® 9.4

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-64295-467-8 (Paperback)
ISBN 978-1-64295-469-2 (Epub)
ISBN 978-1-64295-470-8 (Mobi)
ISBN 978-1-64295-468-5 (PDF)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

October 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

P1:certprpg

Contents

How to Prepare for the Exam . vii
Using Sample Data . xi
Accessibility Features of the Prep Guide . xiii

PART 1 SQL Processing with SAS 1

Chapter 1 • PROC SQL Fundamentals . 3
PROC SQL Basics . 4
The PROC SQL SELECT Statement . 5
The FROM Clause . 9
The WHERE Clause . 10
The GROUP BY Clause . 19
The HAVING Clause . 29
The ORDER BY Clause . 32
PROC SQL Options . 35
Validating Query Syntax . 38
Quiz . 39

Chapter 2 • Creating and Managing Tables . 43
The CREATE TABLE Statement . 43
Using the LIKE Clause . 48
Using the AS Keyword . 49
The INSERT Statement . 51
The DESCRIBE TABLE Statement . 59
Using Dictionary Tables . 60
Chapter Quiz . 63

Chapter 3 • Joining Tables Using PROC SQL . 65
Understanding Joins . 66
Generating a Cartesian Product . 66
Using Inner Joins . 68
Using Natural Joins . 77
Using Outer Joins . 78
Comparing SQL Joins and DATA Step Match-Merges . 84
Quiz . 89

Chapter 4 • Joining Tables Using Set Operators . 95
Understanding Set Operators . 96
Using the EXCEPT Set Operator . 103
Using the INTERSECT Set Operator . 109
Using the UNION Set Operator . 114
Using the OUTER UNION Set Operator . 120
Quiz . 123

Chapter 5 • Using Subqueries . 131
Subsetting Data Using Subqueries . 131
Creating and Managing Views Using PROC SQL . 141

Quiz . 149

Chapter 6 • Advanced SQL Techniques . 155
Creating Data-Driven Macro Variables with PROC SQL . 155
Accessing DBMS Data with SAS/ACCESS . 161
The FedSQL Procedure . 165
Quiz . 171

PART 2 SAS Macro Language Processing 177

Chapter 7 • Creating and Using Macro Variables . 179
Introducing Macro Variables . 179
The SAS Macro Facility . 181
Using Macro Variables . 188
Troubleshooting Macro Variable References . 190
Delimiting Macro Variable References . 193
Quiz . 194

Chapter 8 • Storing and Processing Text . 197
Processing Text with Macro Functions . 198
Using SAS Macro Functions to Manipulate Character Strings 198
Using SAS Functions with Macro Variables . 203
Using SAS Macro Functions to Mask Special Characters . 207
Creating Macro Variables during PROC SQL Step Execution 214
Creating Macro Variables during DATA Step Execution . 217
Referencing Macro Variables Indirectly . 226
Quiz . 228

Chapter 9 • Working with Macro Programs . 231
Defining and Calling a Macro . 232
Passing Information into a Macro Using Parameters . 237
Controlling Variable Scope . 240
Debugging Macros . 245
Conditional Processing . 247
Iterative Processing . 252
Quiz . 254

Chapter 10 • Advanced Macro Techniques . 259
Storing Macro Definitions in External Files . 259
Understanding Session Compiled Macros . 261
Using the Autocall Facility . 262
Data-Driven Macro Calls . 266
Quiz . 268

PART 3 Advanced SAS Programming Techniques 271

Chapter 11 • Defining and Processing Arrays . 273
Defining and Referencing One-Dimensional Arrays . 273
Expanding Your Use of One-Dimensional Arrays . 283
Defining and Referencing Two-Dimensional Arrays . 288
Quiz . 293

iv Contents

Chapter 12 • Processing Data Using Hash Objects . 297
Declaring Hash Objects . 297
Defining Hash Objects . 300
Finding Key Values in a Hash Object . 302
Writing a Hash Object to a Table . 304
Hash Object Processing . 306
Using Hash Iterator Objects . 311
Quiz . 314

Chapter 13 • Using SAS Utility Procedures . 317
Creating Picture Formats with the FORMAT Procedure . 317
Creating Functions with PROC FCMP . 328
Quiz . 334

Chapter 14 • Using Advanced Functions . 337
Using a Variety of Advanced Functions . 337
Performing Pattern Matching with Perl Regular Expressions 344
Quiz . 355

PART 4 Workbook 359

Chapter 15 • Practice Programming Scenarios . 361
Differences between the Workbook and Certification Exam . 362
Scenario 1 . 362
Scenario 2 . 363
Scenario 3 . 363
Scenario 4 . 364
Scenario 5 . 365
Scenario 6 . 366
Scenario 7 . 366
Scenario 8 . 367
Scenario 9 . 368
Scenario 10 . 368

PART 5 Solutions 371

Chapter 16 • Chapter Quiz Answer Keys . 373
Chapter 1: PROC SQL Fundamentals . 373
Chapter 2: Creating and Managing Tables . 374
Chapter 3: Joining Tables Using PROC SQL . 375
Chapter 4: Joining Tables Using Set Operators . 376
Chapter 5: Using Subqueries . 377
Chapter 6: Advanced SQL Techniques . 378
Chapter 7: Creating and Using Macro Variables . 379
Chapter 8: Storing and Processing Text . 380
Chapter 9: Working with Macro Programs . 381
Chapter 10: Advanced Macro Techniques . 382
Chapter 11: Defining and Processing Arrays . 383
Chapter 12: Processing Data Using Hash Objects . 384
Chapter 13: Using SAS Utility Procedures . 384
Chapter 14: Using Advanced Functions . 385

Contents v

Chapter 17 • Programming Scenario Solutions . 387
Scenario 1 . 388
Scenario 2 . 389
Scenario 3 . 390
Scenario 4 . 392
Scenario 5 . 393
Scenario 6 . 395
Scenario 7 . 396
Scenario 8 . 398
Scenario 9 . 399
Scenario 10 . 400

Recommended Reading . 403
Index . 405

vi Contents

How to Prepare for the Exam

Requirements and Details

Requirements
To complete examples in this book, you must have access to the SAS windowing
environment, SAS Enterprise Guide, SAS Studio, or SAS University Edition.

Exam Objectives and Updates to This Book
The current exam objectives and a list of any updates to this book are available at
www.sas.com/certify. Exam objectives are subject to change.

Take a Practice Exam
Practice exams are available for purchase through SAS and Pearson VUE. For more
information about practice exams, see https://www.sas.com/certification/sas-practice-
exams.html

Registering for the Exam
To register for the SAS 9.4 Advanced Programming Performance-Based Exam, see the
SAS Global Certification website at www.sas.com/certify.

Additional Resources for Learning SAS Programming

From SAS Software

Help • SAS®9: Select Help ð SAS Help and Documentation.

• SAS Enterprise Guide: Select Help ð SAS Enterprise
Guide Help.

• SAS Studio: Select the Help icon .

Documentation • SAS®9: Select Help ð SAS Help and Documentation.

• SAS Enterprise Guide: Access documentation on the web.

• SAS Studio: Select the Help icon and then click Help.

vii

https://www.sas.com/certify
https://www.sas.com/certification/sas-practice-exams.html
https://www.sas.com/certification/sas-practice-exams.html
https://www.sas.com/certify

On the Web

Base SAS Glossary support.sas.com/baseglossary

Bookstore www.sas.com/books

Certification www.sas.com/certify

Communities communities.sas.com

Knowledge Base support.sas.com/notes

Learning Center www.sas.com/learn

SAS Documentation support.sas.com/documentation

documentation.sas.com

SAS OnDemand support.sas.com/ondemand/

Technical Support support.sas.com. and click Technical
Support.

Tip Sheets support.sas.com/professional-tipsheet

Training www.sas.com/training

Syntax Conventions

In this book, SAS syntax looks like this example:

DATA output-SAS-data-set
(DROP=variables(s) | KEEP=variables(s));

SET SAS-data-set <options>;
BY variable(s);

RUN;

Here are the conventions that are used in the example:

• DATA, DROP=, KEEP=, SET, BY, and RUN are in uppercase bold because they
must be spelled as shown.

• output-SAS-data-set, variable(s), SAS-data-set, and options are in italics because
each represents a value that you supply.

• <options> is enclosed in angle brackets because it is optional syntax.

• DROP= and KEEP= are separated by a vertical bar (|) to indicate that they are
mutually exclusive.

viii How to Prepare for the Exam

http://support.sas.com/baseglossary
http://www.sas.com/books/
https://www.sas.com/certify
https://communities.sas.com
https://support.sas.com/notes/
https://www.sas.com/learn
https://support.sas.com/documentation/
https://documentation.sas.com
https://support.sas.com/ondemand/
https://support.sas.com/en/technical-support.html
https://support.sas.com/professional-tipsheet
https://www.sas.com/training

The example syntax that is shown in this book includes only what you need to know in
order to prepare for the certification exam. For complete syntax, see the appropriate SAS
reference guide.

Syntax Conventions ix

x How to Prepare for the Exam

Using Sample Data

Setting Up Practice Data for SAS OnDemand for
Academics

To set up your sample data program in SAS OnDemand:

1. Navigate to https://github.com/sassoftware/sas-cert-prep-data.

2. Click the professional-prep-guide directory.

3. Open the cre8data.sas program and click Raw. Right-click anywhere on the screen
and select Save As. Save the cre8data.sas program to a location that is accessible to
SAS.

4. Open the cre8premdata.sas program and click Raw. Right-click anywhere on the
screen and select Save As. Save the cre8premdata.sas program to the same location
as cre8data.sas.

5. Log on to SAS OnDemand for Academics and open SAS Studio.

6. Right-click the Files (Home) folder, and then select New→Folder.

7. Name the new folder certadv and click Save.

8. Right-click the certadv folder and select Upload Files.

9. Click Choose Files and navigate to the certadv folder within the practice-data folder
on your local machine.

10. Select all program files and click Open. All available programs are listed under
Select Files. Click Upload.

11. Open and edit the cre8data.sas program.

12. In the Path macro variable, replace /folders/myfolders with the path to the certadv
folder. Right-click the certadv folder in SAS Studio and click Properties. Copy the
path in the Location box and paste it into your %LET statement.

13. Save and then run the cre8data.sas program.

Your practice data is now created and ready for you to use.

Note: When you end your SAS session, the Path macro variable in the cre8data.sas
program is reset. To avoid having to rerun cre8data.sas every time, run the
libname.sas program from your sample data folder to restore the libraries.

xi

Setting Up Practice Data in Other SAS
Environments

To complete examples in this book, you must have access to the SAS windowing
environment, SAS Enterprise Guide, or SAS Studio (or SAS University Edition). To
access the sample data files and create your practice data:

1. Navigate to https://github.com/sassoftware/sas-cert-prep-data.

2. Click the professional-prep-guide directory.

3. Open the cre8data.sas program and click Raw. Right-click anywhere on the screen
and select Save As. Save the cre8data.sas program to a location that is accessible to
SAS. It is recommended that you create a new folder named Certadv in the location
that is accessible to SAS and save the cre8data.sas program in the Certadv folder.
The librefs that are associated with this book use Certadv as the libref name.

4. Open the cre8premdata.sas program and click Raw. Right-click anywhere on the
screen and select Save As. Save the cre8premdata.sas program to the same location
as cre8data.sas.

5. Open the cre8data.sas program in the SAS environment of your choice. SAS
windowing environment: Click File→ Open Program, and then navigate to the
Certadv folder in the practice-data folder. SAS Studio: In the Navigation pane,
expand Files and Folders and then navigate to the Certadv folder within the
practice-data folder. SAS Enterprise Guide: In the Servers list, expand Servers →
Local → Files, and then navigate to the Certadv folder in the practice-data folder.

6. In the Path macro variable, replace /folders/myfolders with the path to the folder
where you saved your practice data and run the program %let path=/folders/
myfolders/my-folder-name;

Important: The location that you specify for the Path macro variable and the location of
your downloaded SAS programs should be the same location. Otherwise, the
cre8data.sas program cannot create the practice data.

Your practice data is now created and ready for you to use.

Note: When you end your SAS session, the Path macro variable in the cre8data.sas
program is reset. To avoid having to rerun cre8data.sas every time, run the
libname.sas program from your sample data folder to restore the libraries.

xii Using Sample Data

Accessibility Features of the
Prep Guide

Overview
The SAS Certified Professional Prep Guide: Advanced Programming Using SAS 9.4 is a
test preparation document that uses the following environments and products:

• SAS windowing environment

• SAS Enterprise Guide

• SAS Studio or SAS University Edition

Accessibility Documentation Help
The following table contains accessibility information for the listed products:

Accessibility Documentation Links

Product or Environment
Where to Find Accessibility
Documentation

Base SAS (Microsoft Windows, UNIX, and
z/OS)

https://support.sas.com/en/software/base-sas-
support.html

SAS Enterprise Guide https://support.sas.com/content/support/en/
software/enterprise-guide-support.html

SAS Studio support.sas.com/studioaccess

Documentation Format
Contact accessibility@sas.com if you need this document in an alternative digital
format.

xiii

https://support.sas.com/en/software/base-sas-support.html
https://support.sas.com/en/software/base-sas-support.html
https://support.sas.com/content/support/en/software/enterprise-guide-support.html
https://support.sas.com/content/support/en/software/enterprise-guide-support.html
https://support.sas.com/studioaccess

xiv Accessibility Features of the Prep Guide

Part 1

SQL Processing with SAS

Chapter 1
PROC SQL Fundamentals . 3

Chapter 2
Creating and Managing Tables . 43

Chapter 3
Joining Tables Using PROC SQL . 65

Chapter 4
Joining Tables Using Set Operators . 95

Chapter 5
Using Subqueries . 131

Chapter 6
Advanced SQL Techniques . 155

1

2

Chapter 1

PROC SQL Fundamentals

PROC SQL Basics . 4
What Is PROC SQL? . 4
PROC SQL Syntax . 5

The PROC SQL SELECT Statement . 5
A Brief Overview . 5
SELECT Statement Syntax . 5
Example: Selecting Columns . 6
Example: Displaying All Columns Using SELECT * . 7
Example: Using the FEEDBACK Option . 7
Example: Creating a New Column . 8
Example: Eliminating Duplicate Rows from Output . 9

The FROM Clause . 9
FROM Clause Syntax . 9
Example: Querying a Single Table Using the FROM Clause 9

The WHERE Clause . 10
A Brief Overview . 10
WHERE Clause Syntax . 10
Example: Using the WHERE Clause . 10
Subsetting Rows by Using Calculated Values . 11
Example: Using Calculated Values in a SELECT Clause . 12
Subsetting Rows Using Conditional Operators . 13

The GROUP BY Clause . 19
A Brief Overview . 19
GROUP BY Clause Syntax . 20
Example: Determine Total Number of Miles Using the SUM Function 20
Number of Argument and Summary Function Processing . 21
Groups and Summary Function Processing . 22
SELECT Clause Columns and Summary Function Processing 23
Example: Using a Summary Function with a Single Argument (Column) 23
Example: Using a Summary Function with Multiple Arguments (Columns) 24
Example: Using a Summary Function with Columns outside the Function 24
Example: Using a Summary Function with a GROUP BY Clause 25
Counting Values by Using the COUNT Summary Function 26
Example: Counting All Rows in a Table . 27
Example: Counting Rows within Groups of Data . 27
Counting All Nonmissing Values in a Column . 28
Example: Counting All Unique Values in a Column . 28
Example: Listing All Unique Values in a Column . 28

3

The HAVING Clause . 29
A Brief Overview . 29
HAVING Clause Syntax . 29
Subsetting Grouped Data . 30
Example: Selecting Groups by Using the HAVING Clause 30
Understanding Data Remerging . 31

The ORDER BY Clause . 32
A Brief Overview . 32
ORDER BY Clause Syntax . 32
Example: Ordering Rows by the Values of a Single Column 33
Example: Ordering by Multiple Columns . 34
Example: Ordering Columns by Position . 34

PROC SQL Options . 35
A Brief Overview . 35
PROC SQL Statement Syntax . 35
Using Invocation Options . 36

Validating Query Syntax . 38
A Brief Overview . 38
Example: Using the NOEXEC Option . 38
Example: Using the VALIDATE Keyword . 39

Quiz . 39

PROC SQL Basics

What Is PROC SQL?
PROC SQL is the SAS implementation of Structured Query Language (SQL). SQL is a
standardized language that is widely used to retrieve and update data in tables and in
views that are based on those tables.

The following table compares terms that are used in data processing, SAS, and SQL.

This book uses all of these terms.

Data Processing SAS SQL

file SAS data set table or view

record observation row

field variable column

PROC SQL can often be used as an alternative to other SAS procedures or the DATA
step. Use PROC SQL for tasks such as these:

• retrieve data from and manipulate SAS tables

• add or modify data values in a table

• add, modify, or drop columns in a table

• create tables and views

4 Chapter 1 • PROC SQL Fundamentals

• join multiple tables (when they contain columns with the same name)

• generate reports

PROC SQL Syntax
The SQL procedure is initiated with a PROC SQL statement. You can use multiple
statements within a PROC SQL step. Each statement defines a process and is executed
immediately. Each statement must end with a semicolon. The SQL procedure is
terminated with a QUIT statement.

Syntax, SQL procedure:

PROC SQL <options>;
statements;

QUIT;

The PROC SQL SELECT Statement

A Brief Overview

The SELECT statement retrieves and displays data. It consists of a SELECT clause and
several optional clauses that can be used within the SELECT statement. Each clause
begins with a keyword and is followed by one or more components. The optional clauses
name the input data set, subset, group, or sort the data.

A PROC SQL step that contains one or more SELECT statements is referred to as a
PROC SQL query. The SELECT statement is only one of several statements that can be
used with PROC SQL.

SELECT Statement Syntax
The SELECT statement is the primary tool of PROC SQL. Using the SELECT
statement, you can identify, manipulate, and retrieve columns of data from one or more
tables and views. The SELECT statement must contain a SELECT clause and a FROM
clause, both of which are required in a PROC SQL query.

Syntax, SELECT statement:

PROC SQL <options>;
SELECT column-1 <,...column-n>

FROM input-table
<WHERE clause>
<GROUP BY clause>
<HAVING clause>
<ORDER BY clause>
;

QUIT;

The PROC SQL SELECT Statement 5

When you construct a SELECT statement, you must specify the clauses in the following
order:

• The SELECT clause selects columns.

• The FROM clause selects one or more source tables or views.

• The WHERE clause enables you to filter your data.

• The GROUP BY clause enables you to process data in groups.

• The HAVING clause works with the GROUP BY clause to filter grouped results.

• The ORDER BY clause specifies the order of the rows.

Example: Selecting Columns
To specify which columns to display in a query, write a SELECT clause. After the
keyword SELECT, list one or more column names and separate the column names with
commas. The SELECT clause specifies existing columns and can create columns. The
existing columns are already stored in a table.

The following SELECT clause specifies the columns EmpID, JobCode, Salary, and
bonus. The columns EmpID, JobCode, and Salary are existing columns. The column
named Bonus is a new column. The column alias appears as a column heading in the
output and matches the case that you used in the SELECT clause.

proc sql;
 select empid, jobcode, salary, salary*.06 as bonus
 from certadv.payrollmaster
 where salary<32000
 order by jobcode;
quit;

Output 1.1 PROC SQL Query Result

6 Chapter 1 • PROC SQL Fundamentals

Example: Displaying All Columns Using SELECT *
Use an asterisk (*) in the SELECT clause to display all columns in the order in which
they are stored in a table. All rows are displayed, by default, unless you limit or subset
them.

The following SELECT statement displays all columns and rows in the table
Certadv.Staffchanges. Certadv.Staffchanges lists all employees in a company who have
had changes in their employment status.

proc sql;
 select *
 from certadv.staffchanges;
quit;

Output 1.2 PROC SQL Query Result of SELECT *

Example: Using the FEEDBACK Option
When you specify SELECT * you can use the FEEDBACK option in the PROC SQL
statement to write the expanded list of columns to the SAS log. For example, the PROC
SQL query shown below contains the FEEDBACK option:

proc sql feedback;
 select *
 from certadv.staffchanges;
quit;

The following is written to the SAS log.

Log 1.1 SAS Log

NOTE: Statement transforms to:

 select STAFFCHANGES.EmpID, STAFFCHANGES.LastName, STAFFCHANGES.FirstName,
STAFFCHANGES.City, STAFFCHANGES.State, STAFFCHANGES.PhoneNumber
 from CERTADV.STAFFCHANGES;

The FEEDBACK option is a debugging tool that lets you see exactly what is being
submitted to the SQL processor. The resulting message in the SAS log expands asterisks
(*) into column lists. It also resolves macro variables and places parentheses around
expressions to show their order of evaluation.

The PROC SQL SELECT Statement 7

Example: Creating a New Column
You can create new columns that contain either text or a calculation. New columns
appear in output, along with any existing columns that are selected. The new columns
exist only for the duration of the query, unless a table or a view is created.

To create a new column, include any valid SAS expression in the SELECT clause list of
columns. You can assign a column alias, a name, to a new column by using the keyword
AS followed by the name that you would like to use.

Note: A column alias must follow the rules for SAS names.

In the following example, an expression is used to calculate the new column, Bonus. The
value of the new column is Salary multiplied by 0.06. The keyword AS is used to assign
the column alias Bonus to the new column.

proc sql;
 select empid, jobcode, salary, salary*.06 as bonus
 from certadv.payrollmaster
 where salary<32000
 order by jobcode;
quit;

Output 1.3 PROC SQL Query Result: New Column – Bonus

A column alias is useful because it enables you to reference the column elsewhere in the
query. The column alias appears as a column heading in the output and matches the case
that you used in the SELECT clause. You can specify a label for an existing or a new
column in the SELECT clause. If both a label and a column alias are specified for a new
column, the label is displayed as the column heading in the output1. If only a column
alias is specified, specify the column alias exactly as you want it to appear in the output.

1 Displaying labels for a column is further determined by the LABEL|NOLABEL system option. If this option is set to NOLABEL,
the label not displayed as the column heading in the output. This option can be set by your site administrator.

8 Chapter 1 • PROC SQL Fundamentals

Example: Eliminating Duplicate Rows from Output

You can use the DISTINCT keyword to eliminate duplicate rows. The DISTINCT
keyword applies to all columns, and only those columns, that are listed in the SELECT
clause.

proc sql;
 select distinct flightnumber, destination
 from certadv.internationalflights;
quit;

Note: The DISTINCT keyword is identical to UNIQUE. Although the UNIQUE
keyword is identical to DISTINCT, it is not an ANSI standard.

Output 1.4 PROC SQL Query Result: Unique Values

The FROM Clause

FROM Clause Syntax

After writing the SELECT clause, use the FROM clause to specify the tables or views to
be queried. Enter the keyword FROM, followed by the name of the table.

Syntax, FROM clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

FROM input-tables;
QUIT;

Example: Querying a Single Table Using the FROM Clause
Suppose you want to query a permanent SAS table called Payrollmaster, which is stored
in the Certadv library. The FROM clause specifies Certadv.Payrollmaster to be queried.

proc sql;

The FROM Clause 9

 select empid, jobcode, salary, salary*0.06 as bonus
 from certadv.payrollmaster
 where salary<32000
 order by jobcode;
quit;

The WHERE Clause

A Brief Overview

The WHERE clause enables you to subset data based on a condition that each row of the
table must satisfy. PROC SQL output includes only those rows that satisfy the condition.
The WHERE clause is used within the SELECT statement in a PROC SQL step. The
expression in the WHERE clause can be any valid SQL expression. In the WHERE
clause, you can specify any columns from the underlying tables that are specified in the
FROM clause. The columns that are specified in the WHERE clause do not have to be
specified in the SELECT clause.

WHERE Clause Syntax

The WHERE clause must come after the SELECT and FROM clauses.

Syntax, WHERE clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

FROM input-tables
WHERE expression;

QUIT;

expression
can be either character or numeric values. Character values are case sensitive and must be
enclosed in single or double quotation marks. Double quotation marks are a SAS
enhancement and typically are not allowed in database systems. Numeric values are not
enclosed in quotation marks and must be standard numeric values. You cannot include
special symbols such as commas or dollar signs when referencing numeric values.

To reference date and time values, use one of the following forms:

• A SAS date value is a date written in the following form: 'ddmmm<yy>yy'd or
"ddmmm<yy>yy"d.

• A SAS time constant is a time written in the following form:'hh:mm<:ss.s>'t or
"hh:mm<:ss.s>"t.

• A SAS datetime constant is a datetime value written in the following form:
'ddmmm<yy>yy:hh:mm<:ss.s>'dt or "ddmmm<yy>yy:hh:mm<:ss.s>"dt.

Example: Using the WHERE Clause
In the following PROC SQL query, the WHERE clause selects rows in which the value
of Salary is less than $32,000.

10 Chapter 1 • PROC SQL Fundamentals

proc sql;
 select empid, jobcode, salary, salary*0.06 as bonus
 from certadv.payrollmaster
 where salary<32000
 order by jobcode;
quit;

Output 1.5 PROC SQL Query Result: Subset of Payroll with Salaries Less Than $32,000

Subsetting Rows by Using Calculated Values

Understanding How PROC SQL Processes Calculated Columns
An earlier example showed how to define a new column by using the SELECT clause
and performing a calculation. The following PROC SQL query creates the new column
Total by adding the values of three existing columns: Boarded, Transferred, and
Nonrevenue.

proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue as Total
 from certadv.marchflights;
quit;

You can also use a calculated column in the WHERE clause to subset rows. However,
because of the way in which SQL queries are processed, you cannot just specify the
column alias in the WHERE clause. To see what happens, take the preceding PROC
SQL query and add a WHERE clause in the SELECT statement to reference the
calculated column Total.

proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue as Total
 from certadv.marchflights
 where total < 100;
quit;

The WHERE Clause 11

When this query is executed, the following error message is displayed in the SAS log.

ERROR: The following columns were not found in the contributing tables: total.

This error message is generated because, in SQL queries, the WHERE clause is
processed before the SELECT clause. The SQL processor looks in the table for each
column named in the WHERE clause. The table Certadv.Marchflights does not contain a
column named Total, so SAS generates an error message.

Note: To avoid the error message, you must use the CALCULATED keyword.

Example: Using Calculated Values in a WHERE Clause
Use the column alias and the CALCULATED keyword in the WHERE clause to refer to
a calculated value. The CALCULATED keyword tells PROC SQL that the value is
calculated within the query.

proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue as Total
 from certadv.marchflights
 where calculated total < 100;
quit;

Output 1.6 PROC SQL Query Result: Using the CALCULATED Keyword

Note: As an alternative to using the keyword CALCULATED, repeat the calculation in
the WHERE clause. However, this method is inefficient because PROC SQL must
perform the calculation twice. It is the ANSI method that recalculates the WHERE
clause. In the preceding query, here is what the alternate WHERE statement would
be:

where boarded + transferred + nonrevenue <100;

Example: Using Calculated Values in a SELECT Clause
You can also use the CALCULATED keyword in other parts of a query. In the following
example, the SELECT clause calculates the new column Total and then calculates a

12 Chapter 1 • PROC SQL Fundamentals

second new column based on Total. To create the second calculated column, you must
specify the keyword CALCULATED in the SELECT clause.

proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue as Total,
 calculated total/2 as Half
 from certadv.marchflights;
quit;

This query produces the following output.

Output 1.7 PROC SQL Query Result: Using the CALCULATED Keyword

Subsetting Rows Using Conditional Operators

A Brief Overview
In the WHERE clause, you can specify any valid SAS expression to subset or restrict the
data that is displayed in output. The expression might contain any of various types of
operators, such as the following.

Type of Operator Example

comparison where membertype='GOLD'

logical where visits<=3 or status='new'

concatenation where name=trim(last) ||', '||first

Using Operators in PROC SQL
Comparison, logical, and concatenation operators are used in PROC SQL in the same
way as they are used in other SAS procedures.

In PROC SQL queries, you can also use the following conditional operators. All of these
operators can be used in other SAS procedures.

The WHERE Clause 13

Conditional Operator Looks for These Values Example

BETWEEN-AND values that occur within an
inclusive range

where salary between 70000
 and 80000

CONTAINS or ? values that contain a specified
string

where name contains 'ER'
where name ? 'ER'

IN values that match one of a list
of values

where code in ('PT' , 'NA', 'FA')

IS MISSING or IS NULL missing values where dateofbirth is missing
where dateofbirth is null

LIKE (with %,) values that match a specified
pattern

where address like '% P%PLACE'

=* values that sound like a
specified value

where lastname=* 'Smith'

T I P To create a negative condition, you can precede any of these conditional
operators with the NOT operator.

Using the BETWEEN-AND Operator to Select within a Range of
Values
Use the BETWEEN-AND operator in the WHERE clause to select rows that are based
on a range of numeric or character values. The BETWEEN-AND operator is inclusive.
The values that you specify as limits for the range of values are included in the query
results, in addition to any values that occur between the limits.

Syntax, BETWEEN-AND operator:

BETWEEN value-1 AND value-2

value-1
is the value at one end of the range.

value-2
is the value at the other end of the range.

Note: When specifying the limits for the range of values, it is not necessary to specify
the smaller value first.

Here are a few examples of WHERE clauses.

Example Returns Rows That Contain These Values

where date between '01mar2018'd
 and '07mar2018'd

In this example, the values are specified as
date constants.

the value of Date is 01mar2018,
07mar2018, or any date value in between

where salary between 70000
 and 80000

the value of Salary is 70000, 80000, or any
numeric value in between

14 Chapter 1 • PROC SQL Fundamentals

Example Returns Rows That Contain These Values

where salary not between 70000
 and 80000

the value of Salary is not between or equal to
70000 and 80000

Using the CONTAINS Operator to Select a String
The CONTAINS or question mark (?) operator is usually used to select rows for which a
character column includes a particular string. These operators are interchangeable.

Syntax, CONTAINS operator:

SQL-expression CONTAINS SQL-expression
SQL-expression ? SQL-expression

SQL-expression
is a character column, string (character constant), or expression. A string is a sequence of
characters to be matched that must be enclosed in quotation marks.

Note: PROC SQL retrieves a row for output no matter where the string (or second SQL-
expression) occurs within the column's (or first SQL-expression's) values. Matching is case
sensitive when making comparisons.

Note: The CONTAINS or question mark (?) operator is not part of the ANSI standard; it
is a SAS enhancement.

The following PROC SQL query uses CONTAINS to select rows in which the Name
column contains the string ER. As the output shows, all rows that contain ER anywhere
within the Name column are displayed.

proc sql;
 select name
 from certadv.frequentflyers
 where name contains 'ER';
quit;

Output 1.8 PROC SQL Query Result: Name Containing String ‘ER’ (partial output)

The WHERE Clause 15

Using the IN Operator to Select Values from a List
Use the IN operator to select only the rows that match one of the values in a list of fixed
values, either numeric or character.

Syntax, IN operator:

column IN (constant-1<,...constant-n>)

column
specifies the selected column name.

constant-1 and constant-n
represent a list that contains one or more specific values. The list of values must be enclosed
in parentheses and separated by either commas or spaces. Values can be either numeric or
character. Character values must be enclosed in quotation marks.

Here are examples of WHERE clauses that contain the IN operator.

Example Returns Rows That Contain These Values

where jobcategory in ('PT','NA','FA') the value of JobCategory is PT, NA, or FA.

where dayofweek in (2,4,6) the value of DayOfWeek is 2, 4, or 6.

where chesspiece not in

('pawn','king','queen')

the value of Chesspiece is anything but pawn,
king, or queen.

Using the IS MISSING or IS NULL Operator to Select Missing Values
Use the IS MISSING or IS NULL operator to select rows that contain missing values,
both character and numeric. These operators are interchangeable.

Syntax, IS MISSING or IS NULL operator:

column IS MISSING
column IS NULL

column
specifies the selected column name.

Note: The IS MISSING operator is not part of the ANSI standard for SQL. It is a SAS
enhancement.

Suppose you want to find out whether the table Certadv.Marchflights has any missing
values in the column Boarded. You can use the following PROC SQL query to retrieve
rows from the table that have missing values:

proc sql;
 select boarded, transferred, nonrevenue, deplaned
 from certadv.marchflights
 where boarded is missing;
quit;

The following output displays two rows in the table that have missing values for
Boarded.

16 Chapter 1 • PROC SQL Fundamentals

Output 1.9 PROC SQL Query Result: IS MISSING

T I P Alternatively, you can specify missing values without using the IS MISSING or
IS NULL operator, as shown in the following examples:

where boarded = .
where flight = ' '

However, the advantage of using the IS MISSING or IS NULL operator is that you
do not have to specify the data type (character or numeric) of the column.

Using the LIKE Operator to Select a Pattern
To select rows that have values that match a specific pattern of characters rather than a
fixed character string, use the LIKE operator. For example, using the LIKE operator, you
can select all rows in which the LastName value starts with H. (If you wanted to select
all rows in which the last name contains the string HAR, you would use the CONTAINS
operator.)

Syntax, LIKE operator:

column LIKE 'pattern'

column
specifies the column name.

pattern
specifies the pattern to be matched and contains one or both of the special characters
underscore (_) and percent sign (%). The entire pattern must be enclosed in quotation
marks and matching is case sensitive.

When you use the LIKE operator in a query, PROC SQL uses pattern matching to
compare each value in the specified column with the pattern that you specify using the
LIKE operator. The query output displays all rows in which there is a match.

You specify a pattern using one or both of the special characters shown below.

Special Character Represents This Pattern

underscore (_) any single character

percent sign (%) any sequence of zero or more characters

Note: The underscore (_) and percent sign (%) are sometimes referred to as wildcard
characters.

To specify a pattern, combine one or both of the special characters with any other
characters that you want to match. The special characters can appear before, after, or on
both sides of other characters.

The following PROC SQL query uses the LIKE operator to find all frequent-flyer club
members whose street name begins with P and ends with the word PLACE. The
following PROC SQL step performs this query:

The WHERE Clause 17

proc sql;
 select ffid, name, address
 from certadv.frequentflyers
 where address like '%P%PLACE';
quit;

The pattern '%P%PLACE' specifies the following sequence:

• any number of characters (%)

• a space

• the letter P

• any number of characters (%)

• the word PLACE

Output 1.10 PROC SQL Query Result: PLACE

Using the Sounds-Like (=*) Operator to Select a Spelling Variation
Use the sounds-like (=*) operator in the WHERE clause to select rows that contain a
value that sounds like another value that you specify.

Syntax, sounds-like (=*) operator:

SQL-expression =* SQL-expression

SQL-expression
is a character column, string (character constant), or expression. A string is a sequence of
characters to be matched that must be enclosed in quotation marks.

The sounds-like (=*) operator uses the SOUNDEX algorithm to compare each value of a
column (or other SQL-expression) with the word or words (or other SQL-expression)
that you specify. Any rows that contain a spelling variation of the value that you
specified are selected for output.

For example, here is a WHERE clause that contains the sounds-like operator:

where lastname =* 'Smith';

18 Chapter 1 • PROC SQL Fundamentals

The sounds-like operator does not always select all possible values. For example,
suppose you use the preceding WHERE clause to select rows from the following list of
names that sound like Smith:

• Schmitt

• Smith

• Smithson

• Smitt

• Smythe

Two of the names in this list will not be selected: Schmitt and Smithson.

Note: The SOUNDEX algorithm is English-biased and is less useful for languages other
than English.

The GROUP BY Clause

A Brief Overview
Use the GROUP BY clause to group your data for summarization. You can use the
GROUP BY clause to do the following:

• classify the data into groups based on the values of one or more columns.

• group multiple columns, or separate the column names with commas within the
GROUP BY clause. You can use aggregate functions with any of the columns that
you select.

Note: If you specify a GROUP BY clause in a query that does not contain a summary
function, your clause is changed to an ORDER BY clause, and a message is written
to the SAS log.

To summarize data, you can use the following summary functions with PROC SQL.
Notice that some functions have more than one name to accommodate both SAS and
SQL conventions. Where multiple names are listed, the first name is the SQL name.

Note: The summary functions listed below are limited for the purposes of this book.

AVG, MEAN mean or average of values

COUNT, FREQ, N number of nonmissing values

CSS corrected sum of squares

CV coefficient of variation (percent)

MAX largest value

MIN smallest value

NMISS number of missing values

The GROUP BY Clause 19

PRT probability of a greater absolute value of student's t

RANGE range of values

STD standard deviation

STDERR standard error of the mean

SUM sum of values

T student's t value for testing the hypothesis that the
population mean is zero

USS uncorrected sum of squares

VAR variance

PROC SQL calculates summary functions and writes output results in different ways,
depending on a combination of factors. Here are four key factors:

• whether the summary function specifies one or multiple columns as arguments

• whether the query contains a GROUP BY clause

• if the summary function is specified in a SELECT clause, whether there are
additional columns listed that are outside a summary function

• whether the WHERE clause, if there is one, contains only columns that are specified
in the SELECT clause

GROUP BY Clause Syntax

Syntax, GROUP BY clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

FROM input-tables
WHERE expression
GROUP BY column-name <,column-name>;

QUIT;

Example: Determine Total Number of Miles Using the SUM Function
Suppose you want to determine the total number of miles traveled by frequent-flyer
program members in each of three membership classes (Gold, Silver, and Bronze).
Frequent-flyer program information is stored in the table Certadv.Frequentflyers. To
summarize your data, you can submit the following PROC SQL step:

proc sql;
 select membertype, sum(milestraveled) as TotalMiles /* 1 */
 from certadv.frequentflyers

20 Chapter 1 • PROC SQL Fundamentals

 group by membertype; /* 2 */
quit;

1 The SUM function totals the values of the MilesTraveled column to create the
TotalMiles column.

2 The GROUP BY clause groups the data by the values of MemberType.

The results show total miles by membership class (MemberType).

Output 1.11 PROC SQL Query Result: Total Number of Miles by MemberType

Number of Argument and Summary Function Processing
Summary functions specify one or more arguments in parentheses. In the examples
shown in this chapter, the arguments are always columns in the table being queried.

Note: The ANSI-standard summary functions, such as AVG and COUNT, can be used
only with a single argument. The SAS summary functions, such as MEAN and N,
can be used with either single or multiple arguments.

The following table shows how the number of columns that are specified as arguments
affects the way that PROC SQL calculates a summary function.

Summary
Function
Behavior Calculation Sample Code and Result

specifies
one column
as
argument

performed
down the
column

proc sql;
 select sum(boarded), sum(transferred),sum(nonrevenue)
 as Total
 from certadv.marchflights;
quit;

The GROUP BY Clause 21

Summary
Function
Behavior Calculation Sample Code and Result

specifies
multiple
columns as
arguments

performed
across
columns for
each row

proc sql;
 select sum(boarded,transferred,nonrevenue)
 as Total
 from certadv.marchflights;
quit;

Groups and Summary Function Processing
Summary functions perform calculations on groups of data. When PROC SQL processes
a summary function, it looks for a GROUP BY clause:

GROUP BY Clause
Presence PROC SQL Behavior Example

is not present in the
query

applies the function to the
entire table

proc sql;
 select jobcode, avg(salary)
 as AvgSalary
 from certadv.payrollmaster;
quit;

is present in the query applies the function to each
group specified in the
GROUP BY clause

proc sql;
 select jobcode, avg(salary)
 as AvgSalary
 from certadv.payrollmaster
 group by jobcode;
quit;

If a query contains a GROUP BY
clause, all columns in the SELECT
clause that do not contain a summary
function should typically be listed in
the GROUP BY clause. Otherwise,
unexpected results might be returned.

22 Chapter 1 • PROC SQL Fundamentals

SELECT Clause Columns and Summary Function Processing
A SELECT clause that contains a summary function can also list additional columns that
are not specified in the summary function. The presence of these additional columns in
the SELECT clause list causes PROC SQL to display the output differently.

SELECT Clause
Contents PROC SQL Behavior Example

contains summary
functions and no
columns outside
summary functions

calculates a single value by
using the summary
function for the entire
table. However, if groups
are specified in the
GROUP BY clause, for
each group it combines the
information into a single
row of output for the entire
table.

proc sql;
 select avg(salary)
 as AvgSalary
 from certadv.payrollmaster;
quit;

contains summary
functions and
additional columns
outside summary
functions

calculates a single value for
the entire table. However,
if groups are specified, for
each group it displays all
rows of output within the
single grouped value. If the
data in the table is grouped
by more than one value,
then grouped values are
repeated.

proc sql;
 select EmpId,
 jobcode,
 dateofhire,
 avg(salary)
 as AvgSalary
 from certadv.payrollmaster
 group by jobcode;
quit;

Example: Using a Summary Function with a Single Argument
(Column)

The following example illustrates a PROC SQL query that calculates the average salary
for all employees who are listed in Certadv.Payrollmaster.

title 'Average Salary for All Employees';
proc sql;
 select avg(salary) as AvgSalary
 from certadv.payrollmaster;
quit;

The SELECT statement contains the summary function AVG with Salary as its
argument. Because there is only one column as an argument, the function calculates the
statistic down the Salary column to display a single value: the average salary for all
employees.

The GROUP BY Clause 23

Output 1.12 PROC SQL Query Result: Calculating Average Salary for All Employees

Example: Using a Summary Function with Multiple Arguments
(Columns)

Consider a PROC SQL query that contains a summary function with multiple columns
as arguments. This query calculates the total number of passengers for each flight in
March by adding the number of boarded, transferred, and nonrevenue passengers:

proc sql;
 select sum(boarded, transferred, nonrevenue) as Total
 from certadv.marchflights;
quit;

The SELECT clause contains the summary function SUM with three columns as
arguments. Because the function contains multiple arguments, the statistic is calculated
across the three columns for each row to produce the following output.

Output 1.13 PROC SQL Query Result: Calculating Total for 3 Arguments (partial output)

Example: Using a Summary Function with Columns outside the
Function

The following example illustrates calculating an average for each job group. The result
is grouped by JobCode. Your first step is to add an existing code, Jobcode, to the
SELECT clause list.

proc sql;
 select jobcode, avg(salary) as AvgSalary
 from certadv.payrollmaster;
quit;

24 Chapter 1 • PROC SQL Fundamentals

As this result shows, adding a column to the SELECT clause that is not within a
summary function causes PROC SQL to display all rows instead of a single value. To
generate this output:

• PROC SQL calculated the average salary down the column as a single value
(54079.62).

• PROC SQL displayed all rows in the output, because JobCode is not specified in a
summary function.

Therefore, the single value for AvgSalary is repeated for each row. When you submit the
query, SAS remerges the summary information with the JobCode values.

Note: The SAS log displays a message indicating that data remerging has occurred.

Output 1.14 PROC SQL Query Result: Summary Function with Jobcode (partial output)

Log 1.2 SAS Log

NOTE: The query requires remerging summary statistics back with the original
data.

Example: Using a Summary Function with a GROUP BY Clause
Using the query from the previous example, add a GROUP BY clause. The GROUP BY
clause groups rows by JobCode, which results in one row per JobCode value. For
example, you might have multiple JobCode values for FA2 but only one value of FA2
displayed in the output. In the SELECT clause, JobCode is specified but is not used as a
summary function argument. Other changes to the query include specifying a format for
the AvgSalary column.

proc sql;
 select jobcode, avg(salary) as AvgSalary format=dollar11.2
 from certadv.payrollmaster
 group by jobcode;
quit;

The summary function has been calculated for each JobCode group, and the results are
grouped by JobCode.

The GROUP BY Clause 25

Output 1.15 PROC SQL Query Result Grouped by JobCode

Counting Values by Using the COUNT Summary Function
Sometimes you want to count the number of rows in an entire table or in groups of rows.
There are three main ways to use the COUNT function.

Form for COUNT Result Example

COUNT(*) the total number of
rows in a group or in
a table

select count(*) as Count

COUNT(column) the total number of
rows in a group or in
a table for which
there is a nonmissing
value in the selected
column

select count(jobcode) as Count

COUNT(DISTINCT
column)

the total number of
unique values in a
column

select count(distinct jobcode)
 as Count

Note: When given a column entry, the COUNT summary function counts only the
nonmissing values. Missing values are ignored. Many other summary functions also
ignore missing values. When you use a summary function with data that contains
missing values, the results might not provide the information that you expect.

26 Chapter 1 • PROC SQL Fundamentals

T I P To count the number of missing values, use the NMISS function.

Example: Counting All Rows in a Table
Suppose you want to know how many employees are listed in the table Certadv.
Payrollmaster. This table contains a separate row for each employee, so counting the
number of rows in the table gives you the number of employees.

proc sql;
 select count(*) as Count
 from certadv.payrollmaster;
quit;

Note: The COUNT summary function is the only function that enables you to use an
asterisk (*) as an argument.

Output 1.16 PROC SQL Query Result: Counting All Rows in Certadv.Payrollmaster

Example: Counting Rows within Groups of Data
You can also use COUNT(*) to count rows within groups of data. To do this, you specify
the groups in the GROUP BY clause. Consider a more complex PROC SQL query that
uses COUNT(*) with grouping. This time, the goal is to find the total number of
employees within each job category, using the same table that was used previously.

proc sql;
 select substr(jobcode,1,2) /* 1 */
 label='Job Category',
 count(*) as Count /* 2 */
 from certadv.payrollmaster
 group by 1; /* 3 */
quit;

This query defines two new columns in the SELECT clause.

1 The first column, which is labeled JobCategory, is created by using the SAS function
SUBSTR. The SUBSTR function extracts the two-character job category from the
existing JobCode field.

2 The second column, Count, is created by using the COUNT function.

3 The GROUP BY clause specifies that the results are to be grouped by the first
defined column, which is referenced by 1 because the column was not assigned a
name.

The GROUP BY Clause 27

Output 1.17 PROC SQL Query Result: Count Rows within Groups of Data

CAUTION:
Columns should not contain missing values. When a column contains missing
values, PROC SQL treats the missing values as a single group. This can produce
unexpected results.

Counting All Nonmissing Values in a Column
Suppose you want to count all of the nonmissing values in a specific column instead of
in the entire table. To do this, you specify the name of the column as an argument of the
COUNT function.

If the table has no missing data, you get the same output as you would by using
COUNT(*). However, if the variable column contained missing values, the query would
produce a lower value of Count than the number of values in a column.

Example: Counting All Unique Values in a Column
To count all unique values in a column, add the keyword DISTINCT before the name of
the column that is used as an argument.

proc sql;
 select count(distinct jobcode) as Count
 from certadv.payrollmaster;
quit;

This query counts 16 unique values for JobCode.

Output 1.18 PROC SQL Query Result: Counting Unique Values

Example: Listing All Unique Values in a Column
To display the unique JobCode values, you can apply the method of eliminating
duplicates, which was discussed earlier. The following query lists only the unique values
for JobCode.

proc sql;

28 Chapter 1 • PROC SQL Fundamentals

 select distinct jobcode
 from certadv.payrollmaster;
quit;

There are 16 job codes, so the output contains 16 rows.

Output 1.19 PROC SQL Query Result: Displaying Distinct Values

The HAVING Clause

A Brief Overview
The HAVING clause tells PROC SQL how to filter the data after summarization. You
can use a HAVING clause with a GROUP BY clause to filter grouped data. The
HAVING clause affects groups in a way that is similar to how a WHERE clause affects
individual rows. When you use a HAVING clause, PROC SQL displays only the groups
that satisfy the HAVING expression.

Note: You can use summary functions in a HAVING clause but not in a WHERE clause.
The HAVING clause is used with groups, but a WHERE clause can be used only
with individual rows.

HAVING Clause Syntax

The HAVING Clause 29

Syntax, HAVING clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

FROM input-tables
WHERE expression
GROUP BY column-name <,column-name>
HAVING expression;

QUIT;

expression
produces a value from a sequence of operands and operators.

Subsetting Grouped Data
The HAVING clause is used with at least one summary function and a GROUP BY
clause to summarize groups of data in a table. A HAVING clause can be used in any
valid SQL expression that is evaluated as either true or false for each group in a query.
Alternatively, if the query involves remerged data, then the HAVING clause is evaluated
for each row that participates in each group. The query must include one or more
summary functions.

Typically, the GROUP BY clause is used with the HAVING clause and defines the group
or groups to be evaluated. If you omit the GROUP BY clause, the summary function and
the HAVING clause treat the table as one group.

Example: Selecting Groups by Using the HAVING Clause

Suppose you want to select only a subset of groups for your query output.

proc sql;
 select jobcode, avg(salary) as AvgSalary format=dollar11.2
 from certadv.payrollmaster
 group by jobcode
 having avg(salary)>56000;
quit;

T I P Alternatively, because the average salary is already calculated in the SELECT
clause, the HAVING clause could specify the column alias AvgSalary:

having AvgSalary > 56000

30 Chapter 1 • PROC SQL Fundamentals

The query output is shown below. This output is smaller than the previous output
because only the values of JobCode that meet the condition in the HAVING clause are
displayed.

Output 1.20 PROC SQL Query Result: Average Salaries over $56,000

Without a GROUP BY clause, the HAVING clause calculates the average salary for the
table as a whole for all jobs in the company. The output contains either all the rows in
the table if the average salary for the entire table is greater than $56,000, or none of the
rows in the table if the average salary for the entire table is less than $56,000.

Understanding Data Remerging
Sometimes, when you use a summary function in a SELECT clause or a HAVING
clause, PROC SQL must remerge the data (that is, it makes two passes through the
table). You can modify your query to avoid remerging.

Consider a PROC SQL query that requires remerging. This query calculates each
navigator's salary as a percentage of all navigators' salaries:

proc sql;
 select empid, salary,(salary/sum(salary)) as Percent format=percent8.2
 from certadv.payrollmaster
 where jobcode contains 'NA';
quit;

When you submit this query, the SAS log displays the following message.

Log 1.3 SAS Log

NOTE: The query requires remerging summary statistics back with the original
data.

Remerging occurs whenever any of the following conditions exist:

• The values returned by a summary function are used in a calculation.

• The SELECT clause specifies a column that contains a summary function and other
columns that are not listed in a GROUP BY clause.

• The HAVING clause specifies one or more columns or column expressions that are
not included in a subquery or a GROUP BY clause.

During remerging, PROC SQL makes two passes through the table:

1. PROC SQL calculates and returns the value of summary functions. PROC SQL also
groups data according to the GROUP BY clause.

The HAVING Clause 31

2. PROC SQL retrieves any additional columns and rows that it needs to display in the
output. It uses the result from the summary function to calculate any arithmetic
expressions in which the summary function participates.

The ORDER BY Clause

A Brief Overview

The order of rows in the output of a PROC SQL query cannot be guaranteed, unless you
specify a sort order with the ORDER BY clause. Specify the keywords ORDER BY,
followed by one or more column names separated by commas.

Figure 1.1 SORT Methods for ORDER BY

Without an ORDER BY clause, the order of the output rows is determined by the
internal processing of PROC SQL, the default collating sequence of SAS, and your
operating environment. Therefore, if you want your result table to appear in a particular
order, use the ORDER BY clause. Here are details about sort order:

• The PROC SQL default sort order is ascending.

• PROC SQL sorts missing values before nonmissing values. Therefore, when you
specify ascending order, missing values appear first in the query results.

• When you use an ORDER BY clause, you change the order of the results but not the
order of the rows that are stored in the source table.

• If multiple ORDER BY columns are specified, the first one determines the major
sort order.

ORDER BY Clause Syntax

32 Chapter 1 • PROC SQL Fundamentals

Syntax, ORDER BY clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

FROM input-tables
WHERE expression
GROUP BY column-name <,column-name>
ORDER BY column-name <DESC> <,column-name>;

QUIT;

Example: Ordering Rows by the Values of a Single Column

In the following PROC SQL query, the ORDER BY clause sorts rows by values of the
column JobCode. The ORDER BY clause is the last clause in the SELECT statement, so
the ORDER BY clause ends with a semicolon.

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from certadv.payrollmaster
 where salary<32000
 order by jobcode;
quit;

In the sample query output shown below, the rows are sorted by the values of JobCode.
By default, the ORDER BY clause sorts rows in ascending order.

Output 1.21 PROC SQL Query Result Sorted by JobCode

The ORDER BY Clause 33

Example: Ordering by Multiple Columns
To sort rows by the values of two or more columns, list multiple column names or
numbers in the ORDER BY clause. Use commas to separate the column names or
numbers.

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from certadv.payrollmaster
 where salary<32000
 order by jobcode,empid;
quit;

The rows are sorted by JobCode and then by EmpID, as shown in the following output.

Output 1.22 PROC SQL Query Result Sorted by JobCode and EmpID

Example: Ordering Columns by Position

You can order columns by their position in the SELECT clause. In the following PROC
SQL query, the ORDER BY clause sorts the values of the fourth column and the second
column.

proc sql;
 select empid, jobcode, salary, dateofhire
 from certadv.payrollmaster
 where salary<32000
 order by 4, 2;
quit;

34 Chapter 1 • PROC SQL Fundamentals

The following SQL query result is sorted by the fourth position, which is DateofHire and
then by the second position, which is JobCode.

Output 1.23 PROC SQL Query Result: Ordering by Position

PROC SQL Options

A Brief Overview
The SQL procedure offers a variety of options that control processing. Some options
control execution. For example, you can limit the number of rows that are read or written
during a query. Other options control output. For example, you can control the number
of rows to be displayed in your output.

PROC SQL Statement Syntax

Syntax, PROC SQL statement:

PROC SQL <option(s)>;

option(s)
names the option(s) to be used.

After you specify an option, it remains in effect until you change it or you reset it.

The following tables list the options that are covered in this section. A description and an
example of each option appear in the following sections.

PROC SQL Options 35

Table 1.1 Controlling Execution Options

Desired Result Option

Restrict the number of input rows. INOBS=

Restrict the number of output rows. OUTOBS=

Specify whether PROC SQL prints the query’s result. PRINT | NOPRINT

Include a column of row numbers. NUMBER | NONUMBER

Table 1.2 SAS Data Set Options

Desired Result Option

Specify the names of columns to be kept. KEEP=

Specify the names of columns to be dropped. DROP=

Specify the last observations that SAS processes in a data set. OBS=

Change the name of a variable. RENAME=

Using Invocation Options

Restricting Row Processing
When you are developing queries against large tables, you can shorten the time that it
takes for the queries to run by reducing the number of rows that PROC SQL processes.
Subsetting the tables with WHERE clauses is one way to do this. Using the INOBS= and
OUTOBS= options in PROC SQL is another way.

You already know that you can use the OUTOBS= option to restrict the number of rows
that PROC SQL displays or writes to a table. However, the OUTOBS= option does not
restrict the rows that are read. The INOBS= option restricts the number of rows that
PROC SQL takes as input from any single source. The INOBS= option is similar to the
SAS data set option OBS= and is useful for debugging queries on large tables.

In the following PROC SQL set operation, INOBS=5 is specified. As indicated in the
log, only five rows from the source table Certadv.Mechanicslevel1 are read. The
resulting table contains five rows.

proc sql inobs=5;
 select *
 from certadv.mechanicslevel1;
quit;

Log 1.4 SAS Log

WARNING: Only 5 records were read from CERTADV.MECHANICSLEVEL1 due to INOBS=
option.

36 Chapter 1 • PROC SQL Fundamentals

Output 1.24 PROC SQL Query Result: INOBS= Option

Example: Limiting the Number of Rows Displayed
Suppose you want to quickly review the types of values that are stored in a table, without
printing out all the rows. The following PROC SQL query selects data from the table
Certadv.Payrollmaster, which contains more than 100 rows. The query prints only the
first ten rows that are ordered by Salary in descending order.

proc sql outobs=10;
 select *
 from certadv.payrollmaster
 order by Salary desc;
quit;

When you limit the number of rows, a warning is written to the SAS log.

Log 1.5 SAS Log

WARNING: Statement terminated early due to OUTOBS=10 option.

Output 1.25 PROC SQL Query Result Using the OUTOBS Option

T I P You can also use the INOBS= option to restrict the number of rows that PROC
SQL takes as input from any single source.

PROC SQL Options 37

Example: Including a Column of Row Numbers
The NUMBER | NONUMBER option specifies whether the output from a query should
include a column named ROW, which displays row numbers. NONUMBER is the
default. The option is similar to the NOOBS option in the PRINT procedure.

The following PROC SQL step specifies the NUMBER option. Output from the step
includes a column named Row, which contains row numbers.

proc sql inobs=10 number;
 select flightnumber, destination
 from certadv.internationalflights;
quit;

Output 1.26 PROC SQL Query Result: NUMBER Option

Validating Query Syntax

A Brief Overview
When you are building a PROC SQL query, you might find it more efficient to check
your query without actually executing it. To verify the syntax and the existence of
columns and tables that are referenced in the query without executing the query, use
either of the following combinations:

• the NOEXEC option in the PROC SQL statement

• the VALIDATE keyword before a SELECT statement

Example: Using the NOEXEC Option
The NOEXEC option is specified in the following PROC SQL statement:

proc sql noexec;
 select empid, jobcode, salary
 from certadv.payrollmaster
 where jobcode contains 'NA'
 order by salary;
quit;

If the query is valid and all referenced columns and tables exist, the SAS log displays the
following message.

38 Chapter 1 • PROC SQL Fundamentals

Log 1.6 SAS Log

NOTE: Statement not executed due to NOEXEC option.

Or, if there are any errors in the query, SAS displays the standard error messages in the
log.

When you use the NOEXEC option, SAS checks the syntax of all queries in that PROC
SQL step for accuracy but does not execute them.

Example: Using the VALIDATE Keyword
You specify the VALIDATE keyword just before a SELECT statement; it is not used
with any other PROC SQL statement.

You can modify the preceding PROC SQL query by using the VALIDATE keyword
instead of the NOEXEC option:

proc sql;
 validate
 select empid, jobcode, salary
 from certadv.payrollmaster
 where jobcode contains 'NA'
 order by salary;
quit;

Note: The VALIDATE keyword is not followed by a semicolon.

If the query is valid, the SAS log displays the following message.

Log 1.7 SAS Log

NOTE: PROC SQL statement has valid syntax.

If there are errors in the query, SAS displays the standard error messages in the log.

The main difference between the VALIDATE keyword and the NOEXEC option is that
the VALIDATE keyword affects the SELECT statement that immediately follows it,
whereas the NOEXEC option applies to all queries in the PROC SQL step. If you are
working with a PROC SQL query that contains multiple SELECT statements, the
VALIDATE keyword must be specified before each SELECT statement that you want to
check.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the statements or clauses in the PROC SQL program below is written
incorrectly?

proc sql;
 select style sqfeet bedrooms
 from certadv.houses
 where sqfeet ge 800;
quit;

Quiz 39

a. SELECT

b. FROM

c. WHERE

d. Both a and c.

2. How many statements does the program below contain?

proc sql;
 select grapes,oranges,
 grapes + oranges as sumsales
 from certadv.produce
 order by sumsales;
quit;

a. two

b. three

c. four

d. five

3. Complete the following PROC SQL query to select the columns Address and SqFeet
from the table Certadv.Size and to select Price from the table Certadv.Price. (Only
the Address column appears in both tables.)

proc sql;

 from certadv.size left join certadv.price;
 on size.address = price.address;
quit;

a. select address,sqfeet,price

b. select size.address,sqfeet,price

c. select price.address,sqfeet,price

d. Either b or c.

4. Which of the clauses below correctly sorts rows by the values of the columns Price
and SqFeet?

a. order price, sqfeet

b. order by price,sqfeet

c. sort by price sqfeet

d. sort price sqfeet

5. Which clause below specifies that the two tables Produce and Hardware be queried?
Both tables are located in a library to which the libref Sales has been assigned.

a. select sales.produce sales.hardware

b. from sales.produce sales.hardware

c. from sales.produce,sales.hardware

d. where sales.produce, sales.hardware

6. Complete the SELECT clause below to create a new column named Profit by
subtracting the values of the column Cost from those of the column Price.

select fruit,cost,price,

40 Chapter 1 • PROC SQL Fundamentals

a. Profit=price-cost

b. price-cost as Profit

c. profit=price-cost

d. Profit as price-cost

7. What happens if you use a GROUP BY clause in a PROC SQL step without a
summary function?

a. The step does not execute.

b. The first numeric column is summed by default.

c. The GROUP BY clause is changed to an ORDER BY clause.

d. The step executes but does not group or sort data.

8. Which clause in the following program is incorrect?

proc sql;
 select age,mean(weight) as avgweight
 from certadv.employees certadv.health
 where employees.id=health.id
 group by age;
quit;

a. SELECT

b. FROM

c. WHERE

d. GROUP BY

Quiz 41

42 Chapter 1 • PROC SQL Fundamentals

Chapter 2

Creating and Managing
Tables

The CREATE TABLE Statement . 43
A Brief Overview . 43
CREATE TABLE Statement Syntax . 44
Example: Creating an Empty Table by Defining Column Structure 45
Specifying Data Types for Columns . 46
Specifying Column Widths . 47
Specifying Column Modifiers . 48
Example: Using Column Modifiers . 48

Using the LIKE Clause . 48
LIKE Clause Syntax . 48
Example: Creating an Empty Table That Is like Another . 49

Using the AS Keyword . 49
AS Keyword Syntax . 49
Example: Creating a Table from a Query Result . 50

The INSERT Statement . 51
A Brief Overview . 51
The SET Clause . 52
The VALUES Clause . 54
The INSERT Statement with SELECT and FROM Clauses 57

The DESCRIBE TABLE Statement . 59
A Brief Overview . 59
DESCRIBE TABLE Statement Syntax . 59
Example: Displaying the Structure of a Table . 59

Using Dictionary Tables . 60
A Brief Overview . 60
Example: Exploring and Using Dictionary Tables . 61

Chapter Quiz . 63

The CREATE TABLE Statement

A Brief Overview
PROC SQL offers you three ways to create a table. The CREATE TABLE statement is
used for all three methods, although the statement syntax varies for each method.

43This doc was provided to the VLE, September 2020.

Method of Creating a Table Example

create an empty table by defining columns proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num);
quit;

create an empty table that is like (has the
same columns and attributes as) an existing
table

proc sql;
 create table work.flightdelays2
 like certadv.flightdelays;
quit;

create a populated table (a table with both
columns and rows of data) from a query
result

proc sql;
 create table work.ticketagents as
 select lastname, firstname,
 jobcode, salary
 from certadv.payrollmaster,
 certadv.staffmaster
 where payrollmaster.empid
 = staffmaster.empid
 and jobcode contains 'TA';
quit;

The CREATE TABLE statement generates a table only as output, not as a report. The
SAS log displays a message that indicates that the table has been created as well as the
number of rows and columns that it contains.

Log 2.1 SAS Log

NOTE: Table WORK.FLIGHTDELAYS2 created, with 0 rows and 8 columns.

Note: You can display additional information about a table's structure in the SAS log by
using the DESCRIBE TABLE statement in PROC SQL.

CREATE TABLE Statement Syntax
Use the CREATE TABLE statement to create an empty table and define the table’s
columns and attributes. The empty table will not contain any rows.

44 Chapter 2 • Creating and Managing Tables

Syntax, CREATE TABLE statement with column specifications:

CREATE TABLE table-name
(column-specification-1<,
...column-specification-n>);

table-name
specifies the name of the table to be created.

column-specification
specifies a column to be included in the table. The following constraints are available for the
columns, using this form:

column-definition consists of the following:
column-name data-type<(column-width)> <column-modifier-1> <column-modifier-n>

column-name
specifies the name of the column. The column name is stored in the table in the same
case that is used in column-name.

data-type
is enclosed in parentheses and specifies one of the following: CHARACTER (or CHAR)
| VARCHAR | INTEGER (or INT) | SMALLINT | DECIMAL (or DEC) | NUMERIC (or
NUM) | FLOAT | REAL | DOUBLE PRECISION | DATE.

column-width
which is enclosed in parentheses, is an integer that specifies the width of the column.
(PROC SQL processes this value only for the CHARACTER and VARCHAR data
types.)

column-modifier
is one of the following: INFORMAT= | FORMAT= | LABEL= . More than one column-
modifier can be specified.

Note: The entire set of column-specifications must be enclosed in parentheses. Multiple
column-specifications must be separated by commas. Elements within a column-
specifications must be separated by spaces.

Example: Creating an Empty Table by Defining Column Structure
Suppose you want to create the temporary table Work.Discount, which contains data
about discounts that are offered by an airline. There is no existing table that contains the
four columns, and column attributes, that you would like to include: Destination,
BeginDate, EndDate, and Discount.

You use the following PROC SQL step to create the table, based on column definitions
that you specify:

proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num);
quit;

The SAS log confirms that the table has been created.

Log 2.2 SAS Log

NOTE: Table WORK.DISCOUNT created, with 0 rows and 4 columns.

The CREATE TABLE Statement 45

T I P In this example, and all other examples in this chapter, you are instructed to save
your data to a temporary table (in the library Work) that will be deleted at the end of
the SAS session. To save the table permanently in a different library, use the
appropriate libref instead of the libref Work in the CREATE TABLE statement.

Specifying Data Types for Columns
When you create a table by defining columns, you must specify a data type for each
column, following the column name:

column-name data-type <(column-width)> <column-modifier-1<...column-modifier-n>>

The following PROC SQL step defines four columns: a one-character column,
Destination, and three numeric columns, BeginDate, EndDate, and Discount.

proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num format=date9.,
 EndDate num format=date9.,
 Discount num);
quit;

SAS tables use two data types: numeric and character. However, PROC SQL supports
additional data types (many, but not all, of the data types that SQL-based databases
support). Therefore, in the CREATE TABLE statement, you can specify any of 10
different data types. When the table is created, PROC SQL converts the supported data
types that are not SAS data types to either numeric or character format.

Table 2.1 Character Data Types Supported by PROC SQL

Specified Data Type SAS Data Type

CHARACTER (or CHAR) CHARACTER

VARCHAR CHARACTER

Table 2.2 Numeric Data Types Supported by PROC SQL

Specified Data Type Description SAS Data Type

NUMERIC (or NUM) floating-point NUMERIC

DECIMAL (or DEC) floating-point NUMERIC

FLOAT floating-point NUMERIC

REAL floating-point NUMERIC

DOUBLE PRECISION floating-point NUMERIC

INTEGER (or INT) integer NUMERIC

46 Chapter 2 • Creating and Managing Tables

Specified Data Type Description SAS Data Type

SMALLINT integer NUMERIC

DATE date NUMERIC with a DATE.7
informat and format

The following PROC SQL step specifies three supported data types other than CHAR
and NUM: VARCHAR, DATE, and FLOAT.

proc sql;
 create table work.discount2
 (Destination varchar(3),
 BeginDate date,
 EndDate date,
 Discount float);
quit;

PROC SQL converts these data types to either character or numeric. Because it supports
data types other than SAS data types, PROC SQL can save you time. In many cases, you
can copy native code from an implementation of SQL that is external to SAS without
having to modify the data types.

Specifying Column Widths
In SAS, the default column width for both character and numeric columns is 8 bytes.
However, character and numeric data values are stored differently:

• Character data is stored one character per byte.

• Numeric data is stored as floating-point numbers in real binary representation, which
allows for 15- or 16-digit precision within 8 bytes.

PROC SQL enables you to specify a column width for character columns but not for
numeric columns.

Note: PROC SQL allows the WIDTH and NDEC (decimal places) arguments to be
included in the column specification for the DECIMAL, NUMERIC, and FLOAT
data types. However, PROC SQL ignores this specification and uses the SAS
defaults.

In a column specification, the column width follows the data type and is specified as an
integer enclosed in parentheses:

column-name data-type <(column-width)> <column-modifier-1<...column-modifier-n>>

In the following PROC SQL step, the first column specification indicates a column
width of 3 for the character column Destination:

proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num format=date9.,
 EndDate num format=date9.,
 Discount num);
quit;

Because the last three columns are numeric, no width is specified and these columns will
have a default column width of 8 bytes.

The CREATE TABLE Statement 47

Specifying Column Modifiers
In the CREATE TABLE statement, a column specification might include one or more of
the following SAS column modifiers: INFORMAT=, FORMAT=, and LABEL=.
Column modifiers, if used, are specified at the end of the column specification.

column-name data-type <(column-width)> <...column-modifier-1 <...column-modifier-
n>>

Note: A fourth SAS column modifier, LENGTH=, is not allowed in a CREATE TABLE
statement. It can be used in a SELECT clause.

Example: Using Column Modifiers
The following PROC SQL step creates the table Work.Departments by specifying four
columns. The column modifiers LABEL= and FORMAT= are used to specify additional
column attributes.

proc sql;
 create table work.departments
 (Dept varchar(20) label='Department',
 Code integer label='Dept Code',
 Manager varchar(20),
 AuditDate num format=date9.);
quit;

The SAS log verifies that the table was created.

Log 2.3 SAS Log

NOTE: Table WORK.DEPARTMENTS created, with 0 rows and 4 columns.

Using the LIKE Clause

LIKE Clause Syntax

Suppose you need to create a new table. The new table must contain the same columns
and attributes as an existing table, but no rows. You can use a CREATE TABLE
statement with a LIKE clause to create an empty table that is like another table.

Syntax, CREATE TABLE statement with a LIKE clause:

CREATE TABLE table-name
LIKE table-1;

table-name
specifies the name of the table to be created.

table-1
specifies the table whose columns and attributes will be copied to the new table.

48 Chapter 2 • Creating and Managing Tables

Example: Creating an Empty Table That Is like Another
Suppose you want to create a new table, Work.Flightdelays2, that contains data about
flight delays. You would like the new table to contain the same columns and attributes as
the existing table Certadv.Flightdelays, but you do not want to include any of the
existing data. The following PROC SQL step uses a CREATE TABLE statement and a
LIKE clause to create Work.Flightdelays2:

proc sql;
 create table work.flightdelays2
 like certadv.flightdelays;
quit;

Work.FlightDelays2 contains 0 rows and 8 columns.

Using the AS Keyword

AS Keyword Syntax
Suppose you want to create a new table that contains both columns and rows that are
derived from an existing table or set of tables. In this situation, you can submit one
PROC SQL step that does both of the following:

• creates a new table

• populates the table with data from the result of a PROC SQL query

To create a table from a query result, use a CREATE TABLE statement that includes the
keyword AS and the clauses that are used in a query: SELECT, FROM, and any optional
clauses, such as ORDER BY.

Syntax, CREATE TABLE statement with query clauses:

CREATE TABLE table-name AS
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

table-name
specifies the name of the table to be created.

SELECT
specifies the columns that will appear in the table.

FROM
specifies the tables or views to be queried.

optional query clauses
are used to refine the query further and include WHERE, GROUP BY, HAVING, and
ORDER BY.

Here are the results of creating a table from a query result:

• The new table is populated with data that is derived from one or more tables or views
that are referenced in the query's FROM clause.

• The new table contains the columns that are specified in the query's SELECT clause.

Using the AS Keyword 49

• The new table's columns have the same column attributes (type, length, informat, and
format) as those of the selected source columns.

Note: When you are creating a table, if you do not specify a column alias for a
calculated column, SAS assigns a column name, such as _TEMA001.

When query clauses are used within a CREATE TABLE statement, that query's
automatic report generation is turned off. Only the new table is generated as output.

Example: Creating a Table from a Query Result
Suppose you want to create a new, temporary table that contains data for ticket agents
who are employed by an airline. The data that you need is a subset of the data contained
in two existing tables, Certadv.Payrollmaster and Certadv.Staffmaster. The following
PROC SQL step creates the new table Work.Ticketagents from the result of a query on
the two existing tables. The WHERE clause joins the table by matching EMPID and
selects the subset of rows for employees whose JobCode contains TA.

proc sql;
 create table work.ticketagents as
 select lastname, firstname, jobcode, salary
 from certadv.payrollmaster,
 certadv.staffmaster
 where payrollmaster.empid
 = staffmaster.empid
 and jobcode contains 'TA';
quit;

Note: Because this query lists two tables in the FROM clause and subsets rows based on
a WHERE clause, the query is actually a PROC SQL inner join.

The new table Work.Ticketagents is not empty; it contains rows of data. Therefore, you
can submit a SELECT statement to display Work.Ticketagents as a report.

proc sql;
 select *
 from work.ticketagents;
quit;

50 Chapter 2 • Creating and Managing Tables

Output 2.1 PROC SQL Query Result: Work.Ticketagents (partial output)

The SAS log also displays a message, indicating that the table has been created.

Log 2.4 SAS Log

NOTE: Table WORK.TICKETAGENTS created, with 41 rows and 4 columns.

The INSERT Statement

A Brief Overview
You can use the INSERT statement in three ways to insert rows of data into existing,
empty, or populated tables.

Method of Inserting Row Example

insert values by column name by
using the SET clause

proc sql;
 insert into work.discount
 set destination='LHR',
 begindate='01MAR2018'd,
 enddate='05MAR2018'd,
 discount=.33
 set destination='CPH',
 begindate='03MAR2018'd,
 enddate='10MAR2018'd,
 discount=.15;
quit;

The INSERT Statement 51

Method of Inserting Row Example

insert lists of values by using the
VALUES clause

proc sql;
 insert into work.discount (destination,
 begindate,enddate,discount)
 values ('LHR','01MAR2018'd,
 '05MAR2018'd,.33)
 values ('CPH','03MAR2018'd,
 '10MAR2018'd,.15);
quit;

insert rows that are copied from
another table by using a query result

proc sql;
 insert into payrollchanges2
 select empid,salary,dateofhire
 from certadv.payrollmaster
 where empid in ('1919','1350','1401');
quit;

In each method, the INSERT statement inserts new rows of data into the table. To
indicate that the rows have been inserted, the SAS log displays a message similar to the
following.

Log 2.5 SAS Log

NOTE: 2 row was inserted into WORK.DISCOUNT.

The SET Clause

A Brief Overview
Suppose you need to add rows of data to a table, but the data is not currently contained
in any table. In this situation, you can use either the SET clause or the VALUES clause
in the INSERT statement to specify the data to be added.

The SET clause in the INSERT statement enables you to specify new data to be added to
a table. The SET clause specifies column names and values in pairs. PROC SQL reads
each column name-value pair and assigns the value to the specified column. A separate
SET clause is used for each row to be added to the table.

SET Clause Syntax
The syntax of the INSERT statement that contains the SET clause is shown below.

52 Chapter 2 • Creating and Managing Tables

Syntax, INSERT statement containing the SET clause:

INSERT INTO table-name <(target-column-1<, ... target-column-n)>
SET column-1=value-1<, ... column-n=value-n>
<... SET column-1=value-1<, ... column-n=value-n>>;

table-name
specifies the name of the table to which rows will be inserted.

target-column
specifies the name of a column into which data will be inserted.

each SET clause
specifies one or more values to be inserted in one or more specified columns in a row.
Multiple SET clauses are not separated by commas.

column
specifies the name of a column into which data will be inserted.

value
specifies a data value to be inserted into the specified column. Character values must be
enclosed in quotation marks.

multiple column=value pairs in a SET clause
are separated by commas.

Note: It is optional to include a list of target column names after the table name in the
INSERT TABLE statement that includes a SET clause. The list can include the
names of all or only a subset of columns in the table. If you specify an optional list of
target column names, then you can specify values only for columns that are in the
list. You can list target columns in any order, regardless of their position in the table.
Any columns that are in the table but not listed are given missing values in the
inserted rows.

Note: Although it is recommended that the SET clause list column-value pairs in order
(as they appear in the table or the optional column list), it is not required.

Example: Inserting Rows by Using the SET Clause
Consider the table Work.Discount, which was presented in the last topic. Work.Discount
stores airline discounts for certain flight destinations and time periods in March.

The following example illustrates these points:

• adding two rows of new data to Work.Discount by using an INSERT statement that
contains two SET clauses, one for each row

• generating a report that displays Work.Discount, with its two new rows, by using a
SELECT statement

In this situation, you do not need to include an optional list of column names.

proc sql;
 insert into work.discount
 set destination='LHR',
 begindate='01MAR2018'd,
 enddate='05MAR2018'd,
 discount=.33
 set destination='CPH',
 begindate='03MAR2018'd,
 enddate='10MAR2018'd,
 discount=.15;
 select *

The INSERT Statement 53

 from work.discount;
quit;

Because SELECT * was used in the query, the displayed output includes all six rows of
data. If you ran the previous examples, Work.Discount displays six rows of data and not
just the two that were inserted.

Output 2.2 PROC SQL Query Result: Inserting Two Rows

The following is printed to the SAS log.

Log 2.6 SAS Log

NOTE: 2 rows were inserted into WORK.DISCOUNT.

The VALUES Clause

A Brief Overview
You can use the VALUES clause to insert a value for all or only some of the columns in
the table.

Desired Result Steps to Take Example

insert a value for all
columns in the table

You can omit the optional list
of column names in the
INSERT statement.

PROC SQL actions:

• reads values in the order in
which they are specified in
the VALUES clause.

• inserts the values into
columns in the order in
which the columns appear
in the table.

insert into work.newtable
 values ('WI','FLUTE',6)
 values ('ST','VIOLIN',3);

54 Chapter 2 • Creating and Managing Tables

Desired Result Steps to Take Example

insert a value for only
some of the columns in
the table

You must include a list of
column names in the INSERT
statement.

PROC SQL actions:

• reads values in the order in
which they are specified in
the VALUES clause.

• inserts the values into
columns in the order in
which the columns are
specified in the column list.

insert into work.newtable
 (item,qty)
 values ('FLUTE',6)
 values ('VIOLIN',3);

You must list a value for every column into which PROC SQL will insert values (as
specified in either the table or the optional list of column names). To specify that a value
is missing, use a space enclosed in single quotation marks for character values and a
period for numeric values.

For example, the following VALUES clause specifies values to be inserted in three
columns. The first two values are missing:

values (' ', ., 45)

In the example above, the first value that is specified is a missing value for a character
column. The second value is a missing value for a numeric column, and the third value is
the numeric 45.

VALUES Clause Syntax
The INSERT statement uses the VALUES clause to insert a list of values into a table.
Unlike the SET clause, the VALUES clause does not specify a column name for each
value, so the values must be listed in the correct order. Values must be specified in the
order in which the columns appear in the table or, if an optional column list is specified,
in the order in which the columns appear in that list. A separate VALUES clause is used
for each row to be added to the table.

Syntax, INSERT statement containing the VALUES clause:

INSERT INTO table-name <(target-column-1<, ... target-column-n)>
VALUES (value-1<, ... value-n)>
<... VALUES (value-1<, ... value-n>)>;

table-name
specifies the name of the table to which rows will be inserted.

target-column
specifies the name of a column into which data will be inserted.

each VALUES clause
lists the values to be inserted in some or all columns in one row. The values are enclosed in
parentheses. Multiple VALUES clauses are not separated by commas.

value
specifies a data value to be added. Character values must be enclosed in quotation marks.
Multiple values must be separated by commas. Values must be listed in positional order,
either as they appear in the table or, if the optional column list is specified, as they appear in
the column list.

The INSERT Statement 55

Note: It is optional to include a list of target column names after the table name in the
INSERT TABLE statement that includes a VALUES clause. The list can include the
names of all or only a subset of columns in the table. If an optional list of target
column names is specified, then only those columns are given values by the
statement. Target columns can be listed in any order, regardless of their position in
the table. Any columns that are in the table but not listed are given missing values in
the inserted rows.

Example: Inserting Rows Using the VALUES Clause
Suppose you want to insert two more rows into the table Work.Discount, which stores
airline discounts for certain flight destinations and time periods in March. In the
previous section, you inserted two rows into Work.Discount by using the SET clause, so
the table now looks like the following table.

Output 2.3 PROC SQL Query Result: Work.Discount

Add two more rows, by using the VALUES clause. The following PROC SQL step adds
two rows of new data to Work.Discount and generates a report that displays the updated
table.

proc sql;
 insert into work.discount (destination,
 begindate,enddate,discount)
 values ('ORD', '05MAR2018'd, '15MAR2018'd, .25)
 values ('YYZ', '06MAR2018'd, '20MAR2018'd, .10);
 select *
 from work.discount;
quit;

Output 2.4 PROC SQL Query Result: Inserting Rows

The two rows that were just inserted by using the VALUES clause are the third and
fourth rows above.

You might have noticed that the INSERT statement in this example includes an optional
list of column names. In this example, data is being inserted into all columns of the table,

56 Chapter 2 • Creating and Managing Tables

and the values are listed in the order in which the columns appear in the table. Therefore,
it is not strictly necessary to use a column list. However, including the list of column
names makes it easier to read the code and understand what the code is doing.

The INSERT Statement with SELECT and FROM Clauses

A Brief Overview
The fastest way to insert rows of data into a table is to use a query to select existing rows
from one or more tables or views and to insert the rows into another table. You can insert
rows from a query result into either an empty table or a table that already contains rows
of data. When you add rows of data to a table that already contains rows, the new rows
are added at the end of the table.

To insert rows from a query result, use an INSERT statement that includes the clauses
that are used in a query: SELECT, FROM, and any optional clauses, such as ORDER
BY. Values from the query result are inserted into columns in the order in which the
columns appear in the table or, if an optional column list is specified, in the order in
which the columns appear in that list.

INSERT Statement with SELECT and FROM Clause Syntax

Syntax, INSERT statement containing query clauses:

INSERT INTO table-name <(target-column-1<, ... target-column-n)>
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

table-name
specifies the name of the table to which rows will be inserted.

target-column
specifies the name of a column into which data will be inserted.

SELECT
specifies the columns that will be inserted.

FROM
specifies the tables or views to be queried.

optional query clauses
are used to refine the query further. These include the WHERE, GROUP BY, HAVING, and
ORDER BY clauses.

Note: It is optional to include a list of target column names after the table name in the
INSERT TABLE statement that includes query clauses. The list can include the
names of all or only a subset of columns in the table. If an optional list of target
column names is specified, then only those columns are given values by the
statement. Target columns might be listed in any order, regardless of their position in
the table. Any columns that are in the table but not listed are given missing values in
the inserted rows.

Example: Inserting Rows from a Query Result
A mechanic at a company has been promoted from level 2 to level 3, and you need to
add this employee to Certadv.Mechanicslevel3, a table that lists all level-3 mechanics.
Create a temporary copy of Certadv.Mechanicslevel3 called
Work.Mechanicslevel3_New, and display the new table in a report:

The INSERT Statement 57

proc sql;
 create table work.mechanicslevel3_new as
 select *
 from certadv.mechanicslevel3;
quit;

Output 2.5 PROC SQL Query Result: Work.Mechanicslevel3_New

Next, insert a row into Work.Mechanicslevel3_New for the new level-3 employee,
whose EmpID is 1653. This employee is currently listed in Certadv.Mechanicslevel2, so
your INSERT statement queries the table Certadv.Mechanicslevel2. Your PROC SQL
step ends with a SELECT statement that creates an output of the revised table
Work.Mechanicslevel3_New.

proc sql;
 insert into work.mechanicslevel3_new
 select empid, jobcode, salary
 from certadv.mechanicslevel2
 where empid='1653';
 select *
 from work.mechanicslevel3_new;
quit;

Output 2.6 PROC SQL Query Result: One Row Inserted

Note: Although the new row is shown above, the order of rows in a PROC SQL query
cannot be guaranteed if an ORDER BY clause is not used.

58 Chapter 2 • Creating and Managing Tables

The DESCRIBE TABLE Statement

A Brief Overview
Suppose you want to view the table structure of a table which you or someone else
created. The structure of a table includes the columns and the column attributes. When
you create a table, the CREATE TABLE statement writes a message to the SAS log,
which indicates the number of rows and columns in the table that was created. However,
the message does not contain information about column attributes.

If you are working with an existing table that contains rows of data, you can use a PROC
SQL query to generate a report that shows all of the columns in a table. However, the
report does not list the column attributes, and a PROC SQL query will not generate
output for an empty table.

The DESCRIBE TABLE statement writes to the SAS log a CREATE TABLE statement
that includes column definitions for the specified table, regardless of how the table was
originally created. For example, if the DESCRIBE TABLE statement specifies a table
that was created with the DATA step, a CREATE TABLE statement is still displayed.

DESCRIBE TABLE Statement Syntax
To display a list of columns and column attributes for one or more tables in the SAS log,
regardless of whether the tables contain rows of data, you can use the DESCRIBE
TABLE statement in PROC SQL.

Syntax, DESCRIBE TABLE statement:

DESCRIBE TABLE table-name-1<, ... table-name-n>;

table-name
specifies the table to be described as one of the following:

• a one-level name

• a two-level libref.table name

• a physical pathname that is enclosed in single quotation marks

T I P As an alternative to the DESCRIBE TABLE statement, you can use other SAS
procedures, like PROC CONTENTS, to list a table's columns and column attributes.
PROC CONTENTS generates a report instead of writing a message to the SAS log,
as the DESCRIBE TABLE statement does.

Example: Displaying the Structure of a Table
The empty table Work.Discount was created by using the CREATE TABLE statement
and column specifications shown below:

proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num format=date9.,
 EndDate num format=date9.,

The DESCRIBE TABLE Statement 59

 Discount num);
quit;

The following DESCRIBE TABLE statement writes a CREATE TABLE statement to the
SAS log for the table Work.Discount:

proc sql;
 describe table work.discount;
quit;

Log 2.7 SAS Log

NOTE: SQL table WORK.DISCOUNT was created like:

create table WORK.DISCOUNT(bufsize=65536)
 (
 Destination char(3),
 BeginDate num format=DATE9.,
 EndDate num format=DATE9.,
 Discount num
);

Using Dictionary Tables

A Brief Overview
Metadata is a description or definition of data or information.

SAS session metadata is stored in Dictionary tables, which are special, Read-Only SAS
tables that contain information about SAS libraries, SAS data sets, SAS macros, and
external files that are available in the current SAS session. Dictionary tables also contain
the settings for SAS system options and SAS titles and footnotes that are currently in
effect. Dictionary tables are commonly used to monitor and manage SAS sessions
because the data is easier to manipulate than the output from procedures. You can use the
SQL procedure to access the metadata stored in Dictionary tables. For example, you can
query a Dictionary table to find out which tables in a SAS library contain a specified
column.

The following statements are true about Dictionary tables:

• They are created each time they are referenced in a SAS program.

• They are updated automatically.

• They are limited to Read-Only access.

Accessing a Dictionary table causes SAS to determine the current state of the SAS
session and return the information that you want. Dictionary tables can be accessed by
running a PROC SQL query against the table, using the Dictionary libref. Though SAS
librefs are usually limited to eight characters, Dictionary is an automatically assigned,
reserved word. You can also access a Dictionary table by referring to the PROC SQL
view of the table that is stored in the Sashelp library.

The following table describes some of the Dictionary tables that are available and lists
the corresponding Sashelp views. For a complete list of Dictionary tables, see the SAS
documentation for the SQL procedure.

60 Chapter 2 • Creating and Managing Tables

Dictionary Table Sashelp View What the Table Contains

Catalogs Vcatalg information about catalog entries

Columns Vcolumn detailed information about variables and their
attributes

Extfiles Vextfl currently assigned filerefs

Indexes Vindex information about indexes defined for data
files

Macros Vmacro information about both user and system
defined macro variables

Members Vmember

Vsacces

Vscatlg

Vslib

Vstable

Vstabvw

Vsview

general information about data library
members

Options Voption current settings of SAS system options

Tables Vtable detailed information about data sets

Titles Vtitle text assigned to titles and footnotes

Views Vview general information about data views

Example: Exploring and Using Dictionary Tables
You can query Dictionary tables the same way that you query any other table, including
subsetting with a WHERE clause, ordering the results, creating tables, and creating
PROC SQL views. Because Dictionary tables are Read-Only objects, you cannot insert
rows or columns, alter column attributes, or add integrity constraints to them.

To see how each Dictionary table is defined, submit a DESCRIBE TABLE statement.
The DESCRIBE TABLE statement writes a CREATE TABLE statement to the SAS log
for the table that is specified in the DESCRIBE TABLE statement. After you know how
a table is defined, you can use its column names in a subsetting WHERE clause in order
to retrieve specific information.

The Dictionary.Tables table contains detailed information about tables. The following
DESCRIBE TABLE statement displays information about the Dictionary.Tables table in
the log window. The information includes the names of the columns that are stored in the
table.

proc sql;
 describe table dictionary.tables;
quit;

Using Dictionary Tables 61

Log 2.8 SAS Log

create table DICTIONARY.TABLES
 (
 libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 memtype char(8) label='Member Type',
 memlabel char(256) label='Dataset Label',
 typemem char(8) label='Dataset Type',
 crdate num format=DATETIME informat=DATETIME label='Date Created',
...);

To display information about the files in a specific library, specify the column names in a
SELECT statement and the Dictionary table name in the FROM clause.

For example, the following PROC SQL step displays these columns:

• Memname (name)

• Nobs (number of observations)

• Nvar (number of variables)

• Crdate (creation date) of the tables in the Certadv library

The Dictionary column names are specified in the SELECT statement, and the
Dictionary table name, Dictionary.Tables, is specified in the FROM clause. The library
name, Certadv, is specified in the WHERE clause.

Note: You must specify the library name in the WHERE clause in uppercase letters,
because that is how it is stored within SAS, and enclose it in quotation marks.

proc sql;
 select memname format=$20., nobs, nvar, crdate
 from dictionary.tables
 where libname='CERTADV';
quit;

Output 2.7 Dictionary.Tables of Certadv (partial output)

Note: The number of physical observations value for ALL is missing because ALL is a
view, not a table.

Note: Your output might differ from that shown above, depending on the contents of
your Certadv library.

You can also use Dictionary tables to determine more specific information such as which
tables in a SAS library contain a specific column.

62 Chapter 2 • Creating and Managing Tables

Chapter Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. If you specify a CREATE TABLE statement in your PROC SQL step, which of the
following happens?

a. The results of the query are displayed, and a new table is created.

b. A new table is created, but it does not contain any summarization that was
specified in the PROC SQL step.

c. A new table is created, but no report is displayed.

d. Results are grouped by the value of the summarized column.

2. Which of the following PROC SQL steps creates a new table by copying only the
column structure (but not the rows) of an existing table?

a. proc sql;
 create table work.newpayroll as
 select *
 from certadv.payrollmaster;
quit;

b. proc sql;
 create table work.newpayroll
 like certadv.payrollmaster;
quit;

c. proc sql;
 create table work.newpayroll
 copy certadv.payrollmaster;
quit;

d. proc sql;
 create table work.newpayroll
 describe certadv.payrollmaster;
quit;

3. Which of the following PROC SQL steps creates a table that contains rows for the
level-1 flight attendants only?

a. proc sql;
 create table work.newpayroll as
 select *
 from certadv.payrollmaster
 where jobcode='FA1';
quit;

b. proc sql;
 create work.newpayroll as
 select *
 from certadv.payrollmaster
 where jobcode='FA1';
quit;

c. proc sql;
 create table work.newpayroll

Chapter Quiz 63

 copy certadv.payrollmaster
 where jobcode='FA1';
quit;

d. proc sql;
 create table work.newpayroll as
 certadv.payrollmaster
 where jobcode='FA1';
quit;

4. Which of the following statements is used to add new rows to a table?

a. INSERT

b. LOAD

c. VALUES

d. CREATE TABLE

5. Which of the following displays the structure of a table in the SAS log?

a. proc sql;
 describe as
 select *
 from certadv.payrollmaster;
quit;

b. proc sql;
 describe contents certadv.payrollmaster;
quit;

c. proc sql;
 describe table certadv.payrollmaster;
quit;

d. proc sql;
 describe * from certadv.payrollmaster;
quit;

6. Which of the following creates an empty table that contains the two columns
FullName and Age?

a. proc sql;
 create table work.names
 (FullName char(25), Age num);
quit;

b. proc sql;
 create table work.names as
 (FullName char(25), Age num);
quit;

c. proc sql;
 create work.names
 (FullName char(25), Age num);
quit;

d. proc sql;
 create table work.names
 set (FullName char(25), Age num);
quit;

64 Chapter 2 • Creating and Managing Tables

Chapter 3

Joining Tables Using PROC
SQL

Understanding Joins . 66

Generating a Cartesian Product . 66

Using Inner Joins . 68
A Brief Overview . 68
Inner Join Syntax . 68
Understanding How Joins Are Processed . 69
Example: Using a FROM Clause with the INNER JOIN Keyword 70
Example: Eliminating Duplicate Columns . 70
Example: Renaming a Column by Using a Column Alias . 71
Example: Joining Tables That Have Rows with Matching Values 72
Specifying a Table Alias . 72
Example: Complex PROC SQL Inner Join . 74
Example: PROC SQL Inner Join with Summary Functions 75

Using Natural Joins . 77
A Brief Overview . 77
Natural Join Syntax . 77
Example: Using a Natural Join . 77

Using Outer Joins . 78
A Brief Overview . 78
Outer Join Syntax . 79
Example: Using a Left Outer Join . 79
Example: Eliminating Duplicate Columns in a Left Outer Join 80
Example: Using a Right Outer Join . 81
Example: Using a Full Outer Join . 81
Example: Complex Outer Join . 82

Comparing SQL Joins and DATA Step Match-Merges . 84
A Brief Overview . 84
When All of the Values Match . 85
When Only Some of the Values Match . 86
COALESCE Function Syntax . 87
Example: Using the COALESCE Function . 87
Understanding the Advantages of PROC SQL Joins . 88

Quiz . 89

65

Understanding Joins
You combine data horizontally by merging or joining multiple data sets into one data set.
This process is called horizontal combination because, in the final data set, each
observation (or horizontal row) has variables from more than one input data set.

Figure 3.1 PROC SQL: Understanding Joins

A PROC SQL join is a query that specifies multiple tables or views to be combined
based on the conditions under which rows match and return a result set.

Joins combine tables horizontally, side by side, by combining rows. The tables being
joined are not required to have the same number of rows or columns.

Note: You can use a join to combine views as well as tables. Most of the following
references to tables are also applicable to views; any exceptions are noted.

When you use a PROC SQL query to join tables, you must decide how you want the
rows from the various tables to be combined. There are two main types of joins, as
shown below.

Type of Join Output

Inner join only the rows that match across all table or tables

Outer join rows that match across tables (as in the inner join) plus
nonmatching rows from one or more tables

When any type of join is processed, PROC SQL starts by generating a Cartesian product,
which contains all possible combinations of rows from all tables.

Generating a Cartesian Product
The most basic type of join combines data from two tables that are specified in the
FROM clause of a SELECT statement. When you specify multiple tables in the FROM
clause but do not include a WHERE statement to subset data, PROC SQL returns the

66 Chapter 3 • Joining Tables Using PROC SQL

Cartesian product of the tables. In a Cartesian product, each row in the first table is
combined with every row in the second table. The following example illustrates a
Cartesian product where table One and table Two are joined using a FROM clause.

proc sql;
 select *;
 from certadv.one, certadv.two
;
quit;

The output shown below displays all possible combinations of each row in table One
with all rows in table Two. Note that each table has a column named X, and both of these
columns appear in the output. A Cartesian product includes all columns from the source
tables. Columns that have common names are not overlaid.

Output 3.1 Cartesian Product of Tables Certadv.One and Certadv.Two

In most cases, generating all possible combinations of rows from multiple tables does
not yield useful results, so a Cartesian product is rarely the query outcome that you want.
For example, in the Cartesian product of two tables that contain employee information,
each row of output might contain information about two different employees. Usually,
you want your join to return only a subset of rows from the tables.

The size of a Cartesian product can also be problematic. The number of rows in a
Cartesian product is equal to the product of the number of rows in the contributing
tables.

Tables One and Two, used in the preceding example, contain three rows each. The
number of rows in the Cartesian product of tables One and Two is calculated as follows:

3 x 3 = 9 rows

Joining small tables such as One and Two results in a relatively small Cartesian product.
However, the Cartesian product of large tables can be huge and can require a large
amount of system resources for processing.

For example, joining two tables of 1,000 rows each results in output of the following
size:

1,000 x 1,000 = 1,000,000 rows

When you run a query that involves a Cartesian product that cannot be optimized, PROC
SQL writes the following warning message to the SAS log.

Generating a Cartesian Product 67

Log 3.1 SAS Log

NOTE: The execution of this query involves performing one or more Cartesian
product joins that cannot be optimized.

Although you will not often choose to create a query that returns a Cartesian product, it
is important to understand how a Cartesian product is generated. In all types of joins,
PROC SQL generates a Cartesian product first, and then eliminates rows that do not
meet any subsetting criteria that you have specified.

Note: In many cases, PROC SQL can optimize the processing of a join, thereby
minimizing the resources that are required to generate a Cartesian product.

Using Inner Joins

A Brief Overview
An SQL inner join combines matching rows between two tables. You can perform an
inner join on tables using two methods:

• Specify the two tables to be joined in a FROM clause separated by the INNER JOIN
keyword. Next, specify an ON clause that indicates how rows should be matched.

• Join the two tables based on the matching criteria, known as join conditions, that you
specify in a WHERE clause.

The following diagram illustrates an inner join of two tables. The shaded area of overlap
represents the matching rows (the subset of rows) that the inner join returns as output.

Figure 3.2 Venn Diagram, Inner Join for Table 1 and Table 2

Note: An inner join is sometimes called a conventional join.

This book focuses on joining tables using the INNER JOIN keyword with the ON clause
in the FROM clause.

Inner Join Syntax
In the FROM clause, specify the first table, the keyword INNER JOIN, and then the
second table. Following the table names and join type, the syntax requires an ON clause
to describe the join criteria for matching rows in the tables. Omitting the ON clause
produces a syntax error.

68 Chapter 3 • Joining Tables Using PROC SQL

Syntax, SELECT statement for inner join:

SELECT column-1<,...column-n>
FROM table-1 | view-1 INNER JOIN table-2 | view-2 <INNER JOIN...table-n | view-

n>
ON table1.column=table2.column

<other clauses>;

INNER JOIN
specifies the join type.

table
specifies the name of the source table.

ON
specifies join conditions, which are expressions that specify the column or columns on
which the tables are to be joined.

table.column
refers to the source table and the column name on which the join occurs.

<other clauses>
refers to optional PROC SQL clauses.

Note: The maximum number of tables that you can combine in a single inner join
depends on your version of SAS.

Understanding How Joins Are Processed
Understanding how PROC SQL processes inner and outer joins will help you to
understand which output is generated by each type of join. PROC SQL follows these
steps to process a join:

• Builds a Cartesian product of rows from the indicated tables.

• Evaluates each row in the Cartesian product, based on the join conditions specified
in the WHERE clause, along with any other subsetting conditions, and removes any
rows that do not meet the specified conditions.

• If summary functions are specified, summarizes the applicable rows.

• Returns the rows that are to be displayed in output.

Note: The PROC SQL query optimizer follows a more complex process than the
conceptual approach described here, by breaking the Cartesian product into smaller
pieces. For each query, the optimizer selects the most efficient processing method for
the specific situation.

By default, PROC SQL joins do not overlay columns with the same name. Instead, the
output displays all columns that have the same name. To avoid having columns with the
same name in the output from an inner or outer join, you can eliminate or rename the
duplicate columns.

T I P You can also use the COALESCE function with an inner or outer join to overlay
columns with the same name.

Using Inner Joins 69

Example: Using a FROM Clause with the INNER JOIN Keyword
The following example illustrates an inner join. Inner joins are also known as equijoins
because of the equality in the ON clause. The ON clause specifies that only rows with
identical values in the column produce a match.

proc sql;
 select *
 from certadv.one inner join certadv.two
 on one.x=two.x;
quit;

Output 3.2 Inner Join Output: INNER JOIN Keyword

The FROM clause, along with the INNER JOIN keyword and the ON clause, specifies
that the result set should include only these rows: those whose values of column X in
table One are equal to values in column X of table Two. Only one row from table One
and one row from table Two have matching values of X. Therefore, those two rows are
combined into one row of output.

Note: PROC SQL will not perform a join unless the columns that are compared in the
join condition have the same data type. However, the two columns are not required
to have the same name. For example, the join condition shown in the following ON
clause is valid if ID and EmpID have the same data type:

on table1.id = table2.empid

Note: The join condition that is specified in the ON clause often contains the equal (=)
operator, but the expression might contain one or more other operators instead. You
can use other comparison operators, such as greater than, less than, or special
WHERE operators.

Example: Eliminating Duplicate Columns
The following example uses an inner join to combine the tables One and Two.

proc sql;
 select *
 from certadv.one inner join certadv.two
 on one.x=two.x;
quit;

Output 3.3 Inner Join, Tables One and Two

The two tables have a column with an identical name, X. Because the SELECT clause in
the query shown above contains an asterisk, the output displays all columns from both
tables.

70 Chapter 3 • Joining Tables Using PROC SQL

To eliminate a duplicate column, you can specify just one of the duplicate columns in the
SELECT statement. The SELECT statement in the preceding PROC SQL query can be
modified as follows:

proc sql;
 select one.x, a, b
 from certadv.one inner join certadv.two
 on one.x=two.x;
quit;

Here, the SELECT clause specifies that only column X from table One will be included
in output. The output, which now displays only one column X, is shown below.

Output 3.4 Table One Output

Note: In an inner equijoin, like the one shown here, it does not matter which of the
same-named columns is listed in the SELECT statement. The SELECT statement in
this example could have specified Two.X instead of One.X.

Another way to eliminate the duplicate X column in the preceding example is shown
below:

proc sql;
 select one.*, b
 from certadv.one inner join certadv.two
 on one.x=two.x;
quit;

By using the asterisk (*) to select all columns from table One, and only B from table
Two, this query generates the same output as the preceding version.

Example: Renaming a Column by Using a Column Alias
If you are working with several tables that have a column with a common name but
slightly different data, you might want both columns to appear in output. To avoid the
confusion of displaying two different columns with the same name, you can rename one
of the duplicate columns by specifying a column alias in the SELECT statement.

proc sql;
 select one.x as ID, two.x, a, b
 from certadv.one inner join certadv.two
 on one.x=two.x;
quit;

The output of the modified query is shown here.

Output 3.5 PROC SQL Result: Modified Query Output

The column One.X has been renamed to ID and the output clearly indicates that ID and
X are two different columns.

Using Inner Joins 71

Example: Joining Tables That Have Rows with Matching Values
Consider what happens when you join two tables in which multiple rows have duplicate
values of the column on which the tables are being joined. Each of the tables Three and
Four has multiple rows that contain the value 2 for column X.

Figure 3.3 Original Tables: Certadv.Three and Certadv.Four

The following PROC SQL inner join matches rows from the two tables based on the
common column X.

proc sql;
 select *
 from certadv.three inner join certadv.four
 on three.x=four.x;
quit;

The output shows how this inner join handles the duplicate values of X.

Output 3.6 PROC SQL Inner Join

All possible combinations of the duplicate rows are displayed. There are no matches on
any other values of X, so no other rows are displayed in output.

Note: A DATA step match-merge would write output to only two rows because it
processes data sequentially from top to bottom.

Specifying a Table Alias
To enable PROC SQL to distinguish between same-named columns from different
tables, you use qualified column names. To create a qualified column name, you prefix
the column name with its table name. The following PROC SQL inner join contains
several qualified column names.

72 Chapter 3 • Joining Tables Using PROC SQL

proc sql;
title 'Employee Names and Job Codes';
 select staffmaster.empid, lastname, firstname, jobcode
 from certadv.staffmaster inner join certadv.payrollmaster
 on staffmaster.empid=payrollmaster.empid;
quit;

It can be time consuming and difficult to read PROC SQL code that contains lengthy
qualified column names. You can use a temporary, alternate name for any or all tables in
any PROC SQL query. This temporary name, which is called a table alias, is specified
after the table name in the FROM clause. The keyword AS is often used, although its use
is optional.

The following modified PROC SQL query specifies table aliases in the FROM clause,
and then uses the table aliases to qualify column names in the SELECT and ON clauses.

proc sql;
title 'Employee Names and Job Codes';
 select s.empid, lastname, firstname, jobcode
 from certadv.staffmaster as s inner join
 certadv.payrollmaster as p
 on s.empid=p.empid;
quit;

In this query, the optional keyword AS is used to define the table aliases in the FROM
clause. The FROM clause would be equally valid without the keyword AS.

from certadv.staffmaster s,
 certadv.payrollmaster p

Note: While using table aliases helps you to work more efficiently, the use of table
aliases does not cause SAS to execute the query more quickly.

Table aliases are usually optional. However, there are two situations that require their
use.

When Are Table Aliases Required? Example

a table is joined to itself (called a self-join or
reflexive join)

from certadv.staffmaster as s1,
 certadv.staffmaster as s2

you need to reference columns from same-
named tables in different libraries

from certadv.flightdelays as af,
 certadvf.flightdelays as wf
 on af.delay > wf.delay

Thus far, you have seen relatively simple examples of inner joins. However, as in any
other PROC SQL query, inner joins can include more advanced components, such as
these:

• titles and footers

• functions and expressions in a SELECT clause

• multiple conditions in a WHERE clause

• an ORDER BY clause for sorting

• summary functions with grouping

Using Inner Joins 73

Example: Complex PROC SQL Inner Join
Suppose you want to create a report where the name is displayed with first initial and
last name (R. Long), JobCode, and ages of all employees who live in New York. The
report also should be sorted by JobCode and Age.

The data that you need is stored in the two tables below.

Table Relevant Columns

Certadv.Staffmaster EmpID, LastName, FirstName, State

Certadv.Payrollmaster EmpId, JobCode, DateOfBirth

Of the three columns that you want to display, JobCode is the only column that already
exists in the tables. The other two columns must be created from existing columns.

The PROC SQL query shown here uses an inner join to generate the output that you
want:

proc sql outobs=15;
 title 'New York Employees';
 select substr(firstname,1,1) || '. ' || lastname /* 1 */
 as Name,
 jobcode,
 int((today() - dateofbirth)/365.25)
 as Age
 from certadv.payrollmaster as p inner join /* 2 */
 certadv.staffmaster as s
 on p.empid = /* 3 */
 s.empid
 where state='NY' /* 4 */
 order by 2,3 /* 5 */
;
quit;

1 The SELECT clause specifies the new column Name, the existing column JobCode,
and the new column Age.

The SELECT clause uses functions and expressions to create two new columns.

• To create Name, the SUBSTR function extracts the first initial from FirstName.
Then the concatenation operator combines the first initial with a period, a space,
and then the contents of the LastName column. Finally, the keyword AS names
the new column.

• To calculate Age, the INT function returns the integer portion of the result of the
calculation. In the expression that is used as an argument of the INT function, the
employee's birth date (DateOfBirth) is subtracted from today's date (returned by
the TODAY function), and the difference is divided by the number of days in a
year (365.25).

2 The FROM clause lists the tables to select from. The FROM clause uses the AS
keyword to distinguish a table alias from other table names. The FROM clause also
specifies the INNER JOIN keyword to specify the join type.

74 Chapter 3 • Joining Tables Using PROC SQL

3 The ON clause describes the join criteria for matching rows in the tables. The ON
clause produces a match for the rows with identical values in the EmpID column.

4 The WHERE clause subsets the data further by selecting only the rows where State
is NY.

5 The ORDER BY clause specifies the order in which rows are displayed in the result
table.

This query writes to output only those rows that have matching values of EmpID and
rows in which the value of State is NY. You do not need to prefix the column name State
with a table name because State occurs in only one of the tables.

Output 3.7 PROC SQL Query Result: Inner Join

Example: PROC SQL Inner Join with Summary Functions
You can use summary functions to summarize and group data in a PROC SQL join. The
following example summarizes columns for New York employees in each job code:
number of employees and average age.

proc sql outobs=15;
 title 'Average Age of New York Employees';
 select jobcode,count(p.empid) as Employees, /* 1 */
 avg(int((today() - dateofbirth)/365.25))
 format=4.1 as AvgAge
 from certadv.payrollmaster as p inner join /* 2 */
 certadv.staffmaster as s
 on p.empid= /* 3 */
 s.empid

Using Inner Joins 75

 where state='NY' /* 4 */
 group by jobcode /* 5 */
 order by jobcode /* 6 */
;
quit;

1 The SELECT clause uses summary functions to create two new columns.

• To create Employees, the COUNT function is used with p.EmpID
(Payrollmaster.EmpID) as its argument.

• To create AvgAge, the AVG function is used with an expression as its argument.
As described in the previous example, the expression uses the INT function to
calculate each employee's age.

2 The FROM clause lists the tables to select from. The FROM clause uses the AS
keyword to distinguish a table alias from other table names. The FROM clause also
specifies the INNER JOIN keyword to specify the join type.

3 The ON clause describes the join criteria for matching rows in the tables. The ON
clause produces a match for the rows with identical values in the EmpID column.

4 The WHERE clause subsets the data further by selecting only the rows where State
is NY.

5 The GROUP BY clause specifies what variable to group the data by for
summarization.

6 The ORDER BY clause specifies the order in which rows are displayed in the result
table.

Output 3.8 PROC SQL Query Result: Inner Join with Summary Functions

76 Chapter 3 • Joining Tables Using PROC SQL

Using Natural Joins

A Brief Overview

A natural join automatically selects columns from each table to match rows. With a
natural join, PROC SQL identifies columns in each table that have the same name and
type, and uses those as the join criteria. The advantage of using a natural join is that the
coding is streamlined. The ON clause is implied, and you do not need to use table aliases
to qualify column names that are common to both tables.

If you specify a natural join on tables that do not have at least one column with a
common name and type, the result is a Cartesian product. You can use a WHERE clause
to limit the output. Because the natural join makes certain assumptions about what you
want to accomplish, you should examine your data thoroughly before using it.

Natural Join Syntax

Syntax, SELECT statement for outer join:

SELECT column-1<,...column-n>
FROM table-1 | view-1 NATURAL JOIN table-2 | view-2

<other clauses>;

NATURAL JOIN
specifies the type of join.

table
specifies the name of the source table.

<other clauses>
refers to optional PROC SQL clauses.

Note: Do not use an ON clause with a natural join. When using a natural join, an ON
clause is implied, matching all like columns. You can use a WHERE clause to subset
the query results. A natural join functions the same as a qualified join with the
USING clause. A natural join is a shorthand form of USING. As is the case with
USING, like columns appear only once in the result set.

Example: Using a Natural Join
A natural join assumes that you want to base the join on equal values of all pairs of all
common columns. The following example selects all columns from Certadv.Schedule
and Certadv.Courses and creates an output using a natural join.

proc sql;
 select *
 from certadv.schedule natural join
 certadv.courses
;
quit;

Using Natural Joins 77

PROC SQL identified Course_Code as the common column between Certadv.Schedule
and Certadv.Courses. Based on that column, the natural join selected columns from each
table to match the rows.

Output 3.9 PROC SQL Query Result: Natural Join

Using Outer Joins

A Brief Overview
An outer join returns nonmatching rows as well as matching rows.

Type of Outer Join Output

Left Returns all rows from the left table (first table) and matching rows
from the right table (second table) that are specified in the FROM
clause.

78 Chapter 3 • Joining Tables Using PROC SQL

Type of Outer Join Output

Right Returns all rows from the right table (second table) and matching
rows from the left table (first table).

Full Returns all matching and nonmatching rows from all the tables.

Outer Join Syntax

Syntax, SELECT statement for outer join:

SELECT column-1<,...column-n>
FROM table-1 | view-1 LEFT JOIN | RIGHT JOIN | FULL JOIN table-2 | view-2

ON table1.column = table2.column
<other clauses>;

LEFT JOIN, RIGHT JOIN, FULL JOIN
are keywords that specify the type of outer join.

table
specifies the name of the source table.

ON
specifies join conditions, which are expressions that specify the column or columns on
which the tables are to be joined.

table.column
refers to the source table and the column name on which the join occurs.

<other clauses>
refers to optional PROC SQL clauses.

Note: To further subset the rows in the query output, you can follow the ON clause with
a WHERE clause. The WHERE clause subsets the individual detail rows before the
outer join is performed. The ON clause then specifies how the remaining rows are to
be selected for output.

Note: You can perform an outer join on only two tables or views at a time.

Example: Using a Left Outer Join
A left outer join retrieves all rows that match across tables, based on the join conditions,
plus nonmatching rows from the left table (the first table specified in the FROM clause).

Using Outer Joins 79

Suppose you are using a PROC SQL left join to combine the two tables One and Two.
The join condition is stated in the expression following the ON keyword.

proc sql;
 select *
 from certadv.one left join
 certadv.two
 on one.x=two.x
;
quit;

The two tables and the three rows of output are shown below:

Output 3.10 PROC SQL Query Result: Left Outer Join Output

In each row of output, the first two columns correspond to table One (the left table) and
the last two columns correspond to table Two (the right table).

Because this is a left join, all rows, both matching and nonmatching, from table One are
included in the output. Rows from table Two are included in the output only if they
match a row from table One. In the output, the rows from table One are the first two
columns and the rows from table Two are the last two columns.

The second row of output is the only row in which the row from table One matched a
row from table Two, based on the join conditions specified in the ON clause. In the first
and third rows of output, the row from table One had no matching row in table Two.

Note: In all three types of outer joins (left, right, and full), the columns in the result
(combined) row that are from the unmatched row are set to missing values.

Example: Eliminating Duplicate Columns in a Left Outer Join
To eliminate one of the duplicate columns in any outer join, you can modify the
SELECT clause to list the specific columns that will be displayed. The SELECT clause
from the preceding query has been modified to remove the duplicate X column.

proc sql;
 select one.x, a, b
 from certadv.one left join
 certadv.two
 on one.x=two.x
;
quit;

80 Chapter 3 • Joining Tables Using PROC SQL

Output 3.11 PROC SQL Query Result: Left Outer Join without Duplicate Rows

Example: Using a Right Outer Join
A right outer join retrieves all rows that match across tables, based on the join
conditions, plus nonmatching rows from the second table that are specified in the FROM
clause. The following PROC SQL query uses a right join to combine rows from tables
One and Two, based on the join conditions that were specified in the ON clause.

proc sql;
 select *
 from certadv.one right join
 certadv.two
 on one.x=two.x
;
quit;

Output 3.12 PROC SQL Query Result: Right Outer Join Output

In each row of output, the first two columns correspond to table One and the last two
columns correspond to table Two.

Because this is a right join, all rows, both matching and nonmatching, from table Two
are included in the output. Rows from table One are displayed in the output only if they
match a row from table Two. There is only one row in table One that matches a value of
X in table Two, and these two matching rows combine to form the first row of output. In
the remaining rows of output, there is no match and the columns corresponding to table
One are set to missing values.

Example: Using a Full Outer Join
A full outer join retrieves both matching rows and nonmatching rows from both tables.

proc sql;
 select *
 from certadv.one full join
 certadv.two
 on one.x=two.x
;

Using Outer Joins 81

quit;

Output 3.13 PROC SQL Query Result: Full Outer Join Output

Because this is a full join, all rows, both matching and nonmatching, from both tables
are included in the output. There is only one match between table One and table Two, so
only one row of output displays values in all columns. All remaining rows of output
contain only values from table One or table Two, with the remaining columns set to
missing values.

Example: Complex Outer Join
Suppose you want to list all of an airline's flights that were scheduled for March, along
with any available corresponding delay information. Each flight is identified by both a
flight date and a flight number. Your output should display the following data: flight
date, flight number, destination, and length of delay in minutes.

The data that you need is stored in the two tables shown below. The applicable columns
from each table are identified.

Table Relevant Columns

Certadv.Marchflights Date, FlightNumber, Destination

Certadv.Flightdelays Date, FlightNumber, Destination, Delay

Your output should include the columns that are listed above and all of the following
rows:

• rows that have matching values of Date and FlightNumber across the two tables

• rows from Certadv.Marchflights that have no matching row in Certadv.Flightdelays

To generate the output that you want, the following PROC SQL query uses a left outer
join, with Certadv.Marchflights specified as the left table.

proc sql outobs=20;
title 'All March Flights';
 select m.date, /* 1 */
 m.flightnumber label='Flight Number',
 m.destination label='Left',
 f.destination label='Right',
 delay label='Delay in Minutes'
 from certadv.marchflights as m left join /* 2 */
 certadv.flightdelays as f

82 Chapter 3 • Joining Tables Using PROC SQL

 on m.date=f.date /* 3 */
 and m.flightnumber=f.flightnumber
 order by delay; /* 4 */
quit;

1 The SELECT clause eliminates the duplicate Date and FlightNumber columns by
specifying their source as Certadv.Marchflights. However, the SELECT clause list
specifies the Destination columns from both tables and assigns a table alias to each
to distinguish between them.

2 The FROM clause lists the tables to select from. The FROM clause uses the AS
keyword to distinguish a table alias from other table names. The FROM clause also
specifies the LEFT JOIN keyword to specify the join type.

3 The ON clause contains two join conditions, which match the tables on the two
columns Date and FlightNumber.

4 The ORDER BY clause specifies the order in which rows are displayed in the result
table.

Using Outer Joins 83

The first 12 rows in the output display rows from Certadv.Marchflights. The rows that
have no matching values with Certadv.Flightdelays display missing values for those
columns. Therefore, the first 12 rows have missing values.

Output 3.14 PROC SQL Query Result: Outer Join

Note: The same results could be generated by using a right outer join, with
Certadv.Marchflights specified as the right (second) table.

Comparing SQL Joins and DATA Step Match-
Merges

A Brief Overview
DATA step match-merges and PROC SQL joins can produce the same results. However,
there are important differences between these two techniques. For example, a join does

84 Chapter 3 • Joining Tables Using PROC SQL

not require that you sort the data first; a DATA step match-merge requires that the data
be sorted.

It is useful to compare the use of SQL joins and DATA step match-merges in the
following situations:

• when all of the values of the selected variable match

• when only some of the values of the selected variable match

When All of the Values Match
When all of the values of the BY variable match, you can use a PROC SQL inner join to
produce the same results as a DATA step match-merge.

Suppose you want to combine tables Five and Six.

Figure 3.4 Tables Certadv.Five and Certadv.Six

These two tables have column X in common, and all values of X in each row match
across the two tables. Both tables are already sorted by X.

The following DATA step match-merge (followed by a PROC PRINT step) and the
PROC SQL inner join produce identical reports.

DATA Step Match-Merge PROC SQL Inner Join

data merged;
 merge certadv.five certadv.six;
 by x;
run;
proc print data=merged noobs;
 title 'Table Merged';
run;

proc sql;
title 'Table Merged';
 select five.x, a, b
 from certadv.five, certadv.six
 where five.x = six.x
 order by x;
quit;

Note: The DATA step match-merge creates a data set. By contrast, the PROC SQL inner
join, as shown here, creates only a report as output. To make these two programs
completely identical, the PROC SQL inner join could be rewritten to create a table.

Comparing SQL Joins and DATA Step Match-Merges 85

Note: If the order of rows in the output does not matter, the ORDER BY clause can be
removed from the PROC SQL join. Without the ORDER BY clause, this join is more
efficient, because PROC SQL does not need to make a second pass through the data.

When Only Some of the Values Match
When only some of the values of the BY variable match, you can use a PROC SQL full
outer join to produce the same result as a DATA step match-merge. Unlike the DATA
step match-merge, however, a PROC SQL outer join does not overlay the two common
columns by default. To overlay common columns, you must use the COALESCE
function in the PROC SQL full outer join.

Note: The COALESCE function can also be used with inner join operators.

Consider what happens when you use a PROC SQL full outer join without the
COALESCE function. Suppose you want to combine tables Three and Four. These two
tables have the column X in common, but most of the values of X do not match across
tables. Both tables are already sorted by X. The following DATA step match-merge
(followed by a PROC PRINT step) and the PROC SQL outer join combine these tables,
but do not generate the same output. The COALESCE function can also be used with
inner join operators.

DATA Step Match-Merge PROC SQL Full Outer Join

data merged;
 merge certadv.three certadv.four;
 by x;
run;

proc print data=merged noobs;
 title 'Table Merged';
run;

proc sql;
title 'Table Merged';
 select three.x, a, b
 from certadv.three
 full join
 certadv.four
 on three.x = four.x
 order by x;
quit;

The DATA step match-merge automatically overlays the common column, X. The PROC
SQL outer join selects the value of X from just one of the tables, table Three, so that no
X values from table Four are included in the PROC SQL output. However, the PROC

86 Chapter 3 • Joining Tables Using PROC SQL

SQL outer join cannot overlay the columns by default. The values that vary across the
two merged tables are highlighted.

COALESCE Function Syntax
When you add the COALESCE function to the SELECT clause of the PROC SQL outer
join, the PROC SQL outer join can produce the same result as a DATA step match-
merge.

Syntax, COALESCE function in a SELECT clause:

SELECT COALESCE (column-1<,...column-n>)

column-1 through column-n
are the names of two or more columns to be overlaid. The COALESCE function requires
that all arguments have the same data type.

The COALESCE function overlays the specified columns:

• It checks the value of each column in the order in which the columns are listed.

• It returns the first value that is a SAS nonmissing value.

Note: If all returned values are missing, COALESCE returns a missing value.

Example: Using the COALESCE Function
When the COALESCE function is added to the preceding PROC SQL full outer join, the
DATA step match-merge (with PROC PRINT step) and the PROC SQL full outer join
combine rows in the same way. The two programs, the tables, and the output are shown
below.

Comparing SQL Joins and DATA Step Match-Merges 87

DATA Step Match-Merge PROC SQL Full Outer Join

data merged;
 merge certadv.three certadv.four;
 by x;
run;
proc print data=merged noobs;
 title 'Table Merged';
run;

proc sql;
 title 'Table Merged';
 select coalesce(three.x, four.x)
 as X, a, b
 from certadv.three
 full join
 certadv.four
 on three.x = four.x;

Understanding the Advantages of PROC SQL Joins
DATA step match-merges and PROC SQL joins both have advantages and
disadvantages. Here are some of the advantages of PROC SQL joins.

Advantage Example

PROC SQL joins do not require sorted or
indexed tables.

proc sql;
 select table1.x, a, b
 from table1
 full join
 table2
 on table1.x = table2.x;
quit;

Note that table-1 is sorted by column X and
table-2 is not.

PROC SQL joins do not require that the
columns in join expressions have the same
name.

proc sql;
 select table1.x, lastname,
 status
 from table1, table2
 where table1.id =
 table2.custnum;

88 Chapter 3 • Joining Tables Using PROC SQL

Advantage Example

PROC SQL joins can use comparison
operators other than the equal sign (=).

proc sql;
 select a.itemnumber, cost,
 price
 from table1 as a,
 table2 as b
 where a.itemnumber = b.itemnumber
 and a.cost>b.price;
quit;

Note: Join performance can be substantially improved when the tables are indexed on
the columns on which the tables are being joined.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. When is a Cartesian product returned?

a. When join conditions are not specified in a PROC SQL join.

b. When join conditions are not specified in a PROC SQL set operation.

c. When more than two tables are specified in a PROC SQL join.

d. When the keyword ALL is used with the OUTER UNION operator.

2. Given the PROC SQL query and tables shown below, which output is generated?

proc sql;
 select *
 from certadv.store1, certadv.store2
 where store1.wk=store2.wk;
quit;

a.

Quiz 89

b.

c.

d.

90 Chapter 3 • Joining Tables Using PROC SQL

3. Which output will the following PROC SQL query generate?

proc sql;
 select *
 from table1 left join table2
 on table1.g3=table2.g3;
quit;

a.

Quiz 91

b.

c.

d.

4. What is needed in order for PROC SQL to perform an inner join?

a. The tables being joined must contain the same number of columns.

b. The tables must be sorted before they are joined.

c. The columns that are specified in a join condition in the WHERE clause must
have the same data type.

d. The columns that are specified in a join condition in the WHERE clause must
have the same name.

5. Which PROC SQL query will generate the same output as the DATA step match-
merge and PROC PRINT step shown below?

data merged;
 merge certadv.table1 certadv.table2;
 by g3;
run;
proc print data=merged noobs;
 title 'Merged';
run;

a. proc sql;
title 'Merged';
 select a.g3, z, r
 from table1 as a full join table2 as b
 on a.g3 = b.g3

92 Chapter 3 • Joining Tables Using PROC SQL

 order by 1;
quit;

b. proc sql;
title 'Merged';
 select a.g3, z, r
 from table1 as a table2 as b
 on a.g3 = b.g3
 order by 1;
quit;

c. proc sql;
title 'Merged';
 select coalesce(a.g3, b.g3)
 label='G3', z, r
 from table1 as a full join table2 as b
 on a.g3 = b.g3
 order by 1;
quit;

d. proc sql;
title 'Merged';
 select g3, z, r
 from table1 as a full join table2 as b
 on a.g3 = b.g3
 order by 1;
quit;

6. Which statement about the use of table aliases is false?

a. Table aliases must be used when referencing identical table names from different
libraries.

b. Table aliases can be referenced by using the keyword AS.

c. Table aliases or full table names must be used when referencing a column name
that is the same in two or more tables.

d. Table aliases must be used when using summary functions.

7. Which statement is true regarding the use of the PROC SQL step to query data that is
stored in two or more tables?

a. When you join multiple tables, the tables must contain a common column.

b. You must specify the table from which you want each column to be read.

c. The tables that are being joined must come from the same type of data source.

d. If two tables that are being joined contain a same-named column, you must
specify the table from which you want the column to be read.

Quiz 93

94 Chapter 3 • Joining Tables Using PROC SQL

Chapter 4

Joining Tables Using Set
Operators

Understanding Set Operators . 96
Introducing Set Operators . 96
Set Operator Syntax . 97
Example: The Basics of Using a Set Operator . 98
Using Multiple Set Operators . 98
Processing Unique versus Duplicate Rows . 101
Combining and Overlaying Columns . 101
Modifying Results Using Keywords . 102

Using the EXCEPT Set Operator . 103
A Brief Overview . 103
Example: Using the EXCEPT Operator Alone . 104
Example: Using the Keyword ALL with the EXCEPT Operator 106
Example: Using the Keyword CORR with the EXCEPT Operator 106
Example: Using the Keywords ALL and CORR with the EXCEPT Operator . . . 107
Example: EXCEPT Operator . 108

Using the INTERSECT Set Operator . 109
A Brief Overview . 109
Example: Using the INTERSECT Operator Alone . 110
Example: Using the Keyword ALL with the INTERSECT Set Operator 110
Example: Using the Keyword CORR with the INTERSECT Set Operator 111
Example: Using the Keywords ALL and CORR with the

INTERSECT Set Operator . 112
Complex Example Using the INTERSECT Operator . 112

Using the UNION Set Operator . 114
A Brief Overview . 114
Example: Using the UNION Operator Alone . 114
Example: Using the Keyword ALL with the UNION Operator 115
Example: Using the Keyword CORR with the UNION Operator 116
Example: Using the Keywords ALL and CORR with the UNION Operator 117
Example: Using the UNION Set Operator . 118
Example: Using a UNION Operator and Summary Functions 119

Using the OUTER UNION Set Operator . 120
A Brief Overview . 120
Example: Using the OUTER UNION Operator Alone . 121
Example: Using the Keyword CORR with One OUTER UNION Operator 122
Example: Using Two OUTER UNION Operators with the Keyword CORR 122

Quiz . 123

95

Understanding Set Operators

Introducing Set Operators
You can combine the results of two or more queries by using set operators. Each of the
four set operators—EXCEPT, INTERSECT, UNION, and OUTER UNION—selects
rows and handles columns in a different way, as described below.

Note: In the comparison below, Table 1 is the table that is referenced in the first query,
and Table 2 is the table that is referenced in the second query.

Set Operator Treatment of Rows Treatment of Columns Example

EXCEPT Selects unique rows from
the first table that are not
found in the second table.

Overlays columns based on
their position in the
SELECT clause without
regard to the individual
column names.

proc sql;
 select *
 from table1
 except
 select *
 from table2;

INTERSECT Selects unique rows that are
common to both tables.

Overlays columns based on
their position in the
SELECT clause without
regard to the individual
column names.

proc sql;
 select *
 from table1
 intersect
 select *
 from table2;
quit;

UNION Selects unique rows from
both tables.

Overlays columns based on
their position in the
SELECT clause without
regard to the individual
column names.

proc sql;
 select *
 from table1
 union
 select *
 from table2;
quit;

96 Chapter 4 • Joining Tables Using Set Operators

Set Operator Treatment of Rows Treatment of Columns Example

OUTER UNION Selects all rows from both
tables.

The OUTER UNION
operator concatenates the
results of the queries.

Does not overlay columns. proc sql;
 select *
 from table1
 outer union
 select *
 from table2;
quit;

A set operation contains the following elements:

• two queries (each beginning with a SELECT clause)

• a set operator

• one or both of the keywords ALL and CORR (CORRESPONDING)

Set Operator Syntax

Syntax of an SQL query using a set operator:

SELECT column-1<, ... column-n>
FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>

set-operator <ALL> <CORR>
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

SELECT
specifies the column(s) to appear in the result.

FROM
specifies the table(s) or view(s) to be queried.

optional query clauses
are used to refine the query further and include the clauses WHERE, GROUP BY, HAVING,
and ORDER BY.

• the set-operator is one of the following: EXCEPT|INTERSECT|UNION|OUTER UNION.

• the optional keywords ALL and CORR (CORRESPONDING) further modify the set
operation.

Note: Place a semicolon after the last SELECT statement only.

Set operators combine columns from two queries based on their position in the
referenced tables without regard to the individual column names. Columns in the same
relative position in the two queries must have the same data type. The column names of
the tables in the first query become the column names of the output table.

Understanding Set Operators 97

The following optional keywords give you more control over set operations:

ALL
does not suppress duplicate rows. When the keyword ALL is specified, PROC SQL
does not make a second pass through the data to eliminate duplicate rows. Thus,
using ALL is more efficient than not using it. ALL is not allowed with the OUTER
UNION operator.

CORR
overlays columns that have the same name in both tables. When used with EXCEPT,
INTERSECT, and UNION, CORR suppresses columns that are not in both tables.

Example: The Basics of Using a Set Operator
When a PROC SQL step evaluates a SELECT statement with one set operator, it does
the following:

• evaluates each query to produce an intermediate, internal, result table

• makes each intermediate result table become an operand that is linked with a set
operator to form an expression

• evaluates the entire expression to produce a single output result set

In the following PROC SQL step, the SELECT statement contains one set operation.
The set operation uses the set operator UNION to combine the result of a query on the
table Certadv.Stress17 with the result of a query on the table Certadv.Stress18.

proc sql;
 select *
 from certadv.stress17 union
 select *
 from certadv.stress18;
quit;

Using Multiple Set Operators

A Brief Overview
A single SELECT statement can contain more than one set operation. Each additional set
operation includes a set operator and a group of query clauses.

proc sql;
 select *
 from table1
 set-operator
 select *
 from table2
 set-operator
 select *
 from table3;
quit;

This SELECT statement uses two set operators to link together three queries. Regardless
of the number of set operations in a SELECT statement, the statement contains only one
semicolon, which is placed after the last query.

98 Chapter 4 • Joining Tables Using Set Operators

Example: Using Multiple Set Operators
The following PROC SQL step contains two set operators that combine three queries.

proc sql;
 select *
 from certadv.mechanicslevel1
 outer union
 select *
 from certadv.mechanicslevel2
 outer union
 select *
 from certadv.mechanicslevel3;
quit;

The PROC SQL query result displays all the columns from Certadv.MechanicsLevel1,
Certadv.MechanicsLevel2, and Certadv.MechanicsLevel3. The OUTER UNION
operator selects all the rows from all from the tables and displays them in the query
result. It does not overlay the columns. Because Certadv.MechanicsLevel1,
Certadv.MechanicsLevel2, and Certadv.MechanicsLevel3 do not have columns with the
same values, there are missing values displayed in some columns.

Understanding Set Operators 99

Output 4.1 PROC SQL Query Result

Processing Multiple Set Operators
When PROC SQL evaluates a SELECT statement that contains multiple set operations,
an additional processing step, step 3 below, is required:

1. Each query is evaluated to produce an intermediate (internal) result table.

2. Each intermediate result table then becomes an operand that is linked with a set
operator to form an expression (for example, Table1 UNION Table2).

100 Chapter 4 • Joining Tables Using Set Operators

3. If the set operation contains more than two queries, the result from the first two
queries (enclosed in parentheses in the following examples) becomes an operand for
the next set operator and operand.

• with two set operators: (Table1 UNION Table2) EXCEPT Table3

• with three set operators: ((Table1 UNION Table2) EXCEPT Table3)
INTERSECT Table4

4. PROC SQL evaluates the entire expression to produce a single output result set.

Note: When processing set operators, PROC SQL follows a default order of precedence,
unless this order is overridden by parentheses in the expressions. By default,
INTERSECT is evaluated first. OUTER UNION, UNION, and EXCEPT all have the
same level of precedence.

Processing Unique versus Duplicate Rows
When processing a set operation that displays only unique rows (a set operation that
contains the set operator EXCEPT, INTERSECT, or UNION), PROC SQL makes two
passes through the data, by default:

1. PROC SQL eliminates duplicate, nonunique, rows in the tables.

2. PROC SQL selects the rows that meet the criteria and, where requested, overlays
columns.

For set operations that display both unique and duplicate rows, only one pass through the
data, step 2 above, is required.

Combining and Overlaying Columns

A Brief Overview
You can use a set operation to combine tables that have different numbers of columns
and rows or that have columns in a different order.

By default, the set operators EXCEPT, INTERSECT, and UNION overlay columns
based on the relative position of the columns in the SELECT clause. Column names are
ignored. You control how PROC SQL maps columns in one table to columns in another
table by specifying the columns in the appropriate order in the SELECT clause. The first
column that is specified in the first query's SELECT clause and the first column that is
specified in the second query's SELECT clause are overlaid, and so on.

When columns are overlaid, PROC SQL uses the column name from the first table. If
there is no column name in the first table, the column name from the second table is
used. When the SELECT clause contains an asterisk (*) instead of a list of column
names, the set operation combines the tables based on the positions of the columns in the
tables.

Example: Overlaying Columns
The following example takes the first column from Certadv.Col1 and overlays it in
Certadv.Col2.

title 'PROC SQL Query Result';
proc sql;
 select * /* 1 */
 from certadv.col1 except /* 2 */

Understanding Set Operators 101

 select *
 from certadv.col2;
quit;

1 The SELECT clause in each query uses an asterisk (*) to overlay columns based on
their positions in the tables.

2 The EXCEPT set operator overlays columns.

Output 4.2 PROC SQL Query Result: Overlaying Columns

In order to be overlaid, columns in the same relative position in the two SELECT clauses
must have the same data type. If they do not, PROC SQL generates a warning message
in the SAS log and stops executing. For example, in the tables shown above, if the data
type differed in column Col1.X and Col2.X, the SAS log would display the following
error message.

Log 4.1 SAS Log

ERROR: Column 1 from the first contributor of EXCEPT
is not the same type as its counterpart from the second.

Modifying Results Using Keywords
To modify the behavior of set operators, you can use either or both of the keywords ALL
and CORR immediately following the set operator:

proc sql;
 select *
 from table1
 set-operator <all> <corr>
 select *
 from table2;
quit;

The use of each keyword is described below.

102 Chapter 4 • Joining Tables Using Set Operators

Keyword Action Situation

ALL Makes only one pass through the data
and does not remove duplicate rows.

It does not matter
whether there are
duplicates.

Duplicates are not
possible.

ALL cannot be used
with OUTER UNION.

CORR (or
CORRESPONDING)

Compares and overlays columns by
name instead of by position:

• When used with EXCEPT,
INTERSECT, and UNION,
removes any columns that do not
have the same name in both tables.

• When used with OUTER UNION,
overlays same-named columns and
displays columns that have
nonmatching names without
overlaying.

If an alias is assigned to a column in
the SELECT clause, CORR uses the
alias instead of the permanent column
name.

Two tables have some
or all columns in
common, but the
columns are not in the
same order.

Using the EXCEPT Set Operator

A Brief Overview
The set operator EXCEPT does both of the following:

• selects unique rows from the first table (the table specified in the first query) that are
not found in the second table

• overlays columns

Figure 4.1 EXCEPT Set Operator Relationship

Using the EXCEPT Set Operator 103

Example: Using the EXCEPT Operator Alone
Suppose you want to display the unique rows in table Col1 that are not found in table
Col2. The PROC SQL set operation that includes the EXCEPT operator, the tables Col1
and Col2, and the output of the set operation are shown below.

proc sql;
 select *
 from certadv.col1 except
 select *
 from certadv.col2;
quit;

Output 4.3 PROC SQL Query Result Illustration

The set operator EXCEPT overlays columns by their position. In this output, the
following columns are overlaid:

• the first columns, Col1.X and Col2.X, both of which are numeric

• the second columns, Col1.A and Col2.B, both of which are character

The column names from table Col1 are used, so the second column of output is named A
rather than B.

In the first pass, PROC SQL eliminates any duplicate rows from the tables. As shown
below, there is one duplicate row: in table Col1, the second row is a duplicate of the first
row. All remaining rows in table Col1 are still candidates in PROC SQL's selection
process.

proc sql;
 select *
 from certadv.col1 except
 select *
 from certadv.col2;
quit;

104 Chapter 4 • Joining Tables Using Set Operators

Output 4.4 Tables Certadv.Col1 and Certadv.Col2

In the second pass, PROC SQL identifies any rows in table Col1 for which there is a
matching row in table Col2 and eliminates them. The one matching row in the two
tables, as shown below, is eliminated.

proc sql;
 select *
 from certadv.col1 except
 select *
 from certadv.col2;
quit;

Output 4.5 Tables Certadv.Col1 and Certadv.Col2

The five remaining rows in table Col1, the unique rows, are displayed in the output.

Using the EXCEPT Set Operator 105

Output 4.6 PROC SQL Query Result: Overlaying Tables

Example: Using the Keyword ALL with the EXCEPT Operator
To select all rows in the first table, both unique and duplicate, that do not have a
matching row in the second table, add the keyword ALL after the EXCEPT set operator.
The modified PROC SQL set operation, the tables Col1 and Col2, and the output are
shown below.

proc sql;
 select *
 from certadv.col1 except all
 select *
 from certadv.col2;
quit;

Output 4.7 PROC SQL Query Result Illustration

The output now contains six rows. PROC SQL has again eliminated the one row in table
Col1, the fifth row, that has a matching row in table Col2, the fourth row. Remember that
when the keyword ALL is used with the EXCEPT operator, PROC SQL does not make
an extra pass through the data to remove duplicate rows within table Col1. Therefore, the
second row in table Col1, which is a duplicate of the first row, is now included in the
output.

Example: Using the Keyword CORR with the EXCEPT Operator
Add the keyword CORR after the set operator to display both of the following:

• only columns that have the same name

106 Chapter 4 • Joining Tables Using Set Operators

• all unique rows in the first table that do not appear in the second table

The modified PROC SQL set operation, the tables Col1 and Col2, and the output are
shown below:

proc sql;
 select *
 from certadv.col1 except corr
 select *
 from certadv.col2;
quit;

Output 4.8 PROC SQL Query Result Illustration

X is the only column that has the same name in both tables, so X is the only column that
PROC SQL examines and displays in the output.

In the first pass, PROC SQL eliminates the second and third rows of table Col1 from the
output because they are not unique within the table. They contain values of X that
duplicate the value of X in the first row of table Col1. In the second pass, PROC SQL
eliminates the first, fourth, and fifth rows of table Col1 because each contains a value of
X that matches a value of X in a row of table Col2.

The output displays the two remaining rows in table Col1, the rows that are unique in
table Col1 and that do not have a row in table Col2 that has a matching value of X.

Example: Using the Keywords ALL and CORR with the EXCEPT
Operator

If the keywords ALL and CORR are used together, the EXCEPT operator displays all
unique and duplicate rows in the first table that do not appear in the second table, and
overlays and displays only columns that have the same name.

The modified PROC SQL set operation, the tables Col1 and Col2, and the output are
shown below:

proc sql;
 select *
 from certadv.col1 except all corr
 select *
 from certadv.col2;
quit;

Using the EXCEPT Set Operator 107

Output 4.9 PROC SQL Query Result Illustration

Once again, PROC SQL examines and displays only the column that has the same name
in the two tables: X. Because the keyword ALL is used, PROC SQL does not eliminate
any duplicate rows in table Col1. Therefore, the second and third rows in table Col1,
which are duplicates of the first row in table Col1, appear in the output. PROC SQL does
eliminate the first, fourth, and fifth rows in table Col1 from the output because for each
one of these three rows there is a corresponding row in table Col2 that has a matching
value of X.

When the keyword ALL is used with the EXCEPT operator, a row in table Col1 cannot
be eliminated from the output unless it has a separate matching row in table Col2. Table
Col1 contains three rows in which the value of X is 1, but table Col2 contains only one
row in which the value of X is 1. That one row in table Col2 causes the first of the three
rows in table Col1 that have a matching value of X to be eliminated from the output.
However, table Col2 does not have two additional rows in which the value of X is 1.
Therefore, the other two rows in table Col1 are not eliminated, and do appear in the
output.

Example: EXCEPT Operator
Suppose you want to display the names of all new employees of a company. Because no
table exists that contains information for only the new employees, you use data from the
following two tables.

Table Relevant Columns

Certadv.Staffchanges lists information for all new employees and
existing employees who have had a change in salary or job code.

FirstName, LastName

Certadv.Staffmaster lists information for all existing employees. FirstName, LastName

The relationship between these two tables is shown in the diagram below:

108 Chapter 4 • Joining Tables Using Set Operators

Figure 4.2 EXCEPT Operator Relationship

The intersection of these two tables includes information for all existing employees who
have had changes in job code or salary. The shaded portion, the portion of
Certadv.Staffchanges that does not overlap with Certadv.Staffmaster, includes
information for the people that you want: new employees.

The following PROC SQL step separates the new employees from the existing
employees in Certadv.Staffchanges to create a set operation that displays all rows from
Certadv.Staffchanges that do not exist in the Certadv.Staffmaster.

proc sql;
 select firstname, lastname
 from certadv.staffchanges except all
 select firstname, lastname
 from certadv.staffmaster;
quit;

This PROC SQL set operation includes the operator EXCEPT and the keyword ALL.
Although you do not want the output to contain duplicate rows, you already know that
there are no duplicates in these two tables. Therefore, ALL is specified to prevent PROC
SQL from making an extra pass through the data. This speeds up the processing of this
query.

PROC SQL compares only the columns that are specified in the SELECT clauses, and
these columns are compared in the order in which they are specified. The output displays
the first and last names of the two new employees.

Output 4.10 PROC SQL Query Result: Using EXCEPT Operator and Keyword ALL

Note: In a set operation that uses the EXCEPT operator, the order in which the tables
are listed in the SELECT statement makes a difference. If the tables in this example
were listed in the opposite order, the output would display all existing employees
who have had no changes in salary or job code.

Using the INTERSECT Set Operator

A Brief Overview
The set operator INTERSECT does both of the following:

• selects unique rows that are common to both tables

Using the INTERSECT Set Operator 109

• overlays columns

Figure 4.3 INTERSECT Set Operator Relationship

Example: Using the INTERSECT Operator Alone
The INTERSECT operator compares and overlays columns in the same way as the
EXCEPT operator, by column position instead of column name. However, INTERSECT
selects rows differently and displays in output the unique rows that are common to both
tables.

The following PROC SQL set operation uses the INTERSECT operator to combine the
tables Col1 and Col2.

proc sql;
 select *
 from certadv.col1 intersect
 select *
 from certadv.col2;
quit;

Output 4.11 PROC SQL Query Result Illustration

Tables Col1 and Col2 have only one unique row in common and this row is displayed in
the output.

Example: Using the Keyword ALL with the INTERSECT Set Operator
Adding the keyword ALL to the preceding PROC SQL query prevents PROC SQL from
making an extra pass through the data. If there were any rows common to tables Col1
and Col2 that were duplicates of other common rows, they would also be included in
output. However, as you have seen, there is only one common row in these tables.

proc sql;
 select *

110 Chapter 4 • Joining Tables Using Set Operators

 from certadv.col1 intersect all
 select *
 from certadv.col2;
quit;

Output 4.12 PROC SQL Query Result Illustration

Example: Using the Keyword CORR with the INTERSECT Set
Operator

To display the unique rows that are common to the two tables based on the column name
instead of the column position, add the keyword CORR to the PROC SQL set operation.

proc sql;
 select *
 from certadv.col1 intersect corr
 select *
 from certadv.col2;
quit;

Output 4.13 PROC SQL Query Result Illustration

X is the only column name that is common to both tables, so X is the only column that
PROC SQL examines and displays in the output. In the first pass, PROC SQL eliminates
the rows that are duplicated within each table: the second and third rows in table Col1
contain the same value for X as the first row, and the fourth row in table Col2 contains
the same value for X as the third row. In the second pass, PROC SQL eliminates any

Using the INTERSECT Set Operator 111

rows that are not common across tables: the fourth and fifth rows in table Col1 and the
fifth row in table Col2 do not have a matching value of X in the other table. The output
displays the three rows with unique values of X that are also common to both tables.

Example: Using the Keywords ALL and CORR with the INTERSECT
Set Operator

If the keywords ALL and CORR are used together, the INTERSECT operator displays
all unique and duplicate rows that are common to the two tables, based on columns that
have the same name.

proc sql;
 select *
 from certadv.col1 intersect all corr
 select *
 from certadv.col2;
quit;

Output 4.14 PROC SQL Query Result Illustration

PROC SQL examines and displays only the column with the same name, X. There are
three common rows across the two tables, which are highlighted above. These three rows
are displayed in the output.

Each of the tables contains at least one other row that duplicates a value of X in one of
the common rows. For example, in the second and third rows in table Col1, the value of
X is 1, and only one row is displayed in the output. However, in order to be considered a
common row and to be included in the output, every duplicate row in one table must
have a separate duplicate row in the other table. In this example, there are no rows that
have duplicate values and that are also common across tables. Therefore, in this
example, the set operation with the keywords ALL and CORR generates the same output
as with the keyword CORR alone.

Complex Example Using the INTERSECT Operator
Suppose you want to display the names of the existing employees who have changed
their salary or job code.

112 Chapter 4 • Joining Tables Using Set Operators

Table Relevant Columns

Certadv.Staffchanges lists information for all new employees and
existing employees who have had a change in salary or job code.

FirstName,
LastName

Certadv.Staffmaster lists information for all existing employees. FirstName,
LastName

The relationship between these two tables is shown in the diagram.

Figure 4.4 INTERSECT Set Operator

To display the unique rows that are common to both tables, you use a PROC SQL set
operation that contains INTERSECT. It is known that these tables contain no duplicates,
so ALL is used to speed up query processing.

proc sql;
 select firstname, lastname
 from certadv.staffchanges
 intersect all
 select firstname, lastname
 from certadv.staffmaster;
quit;

Output 4.15 PROC SQL Query Result: Using INTERSECT Operator and Keyword ALL

In this PROC SQL step, which contains just one INTERSECT set operator, the order in
which you list the tables in the SELECT statement does not make a difference. However,
in a more complex PROC SQL step that contains multiple stacked INTERSECT set
operators, it is important to think through the table order carefully, depending on when
you want the nonmatching rows to be eliminated. The output shows that there are four
existing employees who have changed their salary or job code.

Using the INTERSECT Set Operator 113

Using the UNION Set Operator

A Brief Overview
The set operator UNION does both of the following:

• selects unique rows from both tables

• overlays columns

Figure 4.5 UNION Set Operator Relationship

Example: Using the UNION Operator Alone
To display all rows from the tables Col1 and Col2 that are unique in the combined set of
rows from both tables, use a PROC SQL set operation that includes the UNION
operator.

proc sql;
 select *
 from certadv.col1 union
 select *
 from certadv.col2;
quit;

114 Chapter 4 • Joining Tables Using Set Operators

Output 4.16 PROC SQL Query Result Illustration

With the UNION operator, PROC SQL first concatenates and sorts the rows from the
two tables, and eliminates any duplicate rows. In this example, two rows are eliminated:
the second row in table Col1 is a duplicate of the first row, and the fourth row in table
Col2 matches the fifth row in table Col1. All remaining rows, the unique rows, are
included in the output. The columns are overlaid by position.

Example: Using the Keyword ALL with the UNION Operator
When the keyword ALL is added to the UNION operator, the output displays all rows
from both tables, both unique and duplicate.

proc sql;
 select *
 from certadv.col1 union all
 select *
 from certadv.col2;
quit;

Using the UNION Set Operator 115

Output 4.17 PROC SQL Query Result Illustration

When the keyword ALL is used, PROC SQL does not remove duplicates or sort the
rows. The output now includes the two duplicate rows that were eliminated in the
previous example: the second row in table Col1 and the fourth row in table Col2. Note
that order of the rows in this output differs from the order of the rows in the output from
the previous set operation.

Example: Using the Keyword CORR with the UNION Operator
To display all rows from the tables Col1 and Col2 that are unique in the combined set of
rows from both tables, based on columns that have the same name rather than the same
position, add the keyword CORR after the set operator.

proc sql;
 select *
 from certadv.col1 union corr
 select *
 from certadv.col2;
quit;

116 Chapter 4 • Joining Tables Using Set Operators

Output 4.18 PROC SQL Query Result Illustration

X is the only column name that is common to both tables, so X is the only column that
PROC SQL examines and displays in the output. In the combined set of rows from the
two tables, there are duplicates of the values 1, 2, and 3, and these duplicate rows are
eliminated from the output. The output displays the six unique values of X.

Example: Using the Keywords ALL and CORR with the UNION
Operator

If the keywords ALL and CORR are used together, the UNION operator displays all
rows in the two tables both unique and duplicate, based on the columns that have the
same name. In this example, the output displays all 12 values for X, the one column that
has the same name in both tables.

proc sql;
 select *
 from certadv.col1 union all corr
 select *
 from certadv.col2;
quit;

Using the UNION Set Operator 117

Output 4.19 PROC SQL Query Result Illustration

Example: Using the UNION Set Operator
Suppose you are generating a report based on data from a health clinic. You want to
display the results of individual patient stress tests taken in 2017, followed by the results
from stress tests taken in 2018. To do this, you use the UNION operator to combine the
tables Certadv.Stress17 and Certadv.Stress18. These two tables have similar structure:

• Both tables contain nine columns that have the same names.

• Each row contains data for an individual patient.

You are not sure whether the tables contain duplicate records, but you do not want
duplicates in your output. Because the tables have the same column structure, you can
overlay the columns by position, and the keyword CORR is not necessary.

proc sql;
 select *
 from certadv.stress17 union
 select *
 from certadv.stress18;
quit;

118 Chapter 4 • Joining Tables Using Set Operators

Output 4.20 PROC SQL Query Result: UNION Set Operator

T I P If you can determine that these tables have no duplicate records, you could add
the keyword ALL to speed up processing by avoiding an extra pass through the data.

Example: Using a UNION Operator and Summary Functions
Suppose you want to display the following summarized data for members of a frequent-
flyer program: total points earned, total points used, and total miles traveled. All three
values can be calculated from columns in the table Certadv.Frequentflyers by using
summary functions.

You might wonder why set operations are needed when only one table is involved. If you
wanted to display the three summarized values horizontally, in three separate columns,
you could solve the problem without a set operation, using the following simple
SELECT statement:

proc sql;
 select sum(pointsearned) format=comma12.
 label='Total Points Earned',
 sum(pointsused) format=comma12.
 label='Total Points Used',

Using the UNION Set Operator 119

 sum(milestraveled) format=comma12.
 label='Total Miles Traveled'
 from certadv.frequentflyers;
quit;

Output 4.21 PROC SQL Query Result

Assume, however, that you want the three values to be displayed vertically in a single
column. To generate this output, you create three different queries on the same table, and
then use two UNION set operators to combine the three query results:

proc sql;
title 'Points and Miles Traveled';
title2 'by Frequent Flyers';
 select 'Total Points Earned:',
 sum(PointsEarned) format=comma12.
 from certadv.frequentflyers union
 select 'Total Points Traveled:',
 sum(MilesTraveled) format=comma12.
 from certadv.frequentflyers union
 select 'Total Points Used:',
 sum(PointsUsed) format=comma12.
 from certadv.frequentflyers
;
quit;

Each SELECT clause defines two columns: a character constant as a label and the
summarized value. The output is shown below.

Output 4.22 PROC SQL Query Result: Using a UNION Operator and Summary Functions

Using the OUTER UNION Set Operator

A Brief Overview
The set operator OUTER UNION concatenates the results of the queries:

• It selects all rows (both unique and nonunique) from both tables.

• It does not overlay columns.

120 Chapter 4 • Joining Tables Using Set Operators

Figure 4.6 Outer Union Set Operator Relationship

The following examples demonstrate how OUTER UNION works when used alone and
with the keyword CORR. The keyword ALL is not used with OUTER UNION because
this operator's default action is to include all rows in output.

Example: Using the OUTER UNION Operator Alone
Suppose you want to display all rows from both of the tables Col1 and Col2, without
overlaying columns.

proc sql;
 select *
 from certadv.col1 outer union
 select *
 from certadv.col2;
quit;

Output 4.23 PROC SQL Query Result Illustration

In the output, the columns have not been overlaid. Instead, all four columns from both
tables are displayed. Each row of output contains missing values in the two columns that
correspond to the other table.

Using the OUTER UNION Set Operator 121

Example: Using the Keyword CORR with One OUTER UNION
Operator

The output from the preceding set operation contains two columns with the same name.
To overlay the columns with a common name, add the keyword CORR to the set
operation:

proc sql;
 select *
 from certadv.col1 outer union corr
 select *
 from certadv.col2
;
quit;

The output from the modified set operation contains only three columns because the two
columns named X are overlaid.

Output 4.24 PROC SQL Query Result Illustration

Example: Using Two OUTER UNION Operators with the Keyword
CORR

Suppose you want to display the employee ID numbers, job codes, and salaries of all
mechanics working for an airline. The mechanic job has three levels, and there is a
separate table containing data for the mechanics at each level: Certadv.Mechanicslevel1,
Certadv.Mechanicslevel2, and Certadv.Mechanicslevel3. These tables all contain the
same three columns.

The following PROC SQL step uses two OUTER UNION operators to concatenate the
tables and the keyword CORR to overlay the columns that have common names:

proc sql;
 select *

122 Chapter 4 • Joining Tables Using Set Operators

 from certadv.mechanicslevel1 outer union corr
 select *
 from certadv.mechanicslevel2 outer union corr
 select *
 from certadv.mechanicslevel3;
quit;

Output 4.25 PROC SQL Query Result: Using OUTER UNION Operator and Keyword CORR
(partial output)

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which statement is false with respect to a set operation that uses the EXCEPT,
UNION, or INTERSECT set operator without a keyword?

a. Column names in the result set are determined by the first table.

b. To be overlaid, columns must be of the same data type.

c. To be overlaid, columns must have the same name.

d. By default, only unique rows are displayed in the result set.

2. The keyword ALL cannot be used with which of the following set operators?

a. EXCEPT

b. INTERSECT

c. UNION

d. OUTER UNION

3. Which PROC SQL step combines the tables Certadv.Summer and Certadv.Winter to
produce the output displayed below?

Quiz 123

a. proc sql;
 select *
 from certadv.summer intersect all
 select *
 from certadv.winter;
quit;

b. proc sql;
 select *
 from certadv.summer outer union
 select *
 from certadv.winter;
quit;

c. proc sql;
 select *
 from certadv.summer union corr
 select *
 from certadv.winter;
quit;

d. proc sql;
 select *
 from certadv.summer union
 select *
 from certadv.winter;
quit;

4. Which PROC SQL step combines tables but does not overlay any columns?

a. proc sql;
 select *
 from groupa outer union
 select *
 from groupb;

124 Chapter 4 • Joining Tables Using Set Operators

quit;

b. proc sql;
 select *
 from groupa as a outer union corr
 select *
 from groupb as b;
quit;

c. proc sql;
 select coalesce(a.obs, b.obs)
 label='Obs', med, duration
 from groupa as a full join groupb as b
 on a.obs=b.obs;
quit;

d. proc sql;
 select *
 from groupa as a intersect
 select *
 from groupb as b;
quit;

5. Which statement is false regarding the keyword CORR (CORRESPONDING)?

a. It cannot be used with the keyword ALL.

b. It overlays columns by name, not by position.

c. When used in EXCEPT, INTERSECT, and UNION set operations, it removes
any columns that are not found in both tables.

d. When used in OUTER UNION set operations, it causes same-named columns to
be overlaid.

6. Which PROC SQL step generates the following output from the tables Certadv.Dogs
and Certadv.Pets?

Quiz 125

a. proc sql;
 select name, price
 from certadv.pets except all
 select *
 from certadv.dogs;
quit;

b. proc sql;
 select name, price
 from certadv.pets except
 select *
 from certadv.dogs;
quit;

c. proc sql;
 select name, price
 from certadv.pets except corr all
 select *
 from certadv.dogs;
quit;

d. proc sql;
 select *
 from certadv.dogs except corr
 select name, price
 from certadv.pets;
quit;

7. The PROG1 and PROG2 tables list students who took the PROG1 and PROG2
courses, respectively. Which PROC SQL step will give you the names of the students
who took only the PROG1 class?

126 Chapter 4 • Joining Tables Using Set Operators

a. proc sql;
 select fname, lname
 from certadv.prog1 intersect
 select fname, lname
 from certadv.prog2;
quit;

b. proc sql;
 select fname, lname
 from certadv.prog1 except all
 select fname, lname
 from certadv.prog2;
quit;

c. proc sql;
 select *
 from certadv.prog2 intersect corr
 select *
 from certadv.prog1;
quit;

d. proc sql;
 select *
 from certadv.prog2 union
 select *
 from certadv.prog1;
quit;

8. Which PROC SQL step returns the names of all the students who took PROG1,
PROG2, or both classes?

Quiz 127

a. proc sql;
 select fname, lname
 from certadv.prog1 intersect
 select fname, lname
 from certadv.prog2;
quit;

b. proc sql;
 select fname, lname
 from certadv.prog1 outer union corr
 select fname, lname
 from certadv.prog2;
quit;

c. proc sql;
 select fname, lname
 from certadv.prog1 union
 select fname, lname
 from certadv.prog2;
quit;

d. proc sql;
 select fname, lname
 from certadv.prog1 except corr
 select fname, lname
 from certadv.prog2;
quit;

9. Which PROC SQL step returns the names of all the students who took both the
PROG1 and PROG2 classes?

128 Chapter 4 • Joining Tables Using Set Operators

a. proc sql;
 select fname, lname
 from certadv.prog1 union
 select fname, lname
 from certadv.prog2;
quit;

b. proc sql;
 select fname, lname
 from certadv.prog1 except corr
 select fname, lname
 from certadv.prog2;
quit;

c. proc sql;
 select fname, lname
 from certadv.prog1 intersect all
 select fname, lname
 from certadv.prog2;
quit;

d. proc sql;
 select fname, lname
 from certadv.prog1 union corr
 select fname, lname
 from certadv.prog2;
quit;

Quiz 129

130 Chapter 4 • Joining Tables Using Set Operators

Chapter 5

Using Subqueries

Subsetting Data Using Subqueries . 131
Introducing Subqueries . 131
Subsetting Data by Using Noncorrelated Subqueries . 132
Subsetting Data by Using Correlated Subqueries . 138

Creating and Managing Views Using PROC SQL . 141
A Brief Overview . 141
The CREATE VIEW Statement . 141
The DESCRIBE VIEW Statement . 143
Managing PROC SQL Views . 144
Updating PROC SQL Views . 146
The DROP VIEW Statement . 148

Quiz . 149

Subsetting Data Using Subqueries

Introducing Subqueries

A Brief Overview
A subquery selects rows from one table based on values in another table. Subqueries are
also known as nested queries or inner queries. A subquery is a query expression that is
nested as part of another query expression. Depending on the clause that contains it, a
subquery can return a single value or multiple values. Subqueries are most often used in
WHERE and HAVING clauses. Subqueries are enclosed in parentheses.

The following PROC SQL query contains a subquery in the HAVING clause that returns
all jobcodes where the average salary for that jobcode is greater than the company
average salary.

proc sql;
 select jobcode, avg(salary) as AvgSalary
 format=dollar11.2
 from certadv.payrollmaster
 group by jobcode
 having avg(salary)>(select avg(salary)
 from certadv.payrollmaster);
quit;

131

The subquery shown above is a single-value subquery; it returns a single value, the
average salary from the table Certadv.Payrollmaster, to the outer query. A subquery can
return values for multiple rows but only for a single column.

The table that a subquery references can be either the same as or different from the table
that is referenced by the outer query. In the PROC SQL query shown above, the
subquery selects data from the same table as the outer query.

Using SAS Functions
PROC SQL supports almost all of the SAS DATA step functions. You can use SAS
functions as a part of subqueries to subset your data. For example, you can use date
functions in PROC SQL to summarize amounts by quarter and month.

The Two Types of Subqueries

Type Description

noncorrelated A noncorrelated subquery is a self-contained subquery that
executes independently of the outer query. The simplest type
of subquery is a noncorrelated subquery that returns a single
value.

correlated A dependent subquery is one that requires one or more values
to be passed to it by the outer query before the subquery can
return a value to the outer query.

Both noncorrelated and correlated subqueries can return either single or multiple values
to the outer query.

Subsetting Data by Using Noncorrelated Subqueries

Example: Using Single-Value Noncorrelated Subqueries
The following PROC SQL query displays job codes for which a group’s average salary
exceeds the company’s average salary. The HAVING clause contains a noncorrelated
subquery. PROC SQL always evaluates a noncorrelated subquery before the outer query.
If a query contains noncorrelated subqueries at more than one level, PROC SQL
evaluates the innermost subquery first and works outward, evaluating the outermost
query last.

proc sql;
 select jobcode, avg(salary) as AvgSalary format=dollar11.2
 from certadv.payrollmaster
 group by jobcode
 having avg(salary)> /* 1 */
 (select avg(salary) /* 2 */
 from certadv.payrollmaster);
quit;

1 The HAVING clause completes the expression by calculating the subquery. The
subquery calculates the average salary for the entire company, all rows in the table,
using the AVG summary function with Salary as an argument. The subquery returns
the value of the average salary to the outer query.

132 Chapter 5 • Using Subqueries

2 In the SELECT clause, the outer query calculates the average salary for each
JobCode group as defined by the GROUP BY clause. It selects only the groups
whose average salary is greater than the company’s average salary.

The PROC SQL query result is displayed below.

Output 5.1 PROC SQL Query Result: Average Salary for Each JobCode

This noncorrelated subquery returns only a single value, the average salary for the whole
company, to the outer query. Both the subquery and the outer query use the same table as
a source.

Using Multiple-Value Noncorrelated Subqueries
Some subqueries are multiple-value subqueries: they return more than one value, or row,
to the outer query. If your noncorrelated subquery might return a value for more than one
row, be sure to use one of the following operators in the WHERE or HAVING clause
that can handle multiple values:

• the conditional operator IN

• a comparison operator that is modified by ANY or ALL

• the conditional operator EXISTS

Note: If you create a noncorrelated subquery that returns multiple values, but the
WHERE or HAVING clause in the outer query contains an operator other than one of
the operators that are specified above, the query will fail. An error message is
displayed in the SAS log, which indicates that the subquery evaluated to more than
one row. For example, if you use the equal (=) operator with a noncorrelated
subquery that returns multiple values, the query will fail. The equal operator can
handle only a single value.

Consider a query that contains both the conditional operator IN and a noncorrelated
subquery that returns multiple values.

Example: Using a Conditional Operator in a Noncorrelated
Subquery
Suppose you want to send cards to employees who have birthdays coming up. Create a
PROC SQL query that lists the names and addresses of all employees who have
birthdays in February. This query selects data from two different tables:

• employee names and addresses in the table Certadv.Staffmaster

• employee birth dates in the table Certadv.Payrollmaster

Subsetting Data Using Subqueries 133

In both tables, the employees are identified by their employee identification number,
EmpID.

In the following PROC SQL query, the WHERE clause contains the conditional operator
IN followed by a noncorrelated subquery:

proc sql;
 select empid, lastname, firstname, city, state
 from certadv.staffmaster
 where empid in /* 1 */
 (select empid from certadv.payrollmaster /* 2 */
 where month(dateofbirth)=2); /* 3 */
quit;

1 The WHERE expression selects the employees whose birthday is in the month of
February. Note that the MONTH function is used in the subquery.

2 The subquery returns the EmpID values of the selected employees to the outer query.

3 The outer query displays data for the employees identified by the subquery.

The output, shown below, lists the six employees who have February birthdays.

Output 5.2 PROC SQL Query Result: Employees with February Birthdays

Although an inner join would have generated the same results, it is better to use a
subquery in this example since no columns from the Certadv.Payrollmaster table were in
the output.

Using Comparisons with Subqueries
Sometimes it is helpful to compare a value with a set of values returned by a subquery.
When a subquery might return multiple values, you must use one of the conditional
operators ANY or ALL to modify a comparison operator in the WHERE or HAVING
clause immediately before the subquery. For example, the following WHERE clause
contains the less than (<) comparison operator and the conditional operator ANY:

where dateofbirth < any
 <subquery...>

Note: If you create a noncorrelated subquery that returns multiple values, and if the
WHERE or HAVING clause in the outer query contains a comparison operator that
is not modified by ANY or ALL, the query will fail.

When the outer query contains a comparison operator that is modified by ANY or ALL,
the outer query compares each value that it retrieves against the value or values that are
returned by the subquery. All values for which the comparison is true are then included
in the query output. If ANY is specified, the comparison is true if it is true for any one of

134 Chapter 5 • Using Subqueries

the values that are returned by the subquery. If ALL is specified, the comparison is true
only if it is true for all values that are returned by the subquery.

Note: The operators ANY and ALL can be used with correlated subqueries, but they are
usually used only with noncorrelated subqueries.

In PROC SQL queries, you can use the following comparisons with subqueries. ANY,
ALL, and EXISTS cannot be used in other SAS procedures.

Conditional Operator Operator Looks for These Values Example

ANY values that meet a specified condition
with respect to any one of the values
returned by a subquery

where dateofbirth < any
 (select dateofbirth
 from certadv.payrollmaster
 where jobcode='FA3')

ALL values that meet a specified condition
with respect to all the values returned
by a subquery

where dateofbirth < all
 (select dateofbirth
 from certadv.payrollmaster
 where jobcode='FA3')

EXISTS values that are returned by a subquery where exists
 (select *
 from certadv.flightschedule
 where fa.empid=
 flightschedule.empid)

Using the ANY Operator
An outer query that specifies the ANY operator selects values that pass the comparison
test with any of the values that are returned by the subquery.

For example, suppose you have an outer query containing the following WHERE clause:

where dateofbirth < any
 <subquery...>

This WHERE clause specifies that DateofBirth (the operand) should be less than any
(the comparison operator) of the values returned by the subquery.

The following comparison shows the effect of using ANY with these common
comparison operators: greater than (>), less than (<) and equal to (=).

Comparison
Operator with ANY Outer Query Action Example

> ANY Selects values that are greater
than any value returned by the
subquery.

If the subquery returns the values
20, 30, 40, the outer query selects
all values that are > 20 (the lowest
value that was returned by the
subquery).

< ANY Selects values that are less than
any value returned by the
subquery.

If the subquery returns the values
20, 30, 40, the outer query selects
all values that are < 40 (the highest
value that was returned by the
subquery).

Subsetting Data Using Subqueries 135

Comparison
Operator with ANY Outer Query Action Example

= ANY Selects values that are equal to
any value returned by the
subquery.

If the subquery returns the values
20, 30, 40, the outer query selects
all values that are = 20 or = 30 or =
40.

T I P Instead of using the ANY operator with a subquery, there are some SAS
functions that you can use to achieve the same result with greater efficiency. Instead
of > ANY, use the MIN function in the subquery. Instead of < ANY, use the MAX
function in the subquery.

Example: Using the ANY Operator
Suppose you want to identify any flight attendants at level 1 or level 2 who are older
than any of the flight attendants at level 3. Job type and level are identified in JobCode;
each flight attendant has the job code FA1, FA2, or FA3. The following PROC SQL
query accomplishes this task by using a subquery and the ANY operator.

proc sql;
 select empid, jobcode, dateofbirth
 from certadv.payrollmaster
 where jobcode in ('FA1', 'FA2')
 and dateofbirth <any /* 1 */
 (select dateofbirth /* 2 */
 from certadv.payrollmaster
 where jobcode='FA3');
quit;

1 The subquery returns the birth dates of all level-3 flight attendants.

2 The outer query selects only level-1 and level-2 flight attendants whose birth dates
indicate that they are older than any of the others whose birth dates are returned by
the subquery.

Note that both the outer query and subquery use the same table.

Note: Internally, SAS represents a date value as the number of days from January 1,
1960, to the given date. For example, the SAS date for 17 October 1991 is 11612.
Representing dates as the number of days from a reference date makes it easy for the
computer to store them and perform calendar calculations. These numbers are not
meaningful to users, however, so several formats are available for displaying dates
and datetime values in most of the commonly used notations.

136 Chapter 5 • Using Subqueries

Output 5.3 PROC SQL Query Result: Level-1 and Level-2 Flight Attendants

T I P Using the ANY operator to solve this problem results in a large number of
calculations, which increases processing time. For this example, it would be more
efficient to use the MAX function in the subquery. Here is an alternative WHERE
clause:

where jobcode in ('FA1','FA2')
 and dateofbirth <
 (select max(dateofbirth)
 from [...]

Using the ALL Operator
An outer query that specifies the ALL operator selects values that pass the comparison
test with all of the values that are returned by the subquery.

The following comparison shows the effect of using ALL with these common
comparison operators: greater than (>) and less than (<).

Comparison
Operator with ALL

Sample Values Returned by
Subquery Effect

> ALL (20, 30, 40) > 40

(greater than the highest number in
the list)

< ALL (20, 30, 40) < 20

(less than the lowest number in the
list)

Subsetting Data Using Subqueries 137

Example: Using the ALL Operator
Substitute ALL for ANY in the previous query example. The following query identifies
level-1 and level-2 flight attendants who are older than all of the level-3 flight
attendants.

proc sql;
 select empid, jobcode, dateofbirth
 from certadv.payrollmaster
 where jobcode in ('FA1', 'FA2')
 and dateofbirth < all /* 1 */
 (select dateofbirth /* 2 */
 from certadv.payrollmaster
 where jobcode='FA3');
quit;

1 The subquery returns the birth dates of all level-3 flight attendants.

2 The outer query selects only level-1 and level-2 flight attendants whose birth dates
indicate that they are older than any of the others whose birth dates are returned by
the subquery.

The following query results show that only two level-1 or level-2 flight attendants are
older than all of the level-3 flight attendants.

Output 5.4 PROC SQL Query Result: Level-1 and Level-2 Flight Attendants

T I P For this example, it would be more efficient to solve this problem using the MIN
function in the subquery instead of the ALL operator. Here is an alternative WHERE
clause:

where jobcode in ('FA1','FA2')
 and dateofbirth <
 (select min(dateofbirth)
 from [...]

Subsetting Data by Using Correlated Subqueries

A Brief Overview
Correlated subqueries are not evaluated independently because they depend on the
values passed to them by the outer query for results. Correlated subqueries evaluate each

138 Chapter 5 • Using Subqueries

row in the outer query and often require more processing time than noncorrelated
subqueries. Because correlated subqueries are resource intensive, they reduce system
performance. A PROC SQL join is a more efficient alternative to a correlated subquery.

Example: Using Correlated Subqueries
The following PROC SQL query displays the names of all navigators who are also
managers. The WHERE clause in the subquery specifies the column Staffmaster.EmpID,
which is the column that the outer query must pass to the correlated subquery.

proc sql;
 select lastname, firstname
 from certadv.staffmaster
 where 'NA'=
 (select jobcategory
 from certadv.supervisors
 where staffmaster.empid =
 supervisors.empid);
quit;

Note: When a column appears in more than one table, the column name is preceded by
the table name or alias to avoid ambiguity. In this example, EmpID appears in both
tables, so the appropriate table name is specified in front of each reference to that
column.

The output from this query is shown below. There are three navigators who are also
managers.

Output 5.5 PROC SQL Query Result: Navigators Who Are Also Managers

Using the EXISTS and NOT EXISTS Conditional Operators
In the WHERE clause or in the HAVING clause of an outer query, you can use the
EXISTS or NOT EXISTS conditional operators to test for the existence or non-existence
of a set of values returned by a subquery.

Condition Requirement

EXISTS the subquery returns at least one row

NOT EXISTS the subquery returns no data

Note: The operators EXISTS and NOT EXISTS can be used with both correlated and
noncorrelated subqueries.

Example: Correlated Subquery with NOT EXISTS
Consider a sample PROC SQL query that includes the NOT EXISTS conditional
operator. Suppose you are working with the following tables:

Subsetting Data Using Subqueries 139

• Certadv.Flightattendants contains the names and employee ID numbers of all flight
attendants.

• Certadv.Flightschedule contains one row for each crew member who is assigned to a
flight for each date.

As shown in the diagram below, the intersection of these two tables contains data for all
flight attendants who have been scheduled to work.

Figure 5.1 Flight Attendants and Employees Scheduled to Work

Now suppose you want to list by name the flight attendants who have not been
scheduled. That is, you want to identify the data in the area highlighted below.

Figure 5.2 Flight Attendants Not Scheduled to Work

The following PROC SQL query accomplishes this task by using a correlated subquery
and the NOT EXISTS operator.

proc sql;
 select lastname, firstname
 from certadv.flightattendants
 where not exists
 (select * from certadv.flightschedule
 where flightattendants.empid=
 flightschedule.empid);
quit;

Output 5.6 PROC SQL Query Result: List of Employees Not Scheduled for a Flight

140 Chapter 5 • Using Subqueries

Creating and Managing Views Using PROC SQL

A Brief Overview
A PROC SQL view is a stored query expression that reads data values from its
underlying files, which can include SAS data files, DATA step views, other PROC SQL
views, or DBMS data. A view contains only the descriptor and other information
required to retrieve the data values from other SAS files or external files. The view
contains only the logic for accessing the data, but not the data itself.

Because PROC SQL views are not separate copies of data, they are referred to as virtual
tables. They do not exist as independent entities like real tables. However, views use the
same naming conventions as tables and can be used in SAS programs instead of an
actual SAS table. Like tables, views are considered to be SAS data sets. The view
derives its data from the tables or views that are listed in its FROM clause. The data that
is accessed by a view is a subset or superset of the data that is in its underlying tables or
views.

The following statements are true about PROC SQL views:

• They can be used in SAS programs in place of an actual SAS data file.

• They can be joined with tables or other views.

• They can be derived from one or more tables, PROC SQL views, or DATA step
views.

• They can access data from a SAS data set, a DATA step view, a PROC SQL view, or
a relational database table.

• They extract underlying data, which enables you to access the most current data.

Views are useful because for these reasons:

• They often save space (a view is usually quite small compared with the data that it
accesses).

• They prevent users from continually submitting queries to omit unwanted columns or
rows.

• They ensure that input data sets are always current, because data is derived from
tables at execution time.

• They shield sensitive or confidential columns from users while enabling the same
users to view other columns in the same table.

• They hide complex joins or queries from users.

The CREATE VIEW Statement

CREATE VIEW Statement Syntax
You use the CREATE VIEW statement to create a view.

Creating and Managing Views Using PROC SQL 141

Syntax, CREATE VIEW statement:

CREATE VIEW proc-sql-view AS
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

• proc-sql-view specifies the name of the PROC SQL view that you are creating.

• SELECT specifies the column(s) to appear in the table.

• FROM specifies the table(s) or view(s) to be queried.

• optional query clauses are used to refine the query further and include the WHERE,
GROUP BY, HAVING, and ORDER BY clauses.

A PROC SQL view derives its data from the tables or views that are listed in the FROM
clause. The data that is accessed by a view is a subset or superset of the data that is in its
underlying tables or views. When a view is referenced by a SAS procedure or in a DATA
step, it is executed and, conceptually, an internal table is built. PROC SQL processes this
internal table as if it were any other table.

Example: Creating a PROC SQL View
The following PROC SQL step creates a view that contains information for flight
attendants. The view always returns the employee's age as of the current date.

The view Certadv.Faview creates a virtual table from the accompanying SELECT
statement. Although the underlying tables, Certadv.Payrollmaster and
Certadv.Staffmaster, can change, the instructions that make up the view stay constant.

The libref specified in the FROM clause is optional. It is assumed that the contributing
tables are stored in the same library as the view itself, unless otherwise specified.

proc sql;
 create view certadv.faview as
 select lastname, firstname ,
 int((today()-dateofbirth)/365.25) as Age,
 substr(jobcode,3,1) as Level,
 salary
 from certadv.payrollmaster,
 certadv.staffmaster
 where jobcode contains 'FA' and
 staffmaster.empid=
 payrollmaster.empid;
quit;

When this PROC SQL step is submitted, SAS does not actually execute the SELECT
statement that follows the AS keyword, but partially compiles and stores the SELECT
statement in a data file with a member type of VIEW. A message in the SAS log
confirms that the view has been defined.

Log 5.1 SAS Log

NOTE: SQL view CERTADV.FAVIEW has been defined.

T I P It is helpful to give a PROC SQL view a name that easily identifies it as a view
(for example, Faview or Fav).

142 Chapter 5 • Using Subqueries

Note: In the Windows and UNIX operating environments, the default extension for
PROC SQL views and DATA step views is .sas7bvew.

Example: Using a PROC SQL View
You can use a view in a subsequent PROC SQL step, or later in the same step, just as
you would use an actual SAS table.

In the following example, the PROC SQL view Certadv.Faview is used in a query.
Because the query that is stored in the view calculates the age of each flight attendant
based on the current date, the resulting output from this PROC SQL step shows each
flight attendant's age as of the current date. If Certadv.Faview were a static table, instead
of a view, the age shown for each flight attendant would never change.

proc sql;
 select *
 from certadv.faview;
quit;

Output 5.7 PROC SQL Query Result: Certadv.Faview (partial output)

T I P You can use PROC SQL views in other SAS procedures and DATA steps.

The DESCRIBE VIEW Statement

DESCRIBE VIEW Statement Syntax
You can use a DESCRIBE VIEW statement to display a definition of a view in the SAS
log.

Syntax, DESCRIBE VIEW statement:

DESCRIBE VIEW proc-sql-view-1<,...proc-sql-view-n>;

proc-sql-view
specifies a PROC SQL view and can be one of the following:

• a one-level name

• a two-level libref.view name

• a physical pathname that is enclosed in single quotation marks

T I P If you use a PROC SQL view in a DESCRIBE VIEW statement that is based on
or derived from another view, then you might want to use the FEEDBACK option in
the PROC SQL statement. This option displays in the SAS log how the underlying
view is defined and expands any expressions that are used in this view definition.

Creating and Managing Views Using PROC SQL 143

Example: Displaying the Definition of a PROC SQL View
The following PROC SQL step writes the view definition for Certadv.Faview to the SAS
log.

proc sql;
 describe view certadv.faview;
quit;

Log 5.2 SAS Log

NOTE: SQL view CERTADV.FAVIEW is defined as:

 select lastname, firstname, INT((TODAY() - dateofbirth) / 365.25) as
Age,
SUBSTR(jobcode, 3, 1) as Level, salary
 from CERTADV.PAYROLLMASTER, CERTADV.STAFFMASTER
 where jobcode contains 'FA' and (staffmaster.empid =
payrollmaster.empid);

Managing PROC SQL Views

Guidelines for Using PROC SQL Views
• Avoid using an ORDER BY clause in a view definition, which causes the data to be

sorted every time the view is executed. Users of the view might differ in how or
whether they want the data to be sorted, so it is more efficient to specify an ORDER
BY clause in a query that references the view.

• If the same data is used many times in one program or in multiple programs, it is
more efficient to create a table rather than a view because the data must be accessed
at each view reference. This table can be a temporary table in the Work library.

• Avoid creating views that are based on tables whose structure might change. A view
is no longer valid when it references a nonexistent column.

• If a view resides in the same SAS library as the contributing tables, it is best to
specify a one-level name in the FROM clause.

Omitting the Libref
The default libref for the table or tables in the FROM clause is the libref of the library
that contains the view. Using a one-level name in the FROM clause prevents you from
having to change the view if you assign a different libref to the SAS library that contains
the view and its contributing table or tables.

The following PROC SQL step creates the view Certadv.Payrollv. The FROM clause
specifies a two-level name for the contributing table, Certadv.Payrollmaster. However, it
is not necessary to specify the libref Certadv because the contributing table is assumed to
be stored in the same library as the view.

proc sql;
 create view certadv.payrollv as
 select *
 from certadv.payrollmaster;
quit;

When the one-level name Payrollmaster is used in the FROM clause,
Certadv.Payrollmaster is being specified, even though it appears that Work.Payrollmaster
is being specified.

144 Chapter 5 • Using Subqueries

proc sql;
 create view certadv.payrollv as
 select *
 from payrollmaster;
quit;

Note: If you are creating a view that is stored in a different library from that of the
tables that are referenced in the FROM clause, you must specify a two-level name
for the tables.

Using an Embedded LIBNAME Statement
As an alternative to omitting the libref in the FROM clause, you can embed a
LIBNAME statement in a USING clause to store a SAS libref in a view. Embedding a
LIBNAME statement is a more flexible approach for these reasons:

• It can be used regardless of whether the view and the underlying tables reside in the
same library.

• It avoids the confusion that might arise if a libref is omitted from a table name in the
FROM clause.

An embedded LIBNAME statement can be used only with a PROC SQL view. A libref
that is created with an embedded LIBNAME statement will not conflict with an
identically named libref in the SAS session.

Syntax, USING clause:

USING libname-clause-1<,... libname-clause-n>;

libname-clause
is one of the following:

• a valid LIBNAME statement

• a valid SAS/ACCESS LIBNAME statement

T I P The USING clause must be the last clause in the CREATE VIEW statement.

Example: Using an Embedded LIBNAME Statement
In the following example, while the view Certadv.Payrollv is executing in the PROC
PRINT step, the libref Airline is dynamically assigned in the USING clause.

proc sql;
 create view certadv.payrollv as
 select*
 from airline.payrollmaster
 using libname airline 'SAS-library-one';
quit;
proc print data=certadv.payrollv;
run;

If an earlier assignment of the libref AIRLINE exists, the EMBEDDED LIBNAME
statement overrides the assignment for the duration of the view’s execution. After the
view executes, the original libref assignment is re-established and the embedded
assignment is cleared.

Creating and Managing Views Using PROC SQL 145

Creating a View to Enhance Table Security
One advantage of PROC SQL views is that they can bring data together from separate
sources. This enables views to be used to shield sensitive or confidential columns from
some users while enabling the same users to view other columns in the same table.

Note: Although PROC SQL views can be used to enhance table security, it is strongly
recommended that you use the security features that are available in your operating
environment to maintain table security.

The following PROC SQL step creates the view Certadv.Infoview. The view accesses
data about flight attendants that is stored in three SAS libraries: Fa1, Fa2, and Fa3. The
Fa1, Fa2, and Fa3 libraries can be assigned access privileges at the operating system
level to ensure the following results:

• Level-1 flight attendants cannot read the data stored in the Fa2 and Fa3 libraries.

• Level-2 flight attendants cannot read the data stored in the Fa1 and Fa3 libraries.

• Level-3 flight attendants cannot read the data stored in the Fa1 and Fa2 libraries.

Access privileges can also be assigned to permit managers (who are authorized to access
all SAS libraries) to view all of the information.

proc sql;
 create view certadv.infoview as
 select *
 from fa1.info
 outer union corr
 select *
 from fa2.info
 outer union corr
 select *
 from fa3.info;
quit;

Updating PROC SQL Views

A Brief Overview
You can update the data underlying a PROC SQL view using the INSERT, DELETE,
and UPDATE statements under the following conditions:

• You can update only a single table through a view. The table cannot be joined or
linked to another table, nor can it contain a subquery.

• You can update a column using the column's alias, but you cannot update a derived
column. A derived column is a column that is produced by an expression.

• You can update a view that contains a WHERE clause. The WHERE clause can be
specified in the UPDATE clause or in the view. You cannot update a view that
contains any other clause such as an ORDER BY or a HAVING clause.

• You cannot update a summary view, which is a view that contains a GROUP BY
clause.

Updating a view does not change the stored instructions for the view. Only the data in
the underlying tables is updated.

146 Chapter 5 • Using Subqueries

Example: Updating PROC SQL Views
The following PROC SQL step creates the view Certadv.Raisev, which includes the
columns Salary and MonthlySalary. A subsequent query that references the view shows
the columns.

proc sql;
 create view certadv.raisev as
 select empid, jobcode,
 salary format=dollar12.,
 salary/12 as MonthlySalary
 format=dollar12.
 from certadv.payrollmaster;
quit;
proc sql;
 select *
 from certadv.raisev
 where jobcode in ('PT2','PT3');
quit;

Output 5.8 PROC SQL Query Result: Certadv.Raisev

Suppose you want to update the view to show a salary increase for employees whose job
code is PT3. You can use an UPDATE statement to change the column Salary and a
WHERE clause in the UPDATE clause to identify the rows where the value of JobCode
equals PT3. Though MonthlySalary is a derived column and cannot be changed using an
UPDATE statement, it will be updated because it is derived from Salary.

When the PROC SQL step is submitted, a note appears in the SAS log that indicates how
many rows were updated.

proc sql;
 update certadv.raisev
 set salary=salary * 1.20
 where jobcode='PT3';
quit;

Creating and Managing Views Using PROC SQL 147

Log 5.3 SAS Log

NOTE: 2 rows were updated in CERTADV.RAISEV.

Note: Remember that the rows were updated in the table that underlies the view
Certadv.Raisev.

When you resubmit the query, the updated values for Salary and MonthlySalary appear
in the rows where JobCode equals PT3.

proc sql;
 select *
 from certadv.raisev
 where jobcode in ('PT2', 'PT3');
quit;

Output 5.9 PROC SQL Query Result: Certadv.Raisev View with Updated Values

The DROP VIEW Statement

DROP VIEW Statement Syntax
Use the DROP VIEW statement to drop or delete a view.

Syntax, DROP VIEW statement:

DROP VIEW view-name-1 <,...view-name-n>;

view-name
specifies a SAS data view of any type (PROC SQL view or DATA step view) and can be one
of the following:

• a one-level name

• a two-level libref.view name

• a physical pathname that is enclosed in single quotation marks

148 Chapter 5 • Using Subqueries

Example: Dropping a PROC SQL View
The following PROC SQL step drops the view Certadv.Raisev. After the step is
submitted, a message appears in the SAS log to confirm that the view has been dropped.

proc sql;
 drop view certadv.raisev;
quit;

Log 5.4 SAS Log

NOTE: View CERTADV.RAISEV has been dropped.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which PROC SQL query removes duplicate values of MemberType from the query
output, so that only the unique values are listed?

a. proc sql nodup;
 select membertype
 from certadv.frequentflyers;
quit;

b. proc sql;
 select distinct(membertype) as MemberType
 from certadv.frequentflyers;
quit;

c. proc sql;
 select unique membertype
 from certadv.frequentflyers
 group by membertype;
quit;

d. proc sql;
 select distinct membertype
 from certadv.frequentflyers;
quit;

2. Which of the following causes PROC SQL to list rows that have no data in the
Address column?

a. WHERE address is missing

b. WHERE address not exists

c. WHERE address is null

d. Both a and c.

3. You are creating a PROC SQL query to list all employees who have spent (or
overspent) their allotted 120 hours of vacation for the current year. The hours that
each employee used are stored in the existing column Spent. Your query defines a
new column, Balance, to calculate each employee's balance of vacation hours.

Quiz 149

Which query produces the report that you want?

a. proc sql;
 select name, spent, 120-spent as calculated Balance
 from certadv.absences
 where balance <= 0;
quit;

b. proc sql;
 select name, spent, 120-spent as Balance
 from certadv.absences
 where calculated balance <= 0;
quit;

c. proc sql;
 select name, spent, 120-spent as Balance
 from certadv.absences
 where balance <= 0;
quit;

d. proc sql;
 select name, spent, 120-spent as calculated Balance
 from certadv.absences
 where calculated balance <= 0;
quit;

4. Consider this PROC SQL query:

proc sql;
 select flightnumber,
 count(*) as Flights,
 avg(boarded)
 label="Average Boarded"
 format=3.
 from certadv.internationalflights
 group by flightnumber
 having avg(boarded) > 150;
quit;

The table Certadv.Internationalflights contains 201 rows, 7 unique values of
FlightNumber, 115 unique values of Boarded, and 4 different flight numbers that
have an average value of Boarded that is greater than 150. How many rows of output
will the query generate?

a. 150

b. 7

c. 4

d. 1

5. You are writing a PROC SQL query to display the names of all library cardholders
who work as volunteers for the library, and the number of books that each volunteer
currently has checked out. Use one or both of the following tables:

• Certadv.Circulation lists the name and contact information for all library
cardholders, and the number of books that each cardholder currently has checked
out.

• Certadv.Volunteers lists the name and contact information for all library
volunteers.

Assume that the values of Name are unique in both tables.

150 Chapter 5 • Using Subqueries

Which of the following PROC SQL queries will produce your report?

a. proc sql;
 select name, checkedout
 from certadv.circulation
 where * in
 (select *
 from certadv.volunteers);
quit;

b. proc sql;
 select name, checkedout
 from certadv.circulation
 where name in
 (select name
 from certadv.volunteers);
quit;

c. proc sql;
 select name
 from certadv.volunteers
 where name, checkedout in
 (select name, checkedout
 from certadv.circulation);
quit;

d. proc sql;
 select name, checkedout
 from certadv.circulation
 where name in
 (select name
 from certadv.volunteers);
quit;

6. By definition, a noncorrelated subquery is a nested query that does which of the
following?

a. returns a single value to the outer query

b. contains at least one summary function

c. executes independently of the outer query

d. requires only a single value to be passed to it by the outer query

7. Which statement about the following PROC SQL query is false?

proc sql;
 validate
 select name label='Country',
 rate label='Literacy Rate'
 from certadv.literacy
 where 'Asia' =
 (select continent
 from certadv.continents
 where literacy.name =
 continents.country)
 order by 2;
quit;

a. The query syntax is not valid.

Quiz 151

b. The outer query must pass values to the subquery before the subquery can return
values to the outer query.

c. PROC SQL will not execute this query when it is submitted.

d. After the query is submitted, the SAS log indicates whether the query has valid
syntax.

8. Consider the following PROC SQL query:

proc sql;
 select lastname, firstname, total, since
 from certadv.donors
 where not exists
 (select lastname
 from certadv.current
 where donors.lastname =
 current.lastname);
quit;

The query references two tables:

• Certadv.Donors lists name and contact information for all donors who have made
contributions since the charity was founded. The table also contains these two
columns: Total, which shows the total dollars given by each donor, and Since,
which stores the first year in which each donor gave money.

• Certadv.Current lists the names of all donors who have made contributions in the
current year, and the total dollars each has given this year (YearTotal).

Assume that the values of LastName are unique in both tables.

What will the output of this query display?

a. all donors whose rows do not contain any missing values

b. all donors who made a contribution in the current year

c. all donors who did not make a contribution in the current year

d. all donors whose current year's donation in Certadv.Current has not yet been
added to Total in Certadv.Donors

9. Which statement about data remerging is true?

a. When PROC SQL remerges data, it combines data from two tables.

b. By using data remerging, PROC SQL can avoid making two passes through the
data.

c. When PROC SQL remerges data, it displays a related message in the SAS log.

d. PROC SQL does not attempt to remerge data unless a subquery is used.

10. A public library has several categories of books. Each book in the library is assigned
to only one category. The table Certadv.Inventory contains one row for each book in
the library. The Checkouts column indicates the number of times that each book has
been checked out.

You want to display only the categories that have an average circulation (number of
checkouts) that is less than 2500. Does the following PROC SQL query produce the
results that you want?

proc sql;
title 'Categories with Average Circulation';
title2 'Less than 2500';

152 Chapter 5 • Using Subqueries

 select category, avg(checkouts) as AvgCheckouts
 from certadv.inventory
 having avg(checkouts) < 2500
 order by 1;
quit;

a. No. This query will not run because a HAVING clause cannot contain a summary
function.

b. No. This query will not run because the HAVING clause must include the
CALCULATED keyword before the summary function.

c. No. Because there is no GROUP BY clause, the HAVING clause treats the entire
table as one group.

d. Yes.

Quiz 153

154 Chapter 5 • Using Subqueries

Chapter 6

Advanced SQL Techniques

Creating Data-Driven Macro Variables with PROC SQL 155
Creating Data-Driven Macro Variables with the INTO Clause 155
Displaying Macro Variable Values . 157
Removing Leading and Trailing Blanks . 157
Concatenating Values in Macro Variables . 158
Applying a Format to Character and Numeric Variables . 159

Accessing DBMS Data with SAS/ACCESS . 161
A Brief Overview . 161
SQL Pass-Through Facility . 162
SAS/ACCESS LIBNAME Engine . 164

The FedSQL Procedure . 165
A Brief Overview . 165
Comparing PROC FedSQL and PROC SQL . 166
PROC FEDSQL Syntax . 166
The LIBNAME Statement . 167
The LIMIT Clause . 168
The PUT Function . 169
System Options in FedSQL . 170

Quiz . 171

Creating Data-Driven Macro Variables with PROC
SQL

A SAS macro variable stores text that is substituted in your code when SAS runs the
program. Macro variable execution is similar to an automatic find-and-replace. Macro
variables are temporary, and they are stored in-memory, so when you exit SAS, they are
deleted. However, you can create data-driven macro variables with a PROC SQL query
and then use those macro variables in your SAS program, procedure, and DATA step.

Creating Data-Driven Macro Variables with the INTO Clause

The INTO Clause
You can access the macro facility in a PROC SQL step by using the INTO clause in the
SELECT statement. The various forms of the INTO clause can perform a variety of
functions. For example, you can create a series of macro variables, a varying number of

155

macro variables, or a single macro variable that records a value that is the result of
concatenating the unique values of an SQL variable.

The INTO clause in a SELECT statement enables you to create or update macro
variables. You can create multiple macro variables from query results. If the macro
variable does not exist, INTO creates it. The INTO clause in the SELECT statement can
also assign the result of a query to a macro variable. However, the INTO clause can be
used only in the outer query of a SELECT statement and not in a subquery. Note that the
INTO clause cannot be used when you are creating a table or a view.

Syntax, INTO clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

INTO: macro-variable-specification-1 <..., :macro-variable-specification-n>
QUIT;

macro-variable-specification
names one or more macro variables to create or update. Precede each macro variable name
with a colon (:).

Note: When you create or update macro variables during execution of a PROC SQL
step, you might not want any output to be displayed. The PRINT | NOPRINT option
specifies whether a SELECT statement's results are displayed in output. PRINT is
the default setting.

T I P Values that are assigned by the INTO clause use the BEST8. format.

Step 1: Create the Macro Variable
Suppose you are asked to find out which employees who were hired after 01JAN2015
are earning above the average salary for the company. First, create the macro variable
AvgSal.

proc sql;
 select avg(Salary)
 into:avgSal
 from certadv.payrollmaster;
quit;

The average salary value is stored in the AvgSal macro variable. If the query produces
more than one row of output, the macro variable contains only the value from the first
row. If the query has no rows in its output, the macro variable is not modified. If the
macro variable does not yet exist, it is not created.

Step 2: Use the Macro Variable
You can use the macro variable AvgSal in titles and queries.

title "Salaries above: &AvgSal";
proc sql;
 select EmpID, JobCode, Salary, DateofHire
 from certadv.payrollmaster
 where Salary>&avgSal and DateofHire>'01JAN2015'd;
quit;

The query above filters the data by the value of the AvgSal macro variable. The query
returns rows for all employees earning above the average salary.

156 Chapter 6 • Advanced SQL Techniques

Output 6.1 PROC SQL Query Result

T I P You can format the macro variable value in the title by using SAS functions and
formats. Here is an example: title "Salaries above:
%left(%qsysfunc(putn(&AvgSal,dollar16.)))";

Displaying Macro Variable Values
You can use the %PUT statement to display the resolved macro value in the SAS log.
This is a good debugging technique to ensure that the value is what you expected.

Syntax, %PUT statement:

%PUT text;

text
is any text string.

Suppose you want to view the macro variable’s value after you have used the NOPRINT
option. You can use the %PUT statement to view the value.

%put avgsal=&avgSal;

The value of the macro variable is printed in the SAS log.

Log 6.1 SAS Log

avgSal=54079.62

T I P You can also enter the following code %put &=AvgSal; and receive the same
value for the macro variable as above.

Removing Leading and Trailing Blanks
When storing a value in a single macro variable, PROC SQL preserves leading or
trailing blanks. You can remove leading and trailing blanks by using the TRIMMED
option in the INTO clause.

Creating Data-Driven Macro Variables with PROC SQL 157

Syntax, INTO clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

INTO: macro-variable-specification-1 <..., :macro-variable-specification-n>
TRIMMED

QUIT;

The following example illustrates the difference between using and not using the
TRIMMED option to remove leading and trailing blanks.

proc sql;
 select min(PointsEarned)
 into:MinMiles
 from certadv.frequentflyers;
quit;
%put &=MinMiles;

The following is printed to the SAS log.

MINMILES= 146

In HTML output, the spaces are automatically removed, so extra spaces are not
noticeable there. If your output is sent to the SAS log or is printed in a format other than
HTML, you can still see the leading and trailing blanks.

Output 6.2 PROC SQL Query Result

If you included the TRIMMED option in the INTO clause, the macro variable is
captured with no leading or trailing blanks.

proc sql;
 select min(PointsEarned)
 into:MinMiles trimmed
 from certadv.frequentflyers;
quit;
%put &=MinMiles;

The following is printed to the SAS log.

Log 6.2 SAS Log

MINMILES=146

Concatenating Values in Macro Variables
Sometimes, during execution of a PROC SQL step, you might want to create one macro
variable that holds all values of a certain data set variable. You can use an alternate form
of the INTO clause in order to take the values of a column and concatenate them into the

158 Chapter 6 • Advanced SQL Techniques

value of one macro variable. Use the SEPARATED BY keyword to specify a character
to delimit the values into a macro variable.

Syntax, INTO clause:

PROC SQL <options>;
SELECT column-1 <,...column-n>

INTO: macro-variable-1 <..., :macro-variable-n> SEPARATED BY “delimiter”
QUIT;

delimiter
is enclosed in quotation marks and specifies the character that is used as a delimiter in the
value of the macro variable.

Note: This form of the INTO clause removes leading and trailing blanks from each
value before performing the concatenation of values.

Suppose you want to create a macro variable named Sites that contains the names of all
the training centers in your Certadv.Schedule data set. The names are separated by
blanks.

proc sql noprint;
 select distinct location into: sites separated by ' '
 from certadv.schedule;
quit;

Now, you can use the Sites macro variable in the title for your query or procedure result.

title1 "Total Revenue";
title2 "from Course Sites: &sites";
proc means data=certadv.all sum maxdec=0;
 var fee;
run;

Output 6.3 PROC MEANS Output

Applying a Format to Character and Numeric Variables
Suppose you have census data, Certadv.Census. You are asked to create a report that
finds the states where the estimated population for 2018 is greater than the average
census population in April 2010. You are also asked to find the difference between the
census data and the population estimate for 2018 where the population estimate for 2018
is greater than 10 million.

Creating Data-Driven Macro Variables with PROC SQL 159

The following example creates two different macro variables, CensusAvg2010 and
CensusAvg2010_Format. The CensusAvg2010 macro variable has no format applied to
the value of the macro variable. The CensusAvg2010_Format applies the COMMA16.
format to the value of the macro variable.

proc sql noprint;
 select avg(Census_Apr2010) as No_Format,
 avg(Census_Apr2010) as Format format=comma16.
 into:CensusAvg2010,
 :CensusAvg2010_Format
 from certadv.census;
quit;

The following example creates one macro variable, StateList, with the UPCASE23.
format applied to the value of the macro variable. The value of the macro variable is
filtered based on criteria in the WHERE clause and is ordered by the state name.

proc sql noprint;
 select State format=$upcase23. as State
 into:StateList separated by ', '
 from certadv.census
 where PopEst_Apr2018>&CensusAvg2010 and PopEst_Apr2018>10000000
 order by State
;
quit;
%put &=StateList;

The following is printed to the SAS log.

Log 6.3 SAS Log

ARIZONA, CALIFORNIA, FLORIDA, GEORGIA, ILLINOIS, INDIANA, MARYLAND,
MASSACHUSETTS,
MICHIGAN, MISSOURI, NEW JERSEY, NEW YORK, NORTH CAROLINA, OHIO, PENNSYLVANIA,
TENNESSEE, TEXAS,
VIRGINIA, WASHINGTON

The following example produces a query result using the macro variables created above.

title "States with Population Estimates Above Census Avg: &CensusAvg2010_Format";
footnote "&StateList";
proc sql;
 select strip(State) format=$upcase23. as State,
 Census_Apr2010 format=comma12.,
 PopEst_Apr2010 format=comma12.,
 (PopEst_Apr2018-Census_Apr2010) format=comma12. as PopChange
 from certadv.census
 where PopEst_Apr2018>&CensusAvg2010 and PopEst_Apr2018>10000000
 order by State;
quit;
title;
footnote;

160 Chapter 6 • Advanced SQL Techniques

Output 6.4 PROC SQL Query Result

Accessing DBMS Data with SAS/ACCESS

A Brief Overview
The SAS/ACCESS interface engine is a tool that enables you to transfer data between a
database management system (DBMS) and SAS. SAS can access a variety of DBMS,
such as Teradata, Oracle, SQL Server, Greenplum, and so on. This particular interface
engine has transparent Read and Write access capabilities, so you might be reading
Teradata data and not even realize it.

SAS/ACCESS offers interface engines that enable you to read third-party data. For
example, if you need to read data in DB2, there is a SAS/ACCESS Interface engine to
DB2. If you need to read Oracle, there is a SAS/ACCESS Interface to Oracle, and an
Oracle engine.

Figure 6.1 SAS/ACCESS Technology

When using SAS and working with a DBMS, you must take into account the data
transfer between the two systems.

Accessing DBMS Data with SAS/ACCESS 161

The best way to have more efficient code is first to maximize the amount of processing
that occurs on the DBMS. Then bring the data back to SAS for more advanced data
manipulation, analytics, or visualizations.

There are two ways to connect to a database in SAS:

• SQL pass-through facility

• SAS/ACCESS LIBNAME statement

In the SQL pass-through facility, you can pass the SQL statements directly to the
database.

In most instances, the SAS/ACCESS LIBNAME statement enables you to use a library
reference that you assign to your relational database. It enables you to reference a
database object directly within your SAS code. For example, where you would
traditionally use a SAS data set name in your DATA step, you can use the name of your
database table in the DATA step, as well as any of the SAS procedures. There are many
options such as the SQL pass-through facility and the SAS/ACCESS LIBNAME engine
that control how you connect directly to the database.

When you are reading data from a specific database, each SAS/ACCESS LIBNAME
statement provides an engine name as part of the LIBNAME statement syntax.

SQL Pass-Through Facility

A Brief Overview
Suppose you are an Oracle SQL analyst, and you want to pull data from your Oracle
database into SAS. You can use the SQL pass-through facility to send DBMS-specific
SQL statements directly to Oracle for execution. The syntax executes as if you are
coding inside Oracle, and processing occurs within Oracle. Once the Oracle query
completes execution, the data is sent to SAS for processing.

Figure 6.2 SQL Pass-Through Facility

With the pass-through facility, you can perform a native SQL query inside a DBMS
using PROC SQL. To accomplish this, perform the following tasks inside the SQL
procedure:

1. Establish a connection with the DBMS by using a CONNECT statement.

2. Retrieve data from the DBMS to be used in a PROC SQL query with the
CONNECTION TO component in a SELECT statement's FROM clause.

3. Terminate the connection with the DISCONNECT statement.

162 Chapter 6 • Advanced SQL Techniques

CONNECT Statement Syntax
The CONNECT statement establishes a connection to send DBMS-specific SQL
statements to the DBMS or to retrieve DBMS data. The connection remains in effect
until you can issue a DISCONNECT statement or terminate the SQL procedure.

Syntax, CONNECT statement:

PROC SQL;
CONNECT TO DBMS-name <AS alias> (DBMS-connection-options);

QUIT;

dbms-name
identifies the database management system to which you want to connect. You must specify
the DBMS name for your SAS/ACCESS interface. You can also specify an optional alias.

alias
specifies for the connection an optional alias that has 1 to 32 characters. If you specify an
alias, the keyword AS must appear before the alias. If an alias is not specified, the DBMS
name is used as the name of the SQL pass-through connection.

DBMS-connection-options
specifies values for DBMS-specific arguments that PROC SQL needs in order to connect to
the DBMS. Though they are optional for most databases, you must enclose the values in
parentheses if you include any.

The CONNECT statement establishes a connection with the DBMS. Depending on your
DBMS setup, you might have to specify specific DBMS connection arguments.

Once you connect to the DBMS, you can submit SELECT or EXECUTE statements.

DISCONNECT Statement Syntax
The DISCONNECT statement ends the connection with the DBMS. If you do not
include the DISCONNECT statement, SAS performs an implicit DISCONNECT when
PROC SQL terminates. The SQL procedure continues to execute until you submit a
QUIT statement, another SAS procedure, or a DATA step. Any return code or message
that is generated by the DBMS is available in the macro variables SQLXRC and
SQLXMSG after the statement executes.

Syntax, DISCONNECT statement:

PROC SQL;
CONNECT TO dbms-name <AS alias> (DBMS-connection-options);

DISCONNECT FROM dbms-name | alias
QUIT;

dbms-name
specifies the database management system from which you want to disconnect. You must
either specify the DBMS name for your SAS/ACCESS interface or use an alias in the
DISCONNECT statement.

Note: If you used the CONNECT statement to connect to the DBMS, the DBMS name or
alias in the DISCONNECT statement must match what you specified in the CONNECT
statement.

alias
specifies an alias that was defined in the CONNECT statement.

Accessing DBMS Data with SAS/ACCESS 163

Example: Connecting to an Oracle Database
This example connects to Oracle and performs a simple query on the Customers table.

proc sql;
 connect to oracle (user=User password=Student827 path=localhost);
 select *
 from connection to oracle
 (select * from customers
 where customer like '1%');
 disconnect from oracle;
quit;

Additional Notes about the SQL Pass-Through Facility
When you are using the SQL pass-through facility, there are a few advantages and
disadvantages to keep in mind. The DBMS optimizes data summarization, ordering
tables, joining, and querying because DBMS SQL code is executed within the DBMS.
Any DBMS-specific functions and features can be used. You can also combine SAS
features with DBMS-specific features within your query. For example, you can use SAS
labels and formats with DBMS-specific features. The results of your query can be saved
as a SAS data file or SAS view.

Only the SQL code that is within the parentheses is passed to the DBMS. If you are
returning results that contain an ORDER BY clause outside the DBMS-specific SQL
query, the ordering of the table occurs in SAS. This also applies to labels and formats. If
you specify WHERE processing or sorting within SAS step (for example, as an SQL
view), the SQL view executes the instructions within the DBMS. However, the results
that are returned are executed by SAS.

SAS/ACCESS LIBNAME Engine

A Brief Overview
If you are familiar with the LIBNAME statement, recall that it enables you to assign a
library reference, or an alias, to a SAS library. The syntax for the LIBNAME statement
is the keyword LIBNAME, followed by the library reference name, the location of your
SAS data in quotation marks, and some options. When you name a library reference, the
name can be between one and eight characters long. The name must begin with a letter
or an underscore, and it can continue with any number of characters, letters, or numbers
and underscores up to eight.

For example, suppose your company uses Teradata, and you need to connect to the
database.

When you are using the SAS/ACCESS LIBNAME statement, it enables you to make a
connection to Teradata. It establishes a library reference that acts as an alias, or a
nickname, to Teradata. This enables you to use the Teradata tables with the SAS syntax,
where you reference the table name as a two-level name. It also enables you to use the
Teradata table in order to update the table, if you have the correct authority to do so. The
SAS/ACCESS LIBNAME statement also enables you to use SAS/ACCESS LIBNAME
options to specify how Teradata objects are processed by SAS. Last, it enables you to
customize how to connect to Teradata.

When you are using PROC SQL with the SAS/ACCESS LIBNAME engine connection
to a database, the engine converts PROC SQL syntax to the native SQL of the database
wherever possible.

164 Chapter 6 • Advanced SQL Techniques

Figure 6.3 SAS/ACCESS LIBNAME Statement

When you are reading data from a specific database, each SAS/ACCESS LIBNAME
statement provides an engine name as part of the LIBNAME statement syntax.

The SAS/ACCESS LIBNAME Statement
The LIBNAME statement enables you to assign a library reference, or an alias, to a
database. To use the SAS/ACCESS LIBNAME statement, specify a libref, engine-name,
and necessary connection options to connect to the database.

Syntax, SAS/ACCESS LIBNAME statement:

LIBNAME libref engine <SAS/ACCESS-engine-options>;

• libref is the name of the SAS library.

• engine is the name of the SAS/ACCESS engine.

• SAS/ACCESS-engine-options depend on the SAS/ACCESS engine that you are using.

Closing the DBMS Connection
You can submit a LIBNAME statement with the CLEAR option to release the DBMS
and associated resources. It is a good practice to close the DBMS connection when you
end your session.

LIBNAME libref clear;

The FedSQL Procedure

A Brief Overview
SAS FedSQL is a SAS proprietary implementation of ANSI SQL:1999 core standard. It
provides support for new data types and other ANSI 1999 core compliance features and
proprietary extensions.

At the highest level, FedSQL provides a common ANSI SQL syntax across all data
sources. FedSQL is a vendor-neutral SQL dialect that accesses data from various data
sources without having to submit queries in the SQL dialect that is specific to the data
source (or DBMS). An ANSI standard SQL allows for as much processing to be pushed
into a DBMS as possible.

The FedSQL Procedure 165

FedSQL is not a replacement for PROC SQL. On the contrary, both are tools that are
used for specific scenarios. They offer different strengths for different situations.
However, when you know one, you can easily transition to another.

Comparing PROC FedSQL and PROC SQL

Table 6.1 Comparing PROC FedSQL and PROC SQL

PROC FedSQL PROC SQL

Complies with ANSI standard 3. Follows ANSI standard 2.

Processes 17 ANSI data types. Is limited to SAS data types (numeric or
character).

Provides vendor-neutral ANSI SQL. Provides SAS SQL implementation.

Is fully multi-threaded on the SAS Platform. Is multi-threaded for sorting and indexing on
the SAS Platform.

Includes very few non-ANSI SAS
enhancements.

Includes many non-ANSI standard SAS
enhancements.

• PROC FedSQL processes 17 ANSI data types including BIGINT, BINARY(n),
CHAR(), VARCHAR(). PROC SQL is limited to only SAS data types: numeric or
character.

• As noted, PROC FedSQL enables you to work with ANSI data types. Some ANSI
data types allow for numbers larger than 15-16 digits, and FedSQL enables you to
work with them accurately.

• PROC FedSQL provides a scalable, threaded, high-performance way to access,
manage, and share relational data in multiple data sources. When possible, PROC
FedSQL queries are optimized with multi-threaded algorithms in order to resolve
large-scale operations. By contrast, PROC SQL is mostly a single-threaded
procedure, and PROC SQL only sorts and indexes multi-threaded on the SAS
Platform.

PROC FEDSQL Syntax
The foundation of the PROC FedSQL syntax is similar to PROC SQL. The only major
change is the PROC name: Instead of PROC SQL, write PROC FedSQL.

166 Chapter 6 • Advanced SQL Techniques

Syntax, PROC FEDSQL step:

PROC FedSQL;
SELECT col-name

FROM input-table
<WHERE clause>
<GROUP BY clause>
<HAVING clause>
<ORDER BY clause>

;
QUIT;

The LIBNAME Statement
PROC FedSQL can process any data set that is accessible via libref with a supported
engine. In order to connect to a data source, the FedSQL language requires that a
connection string be submitted. The connection string defines how FedSQL can connect
to a data source. The FedSQL procedure generates a connection string by using the
attributes of currently assigned librefs. First, submit a LIBNAME statement for the data
source that you want to access (for example, submit a Base SAS LIBNAME statement or
a Hadoop LIBNAME statement). Then run PROC FedSQL.

Syntax, PROC FedSQL step:

LIBNAME libref-engine <SAS/ACCESS-engine-options>;
PROC FedSQL;

SELECT col-name
FROM input-table
<WHERE clause>
<GROUP BY clause>
<HAVING clause>
<ORDER BY clause>

;
QUIT;

To run PROC FedSQL, specify the LIBNAME statement with the correct SAS/ACCESS
engine and connection options. Then reference the DBMS table like a SAS library.

libname market oracle user=cert password=student
 path=localhost schema=Analyst;
proc fedsql;
 select State,
 count(*) as TotalCustomer format=comma14.
 from market.customer
 where CreditScore > 650
 group by State
 order by TotalCustomer desc;
quit;

The FedSQL Procedure 167

The LIMIT Clause
Suppose you wanted to limit the number of rows that the SELECT statement displays in
the query output. With PROC SQL you could use INOBS= or OUTOBS=, but those
options are not available in PROC FedSQL. However, you can use the LIMIT clause to
specify the number of rows that the SELECT statement returns. The LIMIT clause is
similar to OUTOBS=, but is a much more common approach to limit SQL query output
rows in ANSI systems.

Syntax, LIMIT clause:

LIBNAME libref-engine <SAS/ACCESS-engine-options>;
PROC FedSQL;

SELECT col-name
FROM input-table
<LIMIT {count}>

;
QUIT;

count
specifies the number of rows that the SELECT statement returns.

T I P count can be an integer or any simple expression that
resolves to an integer value.

Note: When you use the LIMIT clause, it is recommended that you use an ORDER BY
clause to create an ordered sequence. Otherwise, you can get an unpredictable subset
of a query's rows.

Suppose you want to create a FedSQL query that contains the variables State,
Census_Apr2010, and PopEst_Apr2018. The query is ordered by the state name.
However, you want to limit the result to the first ten rows only.

libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select State, Census_Apr2010, PopEst_Apr2018
 from certadv.census
 order by State
 limit 10;
quit;

168 Chapter 6 • Advanced SQL Techniques

Output 6.5 PROC FedSQL Query Result

The PUT Function
Suppose you want to format the output of a FedSQL query. In PROC SQL, you would
use the FORMAT statement in the SELECT clause to apply the format. However, in
FedSQL, the FORMAT statement does not work in applying a format to the output.

Use the PUT function to apply a format to a value in the FedSQL list to change its
appearance. It is not analogous to applying a format using FORMAT= in PROC SQL.
Using PUT to format a value in FedSQL also modifies the column's data type in the
result set.

Syntax, PUT function:

LIBNAME libref-engine <SAS/ACCESS-engine-options>;
PROC FedSQL;

SELECT col-name <PUT(col-name, format) as col-name>
FROM input-table

;
QUIT;

col-name
identifies the variable or constant whose value you want to reformat.

format
contains the SAS or FedSQL format that you want applied to the variable or constant that is
specified in the source.

Formats can be associated with any of the data types that are supported by FedSQL.
However, the data types are converted. Any value that is passed to the PUT function
with a numeric format is converted to NVARCHAR, VARBINARY, or BINARY. The
type conversions are carried out based on the format name. Any value that is passed with
a character format to the PUT function is converted to NVARCHAR.

If the result set is saved using a CREATE TABLE statement, columns that are formatted
with a PUT function have a new data type (NVARCHAR, VARBINARY, or BINARY)
instead of the data type that is found in the source table. Column values and data types in
the source table are not affected.

The FedSQL Procedure 169

Suppose you need to format your query output. There are two ways to use the PUT
function to do that.

The first way is to use the PUT function with no AS keyword. This method replaces the
column names with a generic column name such as Column.

libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select SalesRep,
 put(Sales1, dollar10.2),
 put(Sales2, dollar10.2),
 put(Sales3, dollar10.2),
 put(Sales4, dollar10.2)
 from certadv.qsales;
quit;

Output 6.6 PROC FedSQL Query Result

The second method is to use the AS keyword and include either the current or new
variable name for each time a format is associated using the PUT function.

libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select SalesRep,
 put(Sales1, dollar10.2) as Sales1,
 put(Sales2, dollar10.2) as Sales2,
 put(Sales3, dollar10.2) as Sales3,
 put(Sales4, dollar10.2) as Sales4
 from certadv.qsales;
quit;

Output 6.7 PROC FedSQL Query Result

System Options in FedSQL
FedSQL does not provide any options that affect the processing of an entire SAS
program or interactive SAS session from the time the option is specified until it is
changed. Nor does FedSQL support SAS system options, with the exception of certain
SAS invocation options such as NOPRINT and NUMBER.

170 Chapter 6 • Advanced SQL Techniques

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following correctly creates a macro variable in a PROC SQL step?

a. proc sql noprint;
 select avg(Days)
 into:NumDays
 from certadv.all;
quit;
%put &=NumDays;

b. proc sql noprint;
 select avg(Days)
 into NumDays
 from certadv.all;
quit;
%put &=NumDays;

c. proc sql noprint;
 select avg(Days) as NumDays
 from certadv.all;
quit;
%put &=NumDays;

d. proc sql noprint;
 select Days
 into avg(Days) as NumDays
 from certadv.all;
quit;
%put &=NumDays;

2. Suppose you are asked to create a report of the courses that are offered in all three
available locations. The report should not contain any duplicate items. Which
program correctly displays the following query result?

a. proc sql noprint;
 select distinct strip(Location) format=$upcase8.
 as LocalList separated by ', '
 from certadv.schedule

Quiz 171

 order by Location
;
quit;

%put &=LocalList;
footnote;
title "Courses Offered in &LocalList";
proc sql;
 select distinct Course_Code, Course_Title, Fee
 from certadv.all
 order by Course_Code;
quit;

b. proc sql noprint;
 select distinct strip(Location) format=$upcase8. as Location
 into LocalList separatedby ', '
 from certadv.schedule
 order by Location
;
quit;

%put &=LocalList;
footnote;
title "Courses Offered in &LocalList";
proc sql;
 select distinct Course_Code, Course_Title, Fee
 from certadv.all
 order by Course_Code;
quit;

c. proc sql noprint;
 select distinct strip(Location) format=$upcase8. as Location
 into:LocalList separated by ', '
 from certadv.schedule
 order by Location
;
quit;

%put &=LocalList;
footnote;
title "Courses Offered in &LocalList";
proc sql;
 select distinct Course_Code, Course_Title, Fee
 from certadv.all
 order by Course_Code;
quit;

d. proc sql noprint;
 select distinct strip(Location) format=$upcase8. as Location
 into:LocalList separated by ', '
 from certadv.schedule
 order by Location
;
quit;

%put &=LocalList;
footnote;
title "Courses Offered in &LocalList";

172 Chapter 6 • Advanced SQL Techniques

proc sql;
 select distinct strip(Location) format=$upcase8. as Location,
 Course_Code, Course_Title, Fee
 into:LocalList separated by ', '
 from certadv.all
 order by Course_Code;
quit;

3. Complete the following SQL code to remove leading and trailing blanks when
storing the value of the macro variable CensusAvg2010.

proc sql noprint;
 select avg(Census_Apr2010),

 from certadv.census
;
quit;
%put &=CensusAvg2010;

a. into:CensusAvg2010 separated by ''

b. into CensusAvg2010 separated by ''

c. intoCensusAvg2010 trimmed

d. into:CensusAvg2010 trimmed

4. Suppose you are asked to concatenate the list of instructors who teach at the Dallas
location and suppose also that the begin date for the course is after 01JAN2020. The
list of instructors should be stored in a macro variable and should be separated by a
comma with no leading or trailing blanks. Which SQL program would correctly
accomplish the task?

a. proc sql noprint;
 select distinct Teacher format=$upcase21.
 into:NameListDallas separated by ','
 from certadv.schedule
 where Location='Dallas' and Begin_Date>'01JAN2020'd;
quit;
%put &=NameListDallas;

b. proc sql noprint;
 select distinct Teacher format=$upcase21.
 into:NameListDallas separated by ',' trimmed
 from certadv.schedule
 where Location='Dallas' and Begin_Date>'01JAN2020'd;
quit;
%put &=NameListDallas;

c. proc sql noprint;
 select distinct Teacher format=$upcase21.,
 into NameListDallas separated by ','
 from certadv.schedule
 where Location='Dallas' and Begin_Date>'01JAN2020'd;
quit;
%put &=NameListDallas;

d. proc sql noprint;
 select distinct Teacher format=$upcase21. as NameListDallas
 separated by ',' trimmed
 from certadv.schedule
 where Location='Dallas' and Begin_Date>'01JAN2020'd;

Quiz 173

quit;
%put &=NameListDallas;

5. What is the FedSQL equivalent of the following PROC SQL query?

proc sql;
 select State,
 Census_Apr2010 format=comma12.,
 PopEst_Apr2018 format=comma12.,
 (PopEst_Apr2018-Census_Apr2010) format=comma12. as PopChange
 from certadv.census
 where Census_Apr2010>PopEst_Apr2018
 order by State;
quit;

a. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select State,
 Census_Apr2010 format=comma12.,
 PopEst_Apr2018 format=comma12.,
 (PopEst_Apr2018-Census_Apr2010) format=comma12. as PopChange
 from certadv.census
 where Census_Apr2010>PopEst_Apr2018
 order by State;
quit;

b. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select State,
 put(Census_Apr2010, comma12.) as Census_Apr2010,
 put(PopEst_Apr2018, comma12.) as PopEst_Apr2018,
 put(PopEst_Apr2018-Census_Apr2010, comma12.) as PopChange
 from certadv.census
 where Census_Apr2010>PopEst_Apr2018
 order by state;
quit;

c. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select State,
 Census_Apr2010,
 PopEst_Apr2018,
 (PopEst_Apr2018-Census_Apr2010) as PopChange
 from certadv.census
 where Census_Apr2010>PopEst_Apr2018
 order by State;
quit;

d. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select State,
 Census_Apr2010,
 PopEst_Apr2018,
 (PopEst_Apr2018-Census_Apr2010) as PopChange
 from certadv.census
 where Census_Apr2010>PopEst_Apr2018
 order by State;
 format Census_Apr2010 PopEst_Apr2018 PopChange comma8.
quit;

174 Chapter 6 • Advanced SQL Techniques

6. What is the FedSQL equivalent of the following PROC SQL query?

proc sql inobs=5;
 select *
 from certadv.airports
 order by ID;
quit;

a. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql inobs=5;
 select *
 from certadv.airports
 order by ID;
quit;

b. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql limit 10;
 select *
 from certadv.airports
 order by ID;
quit;

c. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select *
 from certadv.airports
 order by ID
 limit=5;
quit;

d. libname certadv v9 'C:\Users\Student\certadv\';
proc fedsql;
 select*
 from certadv.airports
 order by ID
 limit=5;
quit;

Quiz 175

176 Chapter 6 • Advanced SQL Techniques

Part 2

SAS Macro Language
Processing

Chapter 7
Creating and Using Macro Variables . 179

Chapter 8
Storing and Processing Text . 197

Chapter 9
Working with Macro Programs . 231

Chapter 10
Advanced Macro Techniques . 259

177

178

Chapter 7

Creating and Using Macro
Variables

Introducing Macro Variables . 179
A Brief Overview . 179
Example: Using Macro Variables . 180

The SAS Macro Facility . 181
SAS Processing of Macros . 181
Tokenization . 182
Macro Triggers . 187

Using Macro Variables . 188
Using User-Defined Macro Variables . 188
Using Automatic Macro Variables . 188

Troubleshooting Macro Variable References . 190
SYMBOLGEN Option Syntax . 190
Example: Using the SYMBOLGEN Option . 191
%PUT Statement Syntax . 191
Example: Using the %PUT Statement . 191
The %SYMDEL Statement . 192

Delimiting Macro Variable References . 193
A Brief Overview . 193
Example: Using a Delimiter to Reference Macro Variables 193

Quiz . 194

Introducing Macro Variables

A Brief Overview
The SAS macro facility is a tool for extending and customizing SAS. It also reduces the
amount of program code that you enter to perform common tasks. The macro facility has
its own language, which enables you to package small or large amounts of text into units
that are assigned names called macro variables. After a macro variable is created, you
can insert the text into your code simply by referencing the macro variable by its name.

SAS macro variables enable you to substitute text in your SAS programs. Macro
variables can also provide the following information:

• operating system

179

• SAS session

• text strings

When you reference a macro variable in a SAS program, SAS replaces the reference
with the text value that has been assigned to that macro variable. By substituting text
into the program, SAS macro variables make your programs more reusable and dynamic.

There are two types of macro variables:

• automatic macro variables, which are provided by SAS

• user-defined macro variables, whose values you create and define

Whether automatic or user-defined, a macro variable is independent of a SAS data set
and contains one text string value that remains constant until you change it. The value of
a macro variable is substituted into your program wherever the macro variable is
referenced.

Macro variables are stored in the global symbol table that makes the values available in
your SAS session.

Macro variables can be defined and referenced anywhere in a SAS program except
within the data lines of a DATALINES statement.

Example: Using Macro Variables
In a SAS program, you might need to reference the same variable, data set, or text string
multiple times.

title "Employees Hired in 2012";
data work.emp2012;
 set certadv.empdata;
 if year(HireDate)=2012;
run;
proc print data=work.emp2012;
run;

Later, you might need to reference a different variable, data set, or text string. Especially
if your programs are lengthy, scanning for specific references and updating them
manually can take a lot of time. It is also easy to overlook a reference that needs to be
updated.

title "Employees Hired in 2011";
data work.emp2011;
 set certadv.empdata;
 if year(HireDate)=2011;
run;
proc print data=work.emp2011;
run;

If you need to change your program, macro variables make these updates quick and easy
because you make the change in only one place. To change the value of the macro
variable in the code below, change the value of the %LET statement from 2012 to 2011.

%let year=2012;
title "Employees Hired in &year";
data work.emp&year;
 set certadv.empdata;
 if year(HireDate)=&year;
run;
proc print data=work.emp&year;

180 Chapter 7 • Creating and Using Macro Variables

run;

The SAS Macro Facility

SAS Processing of Macros
A SAS program can be any combination of the following elements:

• DATA steps or PROC steps

• global statements

• Structured Query Language (SQL) code

• SAS macro language code

When you submit a SAS program, the code is copied to a memory location called the
input stack. The presence of text in the input stack triggers a component called the word
scanner to begin its work.

Figure 7.1 SAS Processing with an Input Stack

The word scanner has two major functions. First, it pulls the raw text from the input
stack character by character and transforms it into tokens. Second, it sends tokens for
processing to the compiler and macro processor. A program is then separated into
components called tokens. There are four types of tokens: name, number, special, and
literal.

The SAS Macro Facility 181

To build a token, the word scanner extracts characters until it reaches a delimiter, or until
the next character does not meet the rules of the current token. A delimiter is any
whitespace character such as a space, tab, or end-of-line character.

Name tokens consist of a maximum of 32 characters, must begin with a letter or
underscore, and can include only letter, digit, and underscore characters.

Number tokens define a SAS floating-point numeric value. They can consist of a digit,
decimal point, leading sign, and exponent indicator (e or E). Date, time, and datetime
specifications also become number tokens (for example: '29APR2019'd, '14:05:32.1't,
'29APR2019 14:05:32.1'dt).

Literal tokens consist of a string of any characters enclosed in single or double quotation
marks. They can contain up to 32,767 characters and are handled as a single unit.

Special tokens are made up of any character or group of characters that have special
meaning in the SAS language. Examples include * / + - ; () . & %

Knowing how tokenization works helps you understand how the various parts of SAS
and the macro processor work together. Understanding differences in timing between
macro processing and SAS code compilation and execution is especially important.

Tokenization
Between the input stack and the compiler, SAS programs are tokenized into smaller
pieces.

1. Tokens are passed on demand to the compiler.

2. The compiler requests tokens until it receives a semicolon.

3. The compiler performs a syntax check on the statement.

The following example illustrates how the input stack, word scanner, and compiler work
together.

title "MPG City Over 25";
proc print data=sashelp.cars noobs;
 var Make Model Type MPG_City MPG_Highway MSRP;
 where MPG_City>25;
run;

182 Chapter 7 • Creating and Using Macro Variables

Figure 7.2 The First Step in the Tokenization Process

When the code is copied to the input stack, the word scanner retrieves one character at a
time until it reaches the first delimiter, a blank. When TITLE is recognized as a name
token, the word scanner tags it and passes it to the compiler.

The SAS Macro Facility 183

Figure 7.3 The Tokenization Process, continued

The word scanner tags the double quotation mark as the start of a literal token.

184 Chapter 7 • Creating and Using Macro Variables

Figure 7.4 The Tokenization Process, continued

It then retrieves, tokenizes, and holds additional text until it retrieves another double
quotation mark. It passes the text as a single literal token to the compiler, and then
tokenization continues. The semicolon is a special token, and the end-of-line character is
a delimiter.

The SAS Macro Facility 185

Figure 7.5 The Tokenization Process, continued

The semicolon is sent to the compiler, ending the TITLE statement. The compiler checks
the syntax, and because TITLE is a global statement, it is executed immediately. The
tokenization process continues with the PROC PRINT step. The compiler performs a
syntax check at the end of each statement.

186 Chapter 7 • Creating and Using Macro Variables

Figure 7.6 TheTokenization Process, concluded

The code executes when it encounters a step boundary, in this case the RUN statement.

Macro Triggers
The macro facility includes a macro processor that is responsible for handling all macro
language elements. Certain token sequences, known as macro triggers, alert the word
scanner that the subsequent code should be sent to the macro processor.

The word scanner recognizes the following token sequences as macro triggers:

• % followed immediately by a name token (such as %LET)

• & followed immediately by a name token (such as &AMT)

When a macro trigger is detected, the word scanner passes it to the macro processor for
evaluation. Here is the sequence that the macro processor follows:

• It examines these tokens.

• It requests additional tokens as necessary.

• It performs the action indicated.

For macro variables, the processor does one of the following:

• It creates a macro variable in the global symbol table and assigns a value to the
variable.

• It changes the value of an existing macro variable in the global symbol table.

• It looks up an existing macro variable in the global symbol table and returns the
variable's value to the input stack in place of the original reference.

The SAS Macro Facility 187

The word scanner then resumes processing tokens from the input stack.

Note: The word scanner does not recognize macro triggers that are enclosed in single
quotation marks. Remember that if you need to reference a macro variable within a
literal token, such as the title text in a TITLE statement, you must enclose the text
string in double quotation marks or else the macro variable reference is not resolved.

Using Macro Variables

Using User-Defined Macro Variables

%LET Statement Syntax
Use the %LET statement to define your macro variable and assign a value to it.

Syntax, %LET statement:

%LET variable=value;

variable
is any name that follows the SAS naming convention.

value
can be any string from 0 to 65,534 characters long.

Note: If the variable already exists, then the value replaces the current value. If either
variable or value contains a reference to another macro variable (such as &macvar),
the reference is evaluated before the assignment is made.

Using Automatic Macro Variables

What Are Automatic Macro Variables?
SAS creates and defines several automatic macro variables for you. Automatic macro
variables contain information about your computing environment, such as the date and
time of the session, and the version of SAS that you are running. Keep the following
facts in mind about these automatic macro variables:

• They are created when SAS starts.

• They are global (always available).

• They are usually assigned values by SAS.

• They can be assigned values by the user in some cases.

Some automatic macro variables have fixed values that are set when SAS starts.

Name Value

SYSDATE the date of the SAS invocation (DATE7.)

SYSDATE9 the date of the SAS invocation (DATE9.)

188 Chapter 7 • Creating and Using Macro Variables

Name Value

SYSDAY the day of the week of the SAS invocation

SYSTIME the time of the SAS invocation

SYSENV FORE (interactive execution) or BACK (noninteractive or batch execution)

SYSSCP an abbreviation for the operating system that is being used, such as WIN or
LINUX

SYSVER the release of SAS that is being used

SYSJOBID an identifier for the current SAS session or for the current batch job (the user
ID or job name for mainframe systems, the process ID (PID) for other
systems)

Some automatic macro variables have values that automatically change based on
submitted SAS statements.

Name Value

SYSLAST the name of the most recently created SAS data set, in the form
LIBREF.NAME. This value is always stored in all capital letters. If no data
set has been created, the value is _NULL_.

SYSPARM text that is specified when SAS starts.

SYSERR contains a return code status that is set by the DATA step and some SAS
procedures to indicate whether the step or procedure executed successfully.

Example: Using Automatic Macro Variables
You can substitute system information such as the time, day, and date on which your
SAS session started in footnotes for a report.

footnote1 "Created &systime &sysday, &sysdate9";
title "MPG City Over 25";
proc print data=sashelp.cars;
 var Make Model Type MPG_City MPG_Highway MSRP;
 where MPG_City>25;
run;

Using Macro Variables 189

Output 7.1 PROC PRINT Output of Automatic Macro Variables

1 time of day (SYSTIME)

2 day of the week (SYSDAY)

3 date (day, month, and year) (SYSDATE9)

Troubleshooting Macro Variable References
When you submit a macro variable reference, the macro processor resolves the reference
and passes the value directly back to the input stack. You will not see the value that the
compiler receives. To debug your programs, use the SYMBOLGEN option or the %PUT
statement to see what value replaces your macro variable references. You can use the
%SYMDEL statement to remove macro variables from the global symbol table.

SYMBOLGEN Option Syntax

Use the SYMBOLGEN system option to monitor the value that is substituted for a
macro variable reference.

Syntax, OPTIONS statement with the SYMBOLGEN option:

OPTIONS NOSYMBOLGEN | SYMBOLGEN ;

NOSYMBOLGEN
specifies that log messages about macro variable references will not be displayed. This is the
default.

SYMBOLGEN
specifies that log messages about macro variable references will be displayed.

When the SYMBOLGEN option is turned on, SAS writes a message to the log for each
macro variable that is referenced in your program. The message states the macro
variable name and the resolved value.

190 Chapter 7 • Creating and Using Macro Variables

Note: The SYMBOLGEN system option remains in effect until you modify it or until
you end your SAS session.

Example: Using the SYMBOLGEN Option
Use the SYMBOLGEN option to view the results of the resolving macro variable
references in the SAS log.

options symbolgen;
%let CarType=Wagon;
proc print data=sashelp.cars;
 var Make Model Type MSRP;
 where Type="&CarType";
run;
options nosymbolgen;

The SAS log shows the messages that are generated by the SYMBOLGEN option.

Log 7.1 SAS Log

SYMBOLGEN: Macro variable CARTYPE resolves to Wagon

%PUT Statement Syntax
Use the %PUT statement to write your own messages to the SAS log.

Syntax, %PUT statement:

%PUT text;

text
is any text string.

Here is a quick description of the %PUT statement:

• writes only to the SAS log

• always writes to a new log line, starting in column one

• writes a blank line if text is not specified

• does not require quotation marks around text

• resolves macro triggers in text before text is written

• removes leading and trailing blanks from text unless a macro quoting function is
used

• wraps lines when the length of text is greater than the current line size setting

• can be used either inside or outside a macro definition

Example: Using the %PUT Statement
Suppose you want to verify the value of the macro variable CarType. Since the %PUT
statement resolves macro references in text before writing text to the SAS log, you can
use it to show the stored value of CarType.

Troubleshooting Macro Variable References 191

%put The value of the macro variable CarType is: &CarType

Log 7.2 SAS Log

119 %put The value of the macro variable CarType is: &CarType
The value of the macro variable CarType is: Wagon

You can also submit the statement %put &=cartype; This writes the macro variable
name and its value in the log as follows:

Log 7.3 SAS Log

CARTYPE=SEDAN

The %PUT statement has several optional arguments.

Argument Result in the SAS Log

ALL lists the values of all macro variables

AUTOMATIC lists the values of all automatic macro variables

GLOBAL lists user-generated global macro variables

LOCAL lists user-generated local macro variables

USER lists the values of all user-defined macro variables

Note: When you use optional arguments such as _ALL_, each macro variable name is
also written to the SAS log, along with a label of either AUTOMATIC or GLOBAL.

The %SYMDEL Statement

A Brief Overview
The %SYMDEL statement deletes the specified variables from the macro global symbol
table. It also issues a warning when an attempt is made to delete a non-existent macro
variable. To suppress this message, use the NOWARN option.

%SYMDEL Syntax

192 Chapter 7 • Creating and Using Macro Variables

Syntax, %SYMDEL statement:

%SYMDELmacro-variable-1<...macro-variable-n></option>;

macro-variable
is the name of one or more macro variables or a text expression that generates one or more
macro variable names. You cannot use a SAS variable list or a macro expression that
generates a SAS variable list in a %SYMDEL statement.

option
NOWARN

suppresses the warning message when an attempt is made to delete a non-existent macro
variable.

Example: Using the %SYMDEL Statement
The following example illustrates how the %SYMDEL statement deletes the listed
variables from the global symbol table and releases memory back to the system.

%symdel CarType;

Nothing is written to the SAS log when the statement is executed.

Output 7.2 Global Symbol Table

Delimiting Macro Variable References

A Brief Overview
Tokens are delimited by spaces or special tokens by default. Sometimes when you use a
macro variable reference in combination with other text, the reference does not resolve
as you expect if you simply concatenate it. Instead, you might need to delimit the
reference by adding a period to the end of it.

A period immediately following a macro variable reference acts as a delimiter. That is, a
period at the end of a reference forces the macro processor to recognize the end of the
reference. The period does not appear in the resulting text.

Example: Using a Delimiter to Reference Macro Variables
The following example illustrates using a delimiter, a period (.), between the libref and
the table name to reference the macro variable.

%let CarType=Wagon;
%let lib=sashelp;
title "&CarType.s from the &lib..CARS Table";

Delimiting Macro Variable References 193

proc freq data=&lib..cars;
 tables Origin/nocum;
 where Type="&CarType";
run;
proc print data=&lib..cars;
 var Make Model Type MSRP;
 where Type="&CarType";
run;

Note: When the character following a macro variable reference is a period, use two
periods. The first is the delimiter for the macro reference, and the second is part of
the text.

Output 7.3 PROC FREQ Output

Output 7.4 PROC PRINT Output

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following statements is false?

a. A macro variable can be defined and referenced anywhere in a SAS program
except within data lines.

194 Chapter 7 • Creating and Using Macro Variables

b. Macro variables are always user-defined, and their values remain constant until
they are changed by the user.

c. Macro variables are text strings that are independent of SAS data sets.

d. The values of macro variables can be up to 65,534 characters long.

2. Which of the following TITLE statements correctly references the macro variable
Month?

a. title "Total Sales for '&month' ";

b. title "Total Sales for 'month'";

c. title "Total Sales for &month";

d. title Total Sales for "&month";

3. Which of the following statements generates an error message while trying to display
the value of the macro variable Month in the SAS log?

a. options &month;

b. %PUT &=month;

c. options symbolgen;

d. %PUT the macro variable MONTH has the value &month.;

4. Which statement creates a macro variable named Location that has the value
storage?

a. &let location = storage;

b. let &location = storage;

c. %let location = "storage";

d. %let location = storage;

5. What value will these statements assign to the macro variable Reptile?

%let area = "Southeast";
%let reptitle = * Sales Report for &area Area *;

a. Sales Report for Southeast Area

b. Sales Report for "Southeast" Area

c. *Sales Report for "Southeast" Area*

d. * Sales Report for "Southeast" Area *

6. If a macro trigger is embedded in a literal token and you want the trigger to resolve,
then the literal string must be enclosed in double quotation marks.

a. True

b. False

7. What are the four types of tokens that SAS recognizes?

a. expressions, literals, names, and special characters

b. literals, names, numbers, and special characters

c. expressions, names, numbers, and special characters

d. expressions, literals, numbers, and special characters

Quiz 195

8. Which statement about the macro processor is false?

a. It compiles and executes macro statements.

b. It breaks SAS programs into tokens.

c. It writes macro variables and values to the global symbol table.

d. It reads values from the global symbol table and writes them to the input stack.

9. How does the word scanner detect the end of a token?

a. It encounters a new token, or encountering a blank delimiter.

b. It encounters the end-of-file character.

c. It encounters an error.

d. It encounters a statement such as RUN or QUIT.

196 Chapter 7 • Creating and Using Macro Variables

Chapter 8

Storing and Processing Text

Processing Text with Macro Functions . 198

Using SAS Macro Functions to Manipulate Character Strings 198
Macro Character Functions . 198
The %UPCASE Function . 198
The %SUBSTR Function . 200
The %INDEX Function . 201
The %SCAN Function . 202

Using SAS Functions with Macro Variables . 203
The %SYSFUNC Function . 203
The %EVAL Function . 204
The %SYSEVALF Function . 206

Using SAS Macro Functions to Mask Special Characters 207
Macro Quoting Functions . 207
The %STR Function . 208
The %NRSTR Function . 209
The %SUPERQ Function . 210
The %BQUOTE Function . 211
Macro Q Functions . 212

Creating Macro Variables during PROC SQL Step Execution 214
INTO Clause and the NOPRINT Option Syntax . 214
Example: Using the INTO Clause and the NOPRINT Option 214
Example: Creating Variables with the INTO Clause . 215
Example: Creating a Delimited List of Values . 216

Creating Macro Variables during DATA Step Execution . 217
The CALL SYMPUTX Routine . 217
The PUT Function . 225

Referencing Macro Variables Indirectly . 226
Indirect References . 226
Example: Referencing Macro Variables Indirectly . 226
Example: Creating a Series of Macro Variables . 227

Quiz . 228

197

Processing Text with Macro Functions
Macro functions can be used to manipulate text in a SAS program. Macro functions
accept one or more arguments, process the argument text, and return the result as text.
The text that is read in during the processing is returned to the top of the input stack.

Using SAS Macro Functions to Manipulate
Character Strings

Macro Character Functions
Often when working with macro variables, you need to manipulate character strings.
Here are ways you can do this by using macro character functions:

• change lowercase letters to uppercase

• produce a substring of a character string

• extract a word from a character string

• determine the length of a character string

Macro character functions have the same basic syntax as the corresponding DATA step
functions, and they yield similar results. However, it is important to remember that
although they might be similar, macro character functions are distinct from DATA step
functions. As part of the macro language, macro functions enable you to communicate
with the macro processor in order to manipulate text strings that you insert into your
SAS programs.

Note: You cannot use SAS data set variables in macro functions.

The %UPCASE Function

A Brief Overview
The %UPCASE function converts lowercase characters in the argument to uppercase.
%UPCASE does not mask special characters or mnemonic operators in its result, even
when the argument was previously masked by a macro quoting function.

%UPCASE is useful in the comparison of values because the macro facility does not
automatically convert lowercase characters to uppercase before comparing values.

%UPCASE Syntax
Syntax, %UPCASE function:

%UPCASE(character-string|text-expression)

To convert characters to lowercase, use the %LOWCASE or %QLOWCASE autocall
macro.

198 Chapter 8 • Storing and Processing Text

Example: Using the %UPCASE Function
The Certadv.All data set contains student information and registration information for
computer training courses. Suppose, you want to create a summary of the uncollected
course fees. This example shows how to do that.

%let paidval=n;
title "Uncollected Fees for Each Course";
proc means data=certadv.all sum maxdec=0;
 where paid="&paidval";
 var fee;
 class course_title;
run;

The following is written to the SAS log.

Log 8.1 SAS Log

163 %let paidval=n;
164 title "Uncollected Fees for Each Course"
165 proc means data=certadv.all sum maxdec=0;
166 where paid="&paidval";
167 var fee;
168 class course_title;
169 run;
NOTE: No observations were selected from data set CERT.ALL.

Because the value of the macro variable Paidval was specified in lowercase, the
WHERE expression finds no matching observations. All the values of the data set
variable Paid are stored in uppercase. Use the %UPCASE function in the WHERE
statement.

%let paidval=n;
title "Uncollected Fees for Each Course";
proc means data=certadv.all sum maxdec=0;
 where paid="%upcase(&paidval)";
 var fee;
 class course_title;
run;

Output 8.1 PROC MEANS Output of Certadv.All

Using SAS Macro Functions to Manipulate Character Strings 199

The %SUBSTR Function

A Brief Overview
The %SUBSTR function produces a substring of character string (argument) by
extracting the specified number of characters (length) beginning at the specified starting
position. %SUBSTR does not mask special characters or mnemonic operators in its
result, even when the argument was previously masked by a macro quoting function.

Note: If length is not specified, %SUBSTR returns a substring containing the characters
from position to the end of argument. If length is greater than the number of
characters following position, %SUBSTR issues a warning message and returns a
substring that contains the characters from position to the end of argument.

%SUBSTR Syntax

Syntax, %SUBSTR function:

%SUBSTR(argument, position, <,length>)

argument
is a character string or a text expression. If argument might contain a special character or
mnemonic operator, use %QSUBSTR.

position
is an integer or an expression (text, logical, or arithmetic) that yields an integer, That integer
specifies the position of the first character in the substring. If position is greater than the
number of characters in the string, %SUBSTR issues a warning message and returns a null
value. An automatic call to %EVAL causes n to be treated as a numeric value.

length
is an optional integer or an expression (text, logical, or arithmetic) that yields an integer.
That integer specifies the number of characters in the substring. If length is greater than the
number of characters following position in an argument, %SUBSTR issues a warning
message and returns a substring containing the characters from position to the end of the
string. By default, %SUBSTR produces a string containing the characters from position to
the end of the character string.

Example: Using the %SUBSTR Function
Suppose you want to print a report on all courses that have been taught since the start of
the current month. You can use the %SUBSTR function and the SYSDATE9 automatic
macro variable to determine the month and year.

proc print data=certadv.schedule;
 where begin_date between
 "30%substr(&sysdate9,3)"d and
 "&sysdate9"d;
 title "All Courses Held So Far This Month";
 title2 "(as of &sysdate9)";
run;

200 Chapter 8 • Storing and Processing Text

Output 8.2 PROC PRINT Output

Assume that the macro variable Date has the value 05JAN2017.

• The code %substr(&date,3) returns the value JAN2017.

• The code %substr(&date,3,3) returns the value JAN.

• The code %substr(&date,3,9) returns the value JAN2017 and produces a
warning message.

The values of position and length can also be the result of a mathematical expression that
yields an integer. For example, %substr(&var,%length(&var)‑1) returns the last
two characters of the value of the macro variable Var.

Note: The %LENGTH function accepts an argument that is either a character string or a
text expression. If the argument is a character string, %LENGTH returns the length
of the string. If the argument is a text expression, %LENGTH returns the length of
the resolved value. If the argument has a null value, %LENGTH returns 0.

The %INDEX Function

%INDEX Syntax
The %INDEX function enables you to determine the position of the first character of a
string within another string.

Syntax, %INDEX function:

%INDEX (source, string)

source and string
both are character strings or text expressions that can include any of the following elements:

• constant text

• macro variable references

• macro functions

• macro calls

Here is what the %INDEX function does:

• searches source for the first occurrence of string

• returns a number representing the position in source of the first character of string
when there is an exact pattern match

• returns 0 when there is no pattern match

Example: Using the %INDEX Function
The following statements find the first character v in a string:

Using SAS Macro Functions to Manipulate Character Strings 201

Note: %INDEX function is case sensitive.

%let a=a very long value;
%let b=%index(&a,v);
%put The character v appears at position &b;

Executing these statements writes the following line to the SAS log.

Log 8.2 SAS Log

The character v appears at position 3

The %SCAN Function

A Brief Overview
The %SCAN function searches the argument and returns the nth word. A word is one or
more characters separated by one or more delimiters.

%SCAN does not mask special characters or mnemonic operators in its result, even
when the argument was previously masked by a macro quoting function.

The %SCAN function allows character arguments to be null. Null arguments are treated
as character strings with a length of zero. Numeric arguments cannot be null.

CAUTION:
If argument contains a comma, you must enclose it in a quoting function. Similarly,
in order to use a single blank or a single comma as the only delimiter, you must
enclose the character in the %STR function.

You can specify the characters to be used as delimiters (charlist). If you do not specify
delimiters, %SCAN uses a default set of delimiters. These delimiters differ slightly
between ASCII and EBCDIC systems. SAS treats the following characters as default
delimiters:

• ASCII systems: blank . < (+ & ! $ *) ; / , % | ^

• EBCDIC systems: blank . < (+ & ! $ *) ; / , % | ¬ ¦ ¢

If you specify delimiters, all other characters, including default any delimiters not
included in charlist, are treated as text.

%SCAN Syntax

202 Chapter 8 • Storing and Processing Text

Syntax, %SCAN function:

%SCAN (argument, n<,charlist<,modifiers>>)

argument
consists of constant text, macro variable references, macro functions, or macro calls.

n
is an integer or a text expression that yields an integer. That integer specifies the position of
the word to return. If n is greater than the number of words in argument, the functions return
a null string.

charlist
specifies an optional character expression that initializes a list of characters. This list
determines which characters are used as the delimiters that separate words. The following
rules apply:

• By default, all characters in charlist are used as delimiters.

• If you specify the K modifier in the modifier argument, then all characters that are not in
charlist are used as delimiters.

T I P You can add more characters to charlist by using other
modifiers.

modifier
specifies a character constant, a variable, or an expression in which each non-blank character
modifies the action of the %SCAN function. Blanks are ignored.

Example: Using the %SCAN Function
The following example illustrates using the %SCAN function to search argument and
return the nth word.

%let a=one:two-three four;

%put First word is %scan(&a,1);
%put Second word is %scan(&a,2,:-);
%put Last word is %scan(&a,-1);

The following is written to the SAS log.

Log 8.3 SAS Log

First word is one:two
Second word is two
Last word is four

Using SAS Functions with Macro Variables

The %SYSFUNC Function

A Brief Overview
The %SYSFUNC function executes SAS functions or user-written functions in the
macro facility. All arguments in DATA step functions within %SYSFUNC must be
separated by commas. You cannot use argument lists preceded by the word OF.

Using SAS Functions with Macro Variables 203

Note: The arguments in %SYSFUNC are evaluated according to the rules of the SAS
macro language. This includes both the function name and the argument list in the
function. In particular, an empty argument position will not generate a NULL
argument, but a zero-length argument.

%SYSFUNC does not mask special characters or mnemonic operators in its result.

When a function called by %SYSFUNC requires a numeric argument, the macro facility
converts the argument to a numeric value. %SYSFUNC can return a floating-point
number when the function that is executed supports floating-point numbers.

Note: Instead of INPUT and PUT, use INPUTN, INPUTC, PUTN, and PUTC.

CAUTION:
Values returned by SAS functions might be truncated. Although values returned
by macro functions are not limited to the length imposed by the DATA step, values
returned by SAS functions do have that limitation.

%SYSFUNC Syntax

Syntax, %SYSFUNC function:

%SYSFUNC(function(argument-1<...argument-n>)<,format>)

function
is the name of the function to execute. This function can be a SAS function, a function
written with SAS/TOOLKIT software, or a function created using the FCMP procedure. The
function cannot be a macro function.

argument
is one or more arguments used by function. An argument can be a macro variable reference
or a text expression that produces arguments for a function.

format
is an optional format to apply to the result of function. There is no default value for format.
If you do not specify a format, the SAS macro facility does not perform a format operation
on the result and uses the default of the function.

Example: Using the %SYSFUNC Function
Use the %SYSFUNC function to execute the PROPCASE function to convert all
uppercase letters to lowercase, and convert the first character of a word to uppercase.

%let string=william SMITH;
%put %sysfunc(propcase(&string));

The following is written to the SAS log.

Log 8.4 SAS Log

William Smith

The %EVAL Function

A Brief Overview
The %EVAL function evaluates arithmetic and logical expressions using integer
arithmetic.

204 Chapter 8 • Storing and Processing Text

The %EVAL function evaluates integer arithmetic or logical expressions. %EVAL
converts its argument from a character value to a numeric or logical expression and
performs the evaluation. Finally, %EVAL converts the result back to a character value
and returns that value.

If all operands can be interpreted as integers, the expression is treated as arithmetic. If at
least one operand cannot be interpreted as numeric, the expression is treated as logical. If
a division operation results in a fraction, the fraction is truncated to an integer.

Logical, or Boolean, expressions return a value that is evaluated as true or false. In the
macro language, any numeric value other than 0 is true, and a value of 0 is false.

%EVAL accepts only operands in arithmetic expressions that represent integers (in
standard or hexadecimal form). Operands that contain a period character cause an error
when they are part of an integer arithmetic expression. The following examples show
correct and incorrect usage, respectively:

%let d=%eval(10+20); /* Correct usage */
%let d=%eval(10.0+20.0); /* Incorrect usage */

Because %EVAL does not convert a value containing a period to a number, the operands
are evaluated as character operands. When %EVAL encounters a value containing a
period, it displays an error message about finding a character operand where a numeric
operand is required. An expression that compares character values in the %EVAL
function uses the sort sequence of the operating environment for the comparison.

Note: %EVAL performs integer evaluations, but %SYSEVALF performs floating-point
evaluations.

%EVAL Syntax

Syntax, %EVAL function:

%EVAL(arithmetic or logical expression)

Example: Using the %EVAL Function
The following example illustrates different types of integer arithmetic evaluation.

%let a=1+2;
%let b=10*3;
%let c=5/3;
%let eval_a=%eval(&a);
%let eval_b=%eval(&b);
%let eval_c=%eval(&c);

%put &a is &eval_a;
%put &b is &eval_b;
%put &c is &eval_c;

The following is written to the SAS log.

Log 8.5 SAS Log

1+2 is 3
10*3 is 30
5/3 is 1

Using SAS Functions with Macro Variables 205

The third %PUT statement shows that %EVAL discards the fractional part of the result
when it performs division on integers that would produce a fraction:

The %SYSEVALF Function

A Brief Overview
The %SYSEVALF function evaluates arithmetic and logical expressions using floating-
point arithmetic.

The %SYSEVALF function performs floating-point arithmetic and returns a value that is
formatted using the BEST32. format. The result of the evaluation is always text.
%SYSEVALF is the only macro function that can evaluate logical expressions that
contain floating-point or missing values. Specify a conversion type to prevent problems
when %SYSEVALF returns one of the following:

• missing or floating-point values in macro expressions

• macro variables that are used in other macro expressions that require an integer value

If the argument in the %SYSEVALF function contains no operator and no conversion
type is specified, then the argument is returned unchanged.

Note: %SYSEVALF supports floating-point numbers. However, %EVAL performs only
integer arithmetic. You must use the %SYSEVALF macro function in macros to
evaluate floating-point expressions. However, %EVAL is used automatically by the
macro processor to evaluate macro expressions.

%SYSEVALF Syntax

Syntax, %SYSEVALF function:

%SYSEVALF(expression<,conversion-type>)

expression
is an arithmetic or logical expression to evaluate.

conversion-type
converts the value returned by %SYSEVALF to the type of value specified. The value can
then be used in other expressions that require a value of that type. Conversion-type can be
one of the following:

BOOLEAN
returns 0 if the result of the expression is 0 or missing. It returns 1 if the result is any
other value.

CEIL
returns a character value representing the smallest integer that is greater than or equal to
the result of the expression. If the result is within 10–12 of an integer, the function returns
a character value representing that integer.

FLOOR
returns a character value representing the largest integer that is less than or equal to the
result of the expression. If the result is within 10–12 of an integer, the function returns that
integer.

INTEGER
returns a character value representing the integer portion of the result (truncates the
decimal portion). If the result of the expression is within 10–12 of an integer, the function
produces a character value representing that integer. If the result of the expression is
positive, INTEGER returns the same result as FLOOR. If the result of the expression is
negative, INTEGER returns the same result as CEIL.

206 Chapter 8 • Storing and Processing Text

Example: Using the %SYSEVALF Function
The macro FIGUREIT performs all types of conversions for %SYSEVALF values.

%macro figureit(a,b);
 %let y=%sysevalf(&a+&b);
 %put The result with SYSEVALF is: &y;
 %put The BOOLEAN value is: %sysevalf(&a +&b, boolean);
 %put The CEIL value is: %sysevalf(&a+&b, ceil);
 %put The FLOOR value is: %sysevalf(&a+&b, floor);
 %put The INTEGER value is: %sysevalf(&a+&b, int);
%mend figureit;

%figureit(100,1.597)

The following is written to the SAS log.

Log 8.6 SAS Log

The result with SYSEVALF is: 101.597
The BOOLEAN value is: 1
The CEIL value is: 102
The FLOOR value is: 101
The INTEGER value is: 101

Using SAS Macro Functions to Mask Special
Characters

Macro Quoting Functions
The SAS programming language uses matched pairs of either double or single quotation
marks to distinguish character constants from names. The quotation marks are not stored
as part of the token that they define. For example, in the following program, Var is stored
as a 4-byte variable that has the value text. If text were not enclosed in quotation
marks, it would be treated as a variable name. Var2 is stored as a 7-byte variable that has
the value example.

data one;
 var='text';
 text='example';
 var2=text;
run;

Similarly, the title text in the following example is Joan's Report. Although the TITLE
statement contains a matched pair of double quotation marks, the title itself does not
include these outer quotation marks. However, the outer quotation marks cause the
unmatched single quotation mark within the text to be interpreted as an apostrophe that
is part of the title text.

proc print;
 title "Joan's Report";
run;

Using SAS Macro Functions to Mask Special Characters 207

The %STR Function

A Brief Overview
The %STR function is used to mask tokens during compilation so that the macro
processor does not interpret them as macro-level syntax. That is, the %STR function
hides the usual meaning of a semicolon (and other special tokens and mnemonic
equivalents of comparison or logical operators) so that they appear as constant text.
Special tokens and mnemonic equivalents include the following:

; + - * / , < > = blank ^ ~ # |
LT EQ GT AND OR NOT LE GE NE IN

The %STR function also has these capabilities:

• enables macro triggers to work normally

• preserves leading and trailing blanks in its argument

%STR Syntax
Syntax, %STR function:

%STR (argument)

argument
is any combination of text and macro triggers.

The %STR function can also be used to mask tokens that typically occur in pairs:

' ") (

Example: Using %STR Function
Suppose you have text that contains an apostrophe (') and you want to assign that text
to a macro variable. Without any quoting, this produces errors.

options symbolgen;
%let text=Joan's Report;
proc print data=certadvadv.courses;
 where days > 3;
title "&text";
run;

The following is written to the SAS log.

Log 8.7 SAS Log

75 %let text=Joan's Report;

 32
WARNING 32-169: The quoted string currently being processed has
 become more than 262 characters long. You may
 have unbalanced quotation marks.

The word scanner interprets the apostrophe as the beginning of a literal that is defined by
a pair of single quotation marks. You can use the %STR function to avoid this error. The
previous section covered several methods of using the %STR function to mask the usual

208 Chapter 8 • Storing and Processing Text

meaning of a semicolon. None of the methods shown correctly masks the apostrophe in
the current example.

When you mask tokens that typically appear in pairs, such as quotation marks or
parentheses, you must take one additional step. To perform this masking, you precede
the token that you want to mask with a percent sign (%) within the %STR function
argument.

%let text=%str(Joan%'s Report);
%let text=Joan%str(%')s Report;

The value of Text is Joan's Report in both cases.

The %NRSTR Function

A Brief Overview
To hide the normal meaning of an ampersand or a percent sign, use the %NRSTR
function. The %NRSTR performs in the same way as %STR, except that it also masks
macro triggers (& and %). The NR in the name %NRSTR stands for No Resolution.
%NRSTR has the same syntax as %STR.

%NRSTR Syntax
Syntax, %NRSTR function:

%NRSTR (character-string)

Note: The maximum level of nesting for the macro quoting functions is 10.

Example: Using %NRSTR Function
Suppose you want to create a macro variable named Period and assign a value of
May&Jun to it. If you use the %STR function in the assignment statement, SAS
interprets the ampersand as a macro trigger and generates a warning message. You must
use the %NRSTR function instead.

%let Period=%str(May&Jun);
%put Period resolves to: .
%let Period=%nrstr(May&Jun);
%put Period resolves to: .

The following portion of a SAS log shows the results of both the %STR and the
%NRSTR functions for this example.

Log 8.8 SAS Log

1 %let Period=%str(May&Jun);
WARNING: Apparent symbolic reference JUN not resolved.
2 %put Period resolves to &period:
WARNING: Apparent symbolic reference JUN not resolved.
Period resolves to: May&Jun
3
4 %let Period=%nrstr(May&Jun);
5 %put Period resolves to .
Period resolves to: May&Jun

Using SAS Macro Functions to Mask Special Characters 209

The %SUPERQ Function

A Brief Overview
The %SUPERQ macro quoting function locates the macro variable named in its
argument and retrieves the masked value of that macro variable without permitting any
resolution to occur. It masks all items that might require macro quoting at macro
execution. This ensures that the macro processor will never attempt to resolve macro
triggers in the text resolved with %SUPERQ.

%SUPERQ is the only quoting function that prevents the resolution of macro variables
and macro references in the value of the specified macro variable.

%SUPERQ accepts only the name of a macro variable as its argument, without an
ampersand, but the other quoting functions accept any text expression, including
constant text, as an argument.

The %SUPERQ function returns the value of a macro variable without attempting to
resolve any macros or macro variable references in the value. %SUPERQ masks the
following special characters and mnemonic operators:

&, %, ', ", (), + ,− ,* ,/ ,< >, =, ¬, ^, ~, ; , #, blank,

AND, OR, NOT, EQ, NE, LE, LT, GE, GT, IN

Note:

• The argument for %SUPERQ is just the macro variable name. There is no
ampersand.

• The maximum level of nesting for the macro quoting functions is 10.

%SUPERQ Syntax
Syntax, %SUPERQ function:

%SUPERQ (argument)

argument
is the name of either a macro variable with no leading ampersand or an expression that
produces the name of a macro variable with no leading ampersand.

Example: Using the %SUPERQ Function
In this example, %SUPERQ prevents the macro processor from attempting to resolve
macro references in the values of MV1 and MV2 before assigning them to macro
variables TESTMV1 and TESTMV2.

data _null_;
 call symputx('mv1','Smith&Jones');
 call symputx('mv2','%macro abc;');
run;
%let testmv1=%superq(mv1);
%let testmv2=%superq(mv2);
%put Macro variable TESTMV1 is &testmv1;
%put Macro variable TESTMV2 is &testmv2;

210 Chapter 8 • Storing and Processing Text

The following is written to the SAS log.

Log 8.9 SAS Log

102 %let testmv1=%superq(mv1);
103 %let testmv2=%superq(mv2);
104 %put Macro variable TESTMV1 is &testmv1;
Macro variable TESTMV1 is Smith&Jones
105 %put Macro variable TESTMV2 is &testmv2;
Macro variable TESTMV2 is %macro abc;

You might think of the values of TESTMV1 and TESTMV2 as “pictures” of the original
values of MV1 and MV2. The %PUT statement then writes the pictures in its text. The
macro processor does not attempt resolution. It does not issue a warning message for the
unresolved reference &JONES or an error message for beginning a macro definition
inside a %LET statement.

The %BQUOTE Function

A Brief Overview
The %BQUOTE macro quoting function allows the macro processor to resolve all macro
expressions before quoting the resulting text. It masks the characters that %STR masks
without the requirement to mark unmatched quotation marks or parentheses with a %
sign. The %BQUOTE function treats all parentheses and quotation marks produced by
resolving macro variable references or macro calls as special characters to be masked at
execution time. (It does not mask parentheses or quotation marks that are in the
argument at compile time.) Therefore, it does not matter whether quotation marks and
parentheses in the resolved value are matched. Each one is masked individually.

The %BQUOTE function masks a character string or resolved value of a text expression
during execution of a macro or macro language statement. It masks the following special
characters and mnemonic operators:

&, %, ', ", (), + ,− ,* ,/ ,< >, =, ¬, ^, ~, ; , #, blank,

AND, OR, NOT, EQ, NE, LE, LT, GE, GT, IN

%BQUOTE Syntax
Syntax, %BQUOTE function:

%BQUOTE (character string | text expression)

character string | text expression
accepts any text including macro triggers.

Example: Using the %BQUOTE Function
data _null_;
 call symputx('text',"Sally's Seashell Store at Old Towne's Beach");
run;
data _null_;
 put "%bquote(&text)";
run;

Using SAS Macro Functions to Mask Special Characters 211

Log 8.10 SAS Log

Sally's Seashell Store at Old Towne's Beach

Macro Q Functions

A Brief Overview
The macro Q functions process text in the macro facility just like the non-Q versions, but
the Q functions return their results as quoted text. This means that the text produced by a
Q function will never be mistaken for macro code. Unless you intend the function output
to execute as macro code, it is a best practice to always use the Q function instead of the
non-Q version.

Table 8.1 Macro Q Functions

Function Name Description

%QUPCASE converts values to uppercase

%QSUBSTR extracts a substring from a character string

%QSCAN extracts a word from a character string

%QSYSFUNC executes a DATA step function and returns
formatted results

The functions listed above work just like the non-Q version, but return the quoted text.

Example: Using the %QUPCASE Function
This example illustrates using the %PUT statement and %QUPCASE function to convert
the lowercase values to uppercase.

%let a=%nrstr(Address&name);
%put QUPCASE produces: %qupcase(&a);

The following is written to the SAS log.

Log 8.11 SAS Log

QUPCASE produces: ADDRESS&NAME

Example: Using the %QSUBSTR Function
These statements show the results produced by %SUBSTR and %QSUBSTR:

%let a=one;
%let b=two;
%let c=%nrstr(&a &b);

%put C: &c;
%put With SUBSTR: %substr(&c,1,2);
%put With QSUBSTR: %qsubstr(&c,1,2);

212 Chapter 8 • Storing and Processing Text

Executing these statements produces the following messages in the SAS log. As you can
see, the first %PUT statement shows that &c resolves to the value &a &b. In the second
%PUT statement, the %SUBSTR function extracts the value &a from the resolved value
of the macro variable reference &c, and resolves &a to 1. The third %PUT statement
shows that the %QSUBSTR function prevents the value &a from being resolved further.

Log 8.12 SAS Log

11 %let a=one;
12 %let b=two;
13 %let c=%nrstr(&a &b);
14
15 %put C: &c;
C: &a &b
16 %put With SUBSTR: %substr(&c,1,2);
With SUBSTR: one
17 %put With QSUBSTR: %qsubstr(&c,1,2);
With QSUBSTR: &a

Example: Using the %QSCAN Function
These statements show the results produced by %SUBSTR and %QSUBSTR.

%macro a;
 aaaaaa
%mend a;
%macro b;
 bbbbbb
%mend b;
%macro c;
 cccccc
%mend c;

%let x=%nrstr(%a*%b*%c);
%put X: &x
%put The third word in X, with SCAN: %scan(&x,3,*);
%put The third word in X, with QSCAN: %qscan(&x,3,*);

Log 8.13 SAS Log

The third word in X, with SCAN: cccccc
The third word in X, with QSCAN: %c

Example: Using the %QSYSFUNC Function
Use the %QSYSFUNC function to mask the comma and execute the LEFT function.
The LEFT function expects only one argument, but this example passes “June 4, 2019”
to it. It interprets the comma as the delimiter between two arguments. You can mask the
comma by using the %QSYSFUNC function.

title "Report Produced on %sysfunc(left(%qsysfunc(today(),worddate.)))";

The modified statement generates the following title:

Report Produced on June 4, 2019

Using SAS Macro Functions to Mask Special Characters 213

Creating Macro Variables during PROC SQL Step
Execution

INTO Clause and the NOPRINT Option Syntax
You can create or update macro variables during the execution of a PROC SQL step.
Remember that the SELECT statement in a PROC SQL step retrieves and displays data.
The INTO clause in a SELECT statement enables you to create or update macro
variables.

When you create or update macro variables during execution of a PROC SQL step, you
might not want any output to be displayed. The PRINT and NOPRINT options specify
whether a SELECT statement's results are displayed in output. PRINT is the default
setting.

Syntax, PROC SQL with the NOPRINT option and the INTO clause:

PROC SQL NOPRINT;
SELECT column1<,column2,...>

INTO :macro-variable-1<,:macro-variable-2,...> <TRIMMED>
FROM table-1 | view-1
<WHERE expression>
<other clauses>;

QUIT;

column1, column2,...
specifies one or more columns of the SQL table specified by table-1 | view-1.

:macro-variable-1, :macro-variable-2,...
names the macro variables to create.

expression
produces a value that is used to subset the data.

other clauses
are other valid clauses that group, subset, or order the data.

Note: Macro variable names are preceded by a colon.

This form of the INTO clause does not automatically trim leading or trailing blanks. Use
the TRIMMED modifier to explicitly remove leading and trailing blanks before storing
the results in your macro variable. Also, the INTO clause cannot be used when you
create a table or a view.

Example: Using the INTO Clause and the NOPRINT Option
You can create a macro variable named TotalFee that contains the total of all course fees.
In addition, you can use the NOPRINT option to suppress the output from the PROC
SQL step.

proc sql noprint;
 select sum(fee) format=dollar10.
 into :totalfee trimmed
 from certadv.all;

214 Chapter 8 • Storing and Processing Text

quit;

proc means data=certadv.all sum maxdec=0;
 class course_title;
 var fee;
 title "Grand Total for All Courses Is &totalfee";
run;

The title in the output from the PROC MEANS step shows the sum of all course fees in
the DOLLAR10. format.

Output 8.3 PROC MEANS Output of Certadv.All

Example: Creating Variables with the INTO Clause
Suppose you want to create a series of macro variables that contain the course code,
location, and starting date of all courses that are scheduled in 2019. You do not know the
number of courses. If you name a numbered macro variable to begin the series followed
by a hyphen, SQL determines the number of macro variables that are required based on
the number of rows in the query results set. A macro variable named SQLOBS is
automatically created to store the number of rows that were read.

proc sql noprint;
 select course_code, location, begin_date format=mmddyy10.
 into :crsid1- ,
 :place1- ,
 :date1-
 from certadv.schedule
 where year(begin_date)=2019
 order by begin_date;
quit;

%put There are &sqlobs courses in 2019;
%put _user_;

Creating Macro Variables during PROC SQL Step Execution 215

The SAS log shows that SQLOBS is assigned a value of 12. The %PUT statement at
the end of the program shows the names and values of all the macro variables that
are created in the SELECT statement.

Log 8.14 SAS Log

There are 12 courses in 2019
GLOBAL CRSID1 C003
GLOBAL CRSID10 C006
GLOBAL CRSID11 C001
GLOBAL CRSID12 C002
GLOBAL CRSID2 C004
GLOBAL CRSID3 C005
GLOBAL CRSID4 C006
GLOBAL CRSID5 C001
GLOBAL CRSID6 C002
GLOBAL CRSID7 C003
GLOBAL CRSID8 C004
GLOBAL CRSID9 C005
GLOBAL DATE1 01/08/2019
GLOBAL DATE10 10/01/2019
GLOBAL DATE11 11/12/2019
GLOBAL DATE12 12/03/2019
GLOBAL DATE2 01/22/2019
GLOBAL DATE3 02/26/2019
GLOBAL DATE4 04/02/2019
GLOBAL DATE5 05/21/2019
GLOBAL DATE6 06/11/2019
GLOBAL DATE7 07/16/2019
GLOBAL DATE8 08/13/2019
GLOBAL DATE9 09/17/2019
GLOBAL NUMROWS 12
GLOBAL PLACE1 Boston
GLOBAL PLACE10 Seattle
GLOBAL PLACE11 Boston
GLOBAL PLACE12 Seattle
GLOBAL PLACE2 Seattle
GLOBAL PLACE3 Dallas
GLOBAL PLACE4 Boston
GLOBAL PLACE5 Dallas
GLOBAL PLACE6 Boston
GLOBAL PLACE7 Seattle
GLOBAL PLACE8 Dallas
GLOBAL PLACE9 Boston
GLOBAL SQLEXITCODE 0
GLOBAL SQLOBS 12
GLOBAL SQLOOPS 28
GLOBAL SQLRC 0
GLOBAL SQLXOBS 0
GLOBAL SQLXOPENERRS 0
GLOBAL SYS_SQL_IP_ALL -1
GLOBAL SYS_SQL_IP_STMT

There is a NOPRINT option in the code. Therefore, a report is not generated.

Example: Creating a Delimited List of Values
You can use the SQL procedure to create one macro variable named Sites that contains
the names of all training centers that appear in the Certadv.Schedule data set. The names
will be separated by blanks.

proc sql noprint;
 select distinct location

216 Chapter 8 • Storing and Processing Text

 into :sites separated by ' '
 from certadv.schedule;
quit;

title1 'Total Revenue from Course Sites:';
title2 &sites;
proc means data=certadv.all sum maxdec=0;
 var fee;
run;

Output 8.4 PROC MEANS Output of Certadv.All

Creating Macro Variables during DATA Step
Execution

The CALL SYMPUTX Routine

A Brief Overview
The CALL SYMPUTX routine does the following:

• assigns a value produced in a DATA step to a macro variable

• if a macro variable does not exist, the CALL SYMPUTX routine creates the variable

• creates a macro variable assignment when the program is executed

• removes both leading and trailing blanks from both arguments

Note: The CALL SYMPUT routine is an older version of CALL SYMPUTX. CALL
SYMPUT has fewer features.

CALL SYMPUTX Routine Syntax

Creating Macro Variables during DATA Step Execution 217

Syntax, CALL SYMPUTX routine:

CALL SYMPUTX(macro-variable-name, value <,symbol-table>);

macro-variable-name
is assigned the character value ofexpression, and any leading or trailing blanks are removed
from both macro variable and expression.

macro-variable and expression
can each be specified as one of the following items:

• a literal, enclosed in quotation marks

• a DATA step variable

• a DATA step expression

value
is the value to be assigned, which can be any of these items:

• a string enclosed in quotation marks.

• the name of a numeric or character variable. The current value of the variable is
assigned as the value of the macro variable. If the variable is numeric, SAS performs an
automatic numeric-to-character conversion and writes a message in the log.

Note: This form is most useful when macro-variable is also the name of a SAS variable or
a character expression that contains a SAS variable. A unique macro variable name and
value can be created from each observation.

• a DATA step expression. The value returned by the expression in the current observation
is assigned as the value of macro-variable. If the expression is numeric, SAS performs
an automatic numeric-to-character conversion and writes a message in the log.

symbol-table
specifies a character constant, variable, or expression. The value of symbol-table is not case
sensitive. The first non-blank character in symbol-table specifies the symbol table in which
to store the macro variable. The following values are valid as the first non-blank character in
symbol-table:

G
specifies that the macro variable is stored in the global symbol table, even if the local
symbol table exists.

L
specifies that the macro variable is stored in the most local symbol table that exists. That
is the global symbol table, if it is used outside a macro.

F
specifies that if the macro variable exists in any symbol table, CALL SYMPUTX uses
the version in the most local symbol table in which it exists. If the macro variable does
not exist, CALL SYMPUTX stores the variable in the most local symbol table.

Using SYMPUTX with a Literal
In the SYMPUTX routine, you use a literal string in the following places:

• the first argument, to specify an exact name for the name of the macro variable

• the second argument, to specify the exact character value to assign to the macro
variable

To use a literal with the SYMPUTX routine, you enclose the literal string in quotation
marks.

CALL SYMPUTX('macro-variable', 'text');

218 Chapter 8 • Storing and Processing Text

Using CALL SYMPUTX Routine with a DATA Step Variable
You can assign the value of a DATA step variable as the value for a macro variable by
using the DATA step variable's name as the second argument in a CALL SYMPUTX
routine.

To use a DATA step variable as the value for a macro variable in a CALL SYMPUTX
routine, place the name of the DATA step variable after the name of the macro variable,
separated by a comma. You do not enclose the name of the DATA step variable in
quotation marks.

CALL SYMPUTX('macro-variable',DATA-step-variable);

This form of the CALL SYMPUTX routine creates a macro variable named macro-
variable and assigns to it the current value of DATA-step-variable.

Using a DATA step variable as the second argument has these results:

• A maximum of 32,767 characters can be assigned to the receiving macro variable.

• Any leading or trailing blanks that are part of the DATA step variable's value are
stored in the macro variable.

• Values of numeric variables are automatically converted to character values, using
the BEST12. format.

CAUTION:
If you enclose the DATA step variable name in quotation marks, SAS interprets the
name as a literal value rather than as a variable name, and the DATA step variable's
value is not resolved.

Example: Using the CALL SYMPUTX Routine
Suppose you want the title to contain the course name and the course number, as well as
the date on which the course was held. You also want the footnote to list the current
amount of unpaid fees for the course.

This example creates three macro variables. The macro variable Csrname records the
value of the DATA step variable Course_title. The macro variable date records the value
of the DATA step variable Begin_date in MMDDYY10. format. Finally, the macro
variable Due uses the values of the DATA step variables Paidup, Total, and Fee to record
the current amount of unpaid fees in DOLLAR8. format. These macro variables are
referenced later in the program in the TITLE and FOOTNOTE statements.

%let crsnum=3;
data revenue;
 set certadv.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symputx('crsname',course_title);
 call symputx('date',put(begin_date,mmddyy10.));
 call symputx('due',put(fee*(total-paidup),dollar8.));
 end;
run;
proc print data=revenue;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum) Held &date";
 footnote "Note: &due in Unpaid Fees";
run;

Creating Macro Variables during DATA Step Execution 219

Output 8.5 PROC PRINT Output of Work.Revenue

Example: Using the CALL SYMPUTX Routine with Literal Strings
Use the CALL SYMPUTX routine with literal strings as both arguments in order to
conditionally assign a value to the macro variable Foot based on values that are
generated during DATA step execution.

options symbolgen pagesize=30;
%let crsnum=3;
data revenue;
 set certadv.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 if paidup<total then do;
 call symputx('foot','Some Fees Are Unpaid');
 end;
 else do;

220 Chapter 8 • Storing and Processing Text

 call symputx('foot','All Students Have Paid');
 end;
end;
run;

proc print data=work.revenue;
 var student_name student_company paid;
 title "Payment Status for Course &crsnum";
 footnote "&foot";
run;

This time, the value that is assigned to Foot is either Some Fees Are Unpaid or All
Students Have Paid, depending on the value of the DATA step variable Paidup,
because the value is assigned during the execution of the DATA step. When you submit
this code, you get the following output.

Output 8.6 PROC PRINT Output for Work.Revenue

Creating Macro Variables during DATA Step Execution 221

Example: Using the CALL SYMPUTX Routine with a DATA Step
Variable
Once again, suppose you want to create a report about students who are enrolled in a
particular course. This time, suppose you want to add a title that contains the course title
and the course number, and you want to include a footnote that summarizes how many
students have paid their fees.

In this example, a DATA step variable named Paidup records the number of students
who have paid, and a DATA step variable named Total records the total number of
students who are registered for the class. Macro variables are created to record the values
of Paidup, the value of Total, and the value of Course_title. These macro variables are
referenced later in the program.

%let crsnum=3;
data revenue;
 set certadv.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symputx('numpaid',paidup);
 call symputx('numstu',total);
 call symputx('crsname',course_title);
 end;
run;
proc print data=revenue noobs;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum)";
 footnote "Note: &numpaid Paid out of &numstu Students";
run;

This time, the footnote shows the correct information for how many students have paid.

222 Chapter 8 • Storing and Processing Text

Output 8.7 PROC PRINT Output for Work.Revenue with Correct Footnote

Example: Creating Multiple Macro Variables with CALL SYMPUTX
Suppose you want to write a program that lists all of the scheduled dates for a particular
course, using a macro variable to record the title of the course. You can use one call to
the SYMPUTX routine to create a macro variable for each value of the DATA step
variable Course_code and assign the corresponding value of Course_title to each macro
variable. The macro processor creates a new macro variable for each observation. The
new macro variable has the same name as the value of the data set variable Course_code
for that observation. The value of the new macro variable is the value of the data set
variable Course_title for that observation.

data _null_;
 set certadv.courses;
 call symputx(course_code,course_title);
run;
%put _user_;

Creating Macro Variables during DATA Step Execution 223

The following is written to the SAS log.

Log 8.15 SAS Log

GLOBAL A one:two-three four
GLOBAL C001 Basic Telecommunications
GLOBAL C002 Structured Query Language
GLOBAL C003 Local Area Networks
GLOBAL C004 Database Design
GLOBAL C005 Artificial Intelligence
GLOBAL C006 Computer Aided Design
GLOBAL CRSNAME Local Area Networks
GLOBAL CRSNUM 3
GLOBAL DELIM \
GLOBAL NUMPAID 14
GLOBAL NUMSTU 20
GLOBAL PATH C:\Users\certadv\
GLOBAL STRING william SMITH

%let crsid=C005;
proc print data=certadv.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &c005";
run;

Output 8.8 PROC PRINT Output for Schedule for Artificial Intelligence

%let crsid=C002;
proc print data=certadv.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &c002";
run;

Output 8.9 PROC PRINT Output of Schedule for Structured Query Language

224 Chapter 8 • Storing and Processing Text

The PUT Function

A Brief Overview
Messages are written to the SAS log to alert you that automatic conversion has occurred.
Remember that the CALL SYMPUTX routine automatically uses the BEST12. format
for the conversion.

You might want to have explicit control over the numeric-to-character conversion. The
PUT function returns a character string that is formed by writing a value with a specified
format.

You can use the PUT function in the following ways:

• perform explicit numeric-to-character conversions

• format the result of a numeric expression

PUT Function Syntax

Syntax, PUT function:

PUT(source,format.)

source
is a constant, a variable, or an expression (numeric or character).

format.
is any SAS format or user-defined format that determines these details:

• the length of the resulting string

• whether the string is right- or left-aligned

source and format.
must be the same type (numeric or character).

Example: Using the PUT Function
Suppose you want to create a report that shows the amount of fees that are unpaid for a
specific course. In the following example, you use the SYMPUTX routine to format the
value of the numeric variable Begin_date with the MMDDYY10. format and assign that
value to the macro variable Date. Then you also use another call to the SYMPUTX
routine to format the result of an expression involving Fee, Total, and Paidup as a dollar
amount and assign that value to the macro variable Due.

%let crsnum=3;
data revenue;
 set certadv.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symputx('crsname',trim(course_title));
 call symputx('date',put(begin_date,mmddyy10.));
 call symputx('due',strip(put(fee*(total-paidup),dollar8.)));
 end;
run;

Creating Macro Variables during DATA Step Execution 225

You can use the macro variables Date and Due in a PROC PRINT step to create your
report. The values of these macro variables appear in the report with the formatting that
you assigned to them when you created them.

proc print data=revenue;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum) Held &date";
 footnote "Note: &due in Unpaid Fees";
run;

Referencing Macro Variables Indirectly

Indirect References

The rules for indirect references for macro variables rules are as follows:

• When multiple ampersands or percent signs precede a name token, the macro
processor resolves two ampersands (&&) to one ampersand (&), and re-scans the
reference.

• To reference macro variables indirectly, the macro processor scans and resolves
tokens from left to right from the point where multiple ampersands or percent signs
are coded, until no more triggers can be resolved.

Example: Referencing Macro Variables Indirectly
Suppose you want to write a PROC PRINT step that you can reuse without any
modification to print information about each course. You can do this by using an indirect
reference in the TITLE statement.

data _null_;
 set certadv.courses;
 call symputx(course_code,(course_title));
run;

%let crsid=C002;
proc print data=certadv.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for ???";
run;

In the example above, the macro variable C002 (as created by the SYMPUTX routine)
has a value of Structured Query Language. Therefore, the TITLE statement
should reference a macro variable that resolves to Structured Query Language.
Remember that you want this reference to be flexible enough to apply to any of the
macro variables that the SYMPUTX routine creates, such as C003 or C004, by changing
only the %LET statement.

To obtain the value that you want, you must indirectly reference the macro variable
C002 through a reference to the macro variable Crsid. If the value of the macro variable
Crsid is C002, the following process might seem to be correct:

1. Resolve the macro variable Crsid to the value C002.

226 Chapter 8 • Storing and Processing Text

2. Attach an ampersand (&) to the front of the resolved value in order to create a new
reference (&C002).

3. Resolve the resulting macro variable reference to the value Structured Query
Language.

This sequence seems to imply that you should use the reference &&crsid to convert the
value of the macro variable Crsid to the corresponding course description. However, the
indirect reference rules indicate that this is not the correct solution.

Here is the correct solution:

title1 "Schedule for &&&crsid";

Example: Creating a Series of Macro Variables
You can create a series of macro variables, Teach1 to Teachn, each containing the name
of the instructor who is assigned to a specific course.

options symbolgen;
data _null_;
 set certadv.schedule;
 call symputx(cats('teach',course_number),teacher);
run;

The CATS function converts numeric values to character strings and removes leading
and trailing blanks before concatenation. The SYMPUTX call routine eliminates leading
and trailing blanks from the macro variables and values.

Then, you can reference one of these variables when a course number is designated. If
you designate a course number in a %LET statement, you can use multiple ampersands
in order to create a reference to the Teachn macro variable that corresponds to the
current course number.

%let crs=3;
proc print data=certadv.register noobs;
 where course_number=&crs;
 var student_name paid;
 title1 "Roster for Course &crs";
 title2 "Taught by &&teach&crs";
run;

The following is written to the SAS log, which shows the steps that lead to the
resolution of the reference &&teach&crs.

Log 8.16 SAS Log

SYMBOLGEN: Macro variable CRS resolves to 3
SYMBOLGEN: Macro variable CRS resolves to 3
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable CRS resolves to 3
SYMBOLGEN: Macro variable TEACH3 resolves to Forest, Mr. Peter

Referencing Macro Variables Indirectly 227

Figure 8.1 PROC PRINT Output of Roster for Course 3 Taught by Forest, Mr. Peter

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following is false?

a. A %LET statement causes the macro processor to create a macro variable before
the program is compiled.

b. To create a macro variable that is based on data calculated by the DATA step, you
use the SYMPUTX routine.

c. Macro functions are always processed during the execution of the DATA step.

d. Macro variable references in a DATA step are always resolved before DATA step
execution.

2. The SYMPUTX routine cannot do which of the following things?

a. be used to assign a data set variable as a value to a macro variable

b. create a series of macro variables in one DATA step

c. automatically convert a numeric value to a character value when used to assign a
value to a macro variable in a DATA step

d. be used in a procedure to store a calculated value

3. Which of the following programs correctly creates a series of macro variables whose
names are values of the data set variable Course_code, and then indirectly references
one of those macro variables in a later step?

a. data _null_;
 set certadv.courses;
 call symputx(course_code,(course_title));
%let crsid=C005;
proc print data=certadv.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &c005";
run;

b. data _null_;
 set certadv.courses;

228 Chapter 8 • Storing and Processing Text

 call symputx(course_code, trim(course_title));
run;
%let crsid=C005;
proc print data=certadv.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

c. data _null_;
 set certadv.courses;
 call symputx('course_code', trim(course_title));
run;
%let crsid=C005;
proc print data=certadv.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

d. data _null_;
 set certadv.courses;
 put(course_code, trim(course_title));
run;

%let crsid=C005;
proc print data=certadv.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

4. Which of the following statements about the resolution of macro variable references
is false?

a. Two ampersands resolve to one ampersand.

b. If more than four consecutive ampersands precede a name token, the macro
processor generates an error message.

c. Re-scanning continues until there are no remaining macro triggers that the macro
processor can resolve.

d. The macro processor always re-scans a name token that is preceded by multiple
ampersands or by multiple percent signs.

5. Which of the following correctly creates a macro variable in a PROC SQL step?

a. call symputx(daily_fee, put(fee/days, dollar8.);

b. %let daily_fee=put(fee/days, dollar8.)

c. select fee/days format=dollar8.
into :daily_fee from certadv.all;

d. select fee/days format=dollar8.
into daily_fee from certadv.all;

Quiz 229

6. According to the global symbol table shown here, what value will a reference to
&&teach&crs resolve to?

a. &TEACH3

b. TEACH3

c. Forest, Mr. Peter

d. None of the above.

7. Which of the following is false?

a. The SYMPUTX routine can be used to create a macro variable during execution
of the DATA step.

b. The SYMPUTX routine can be used to create a macro variable during execution
of a PROC SQL query.

c. In the DATA step, the SYMPUTX routine automatically converts numeric values
to character strings before assigning values to macro variables.

d. By default, the INTO clause in PROC SQL does not remove leading and training
blanks before assigning macro variable values.

230 Chapter 8 • Storing and Processing Text

Chapter 9

Working with Macro Programs

Defining and Calling a Macro . 232
Defining a Macro . 232
Compiling a Macro . 233
Calling a Macro . 234
Macro Execution . 235

Passing Information into a Macro Using Parameters . 237
Macros That Include Positional Parameters . 237
Example: Using Positional Parameters to Create Macro Variables 238
Macros That Include Keyword Parameters . 238
Example: Using Keyword Parameters to Create Macro Variables 239
Macros That Include Mixed Parameter Lists . 239
Example: Using Mixed Parameters to Create Macro Variables 240

Controlling Variable Scope . 240
Scope of Macro Variables . 240
The %GLOBAL Statement . 241
The %LOCAL Statement . 243
Nested Scope . 245

Debugging Macros . 245
The MPRINT System Option . 245
Comments in Macro Programs . 246

Conditional Processing . 247
The %IF-%THEN Statement and %ELSE Statement . 247
The %DO-%END Statement with the %IF-%THEN Statement 248
Example: Using %IF-%THEN, %DO-%END with IF-THEN Statements 249
Example: Controlling Text Copied to the Input Stack . 249
The MLOGIC System Option . 251

Iterative Processing . 252
The %DO Statement . 252
Example: Using the %DO Statement . 253
Example: Generating Complete Steps . 254

Quiz . 254

231

Defining and Calling a Macro
A macro definition stores text. This might include macro language statements or
expressions as well as complete or partial SAS program statements or program steps.
The macro definition begins with a %MACRO statement and ends with a %MEND
statement.

Defining a Macro

%MACRO and %MEND Statements Syntax
In order to create a macro program, you must first define it. You begin a macro
definition with a %MACRO statement, and you end the definition with a %MEND
statement.

Syntax, %MACRO statement and %MEND statement:

%MACRO macro-name;
text

%MEND <macro-name>;

macro-name
names the macro. The value of macro-name can be any valid SAS name that is not a
reserved word in the SAS macro facility.

text
can be any of the following elements:

• constant text, possibly including SAS data set names, SAS variable names, or SAS
statements

• macro variables, macro functions, or macro program statements

• any combination of the above

T I P You might want to include the optional macro-name in the %MEND statement in
order to make your program more readable.

Example: Defining a Macro
In the following example, the macro Printit generates a PROC PRINT step.

%macro printit;
proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
run;
%mend printit;
%printit;

Note: Your output might differ, depending on the value of the &SYSLAST automatic
macro variable at the time.

232 Chapter 9 • Working with Macro Programs

Output 9.1 Printit Macro Output

Compiling a Macro

A Brief Overview
In order to use the Printit macro later in your SAS programs, you must first compile it by
submitting the macro definition, as follows:

%macro printit;
proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

When you submit this code, the word scanner divides the macro into tokens and sends
the tokens to the macro processor for compilation. Here is what the macro processor
does:

• checks all macro language statements for syntax errors (non-macro language
statements are not checked until the macro is executed).

• writes error messages to the SAS log if any syntax errors are found in the macro
language statements.

• stores all compiled macro language statements and constant text in a SAS catalog
entry if no syntax errors are found in the macro language statements. By default, a
catalog named Work.Sasmacr is opened, and a catalog entry named Macro-
Name.Macro is created.

That is, if there are no syntax errors in the macro language statements within the macro,
the text between the %MACRO statement and the %MEND statement is stored under
the name Printit for execution at a later time.

The MCOMPILENOTE= Option
By default, no note is written to the log if a macro program compiles successfully. The
MCOMPILENOTE= system option writes a note to the SAS log when a macro has
completed compilation.

Defining and Calling a Macro 233

Syntax, MCOMPILENOTE= system option:

OPTIONS MCOMPILENOTE= NONE | NOAUTOCALL | ALL;

NONE
is the default value, which specifies that no notes are issued to the log.

NOAUTOCALL
specifies that a note is issued to the log for completed macro compilations for all macros
except autocall macros.

ALL
specifies that a note is issued to the log for all completed macro compilations.

Example: Using the MCOMPILENOTE Option
A macro might compile but still contain non-macro syntax errors. If there are any macro
statement errors, an error message is written to the SAS log, in addition to the note. Here
is an example of the note that is written to the log when a macro compiles without errors:

options mcompilenote=all;
%macro printit;
 proc print data=&syslast(obs=5);
 title "Listing of &syslast data set";
 run;
%mend printit;

The following is written to the SAS log.

Log 9.1 SAS Log

NOTE: The macro PRINTIT completed compilation without errors.
 3 instructions 20 bytes

Calling a Macro

A Brief Overview
After the macro is successfully compiled, you can use it in your SAS programs for the
duration of your SAS session without resubmitting the macro definition. Just as you
must reference macro variables in order to access them in your code, you must call a
macro program in order to execute it within your SAS program.

Here are the requirements for using a macro call:

• It is specified by placing a percent sign (%) before the name of the macro.

• It can be made anywhere in a program except within the data lines of a DATALINES
statement (similar to a macro variable reference).

• It requires no semicolon because it is not a SAS statement.

To execute the macro Printit you call the macro as follows:

%printit

CAUTION:
A semicolon after a macro call might insert an inappropriate semicolon into the
resulting program, leading to errors during compilation or execution.

234 Chapter 9 • Working with Macro Programs

Example: Calling a Macro
Suppose you have a SAS program that consists of several program steps that create SAS
data sets. After each of these program steps, you want to print out the data set that has
been created. Remember that the macro Printit prints the most recently created data set.
If Printit has been compiled, you can call it after each step in order to print each data set.

proc sort data=sashelp.cars out=cars_mpg;
 by MPG_City;
run;
%printit
proc sort data=sashelp.cars out=cars_msrp;
 by MSRP;
run;
%printit

Output 9.2 %PRINTIT Output 1: Sorted by MPG_City

Output 9.3 %PRINTIT Output 2: Sorted by MSRP

Macro Execution

A Brief Overview
When you call a macro in your SAS program, the word scanner passes the macro call to
the macro processor, because the percent sign that precedes the macro name is a macro
trigger. Here is what the macro processor does when it receives %macro-name:

1. It searches the designated SAS catalog (Work.Sasmacr by default) for an entry
named macro-name.macro.

2. It executes compiled macro language statements within macro-name.

3. It sends any remaining text in macro-name to the input stack for word scanning.

4. It suspends macro execution when the SAS compiler receives a global SAS
statement or when it encounters a SAS step boundary.

5. It resumes execution of macro language statements after the SAS code executes.

Defining and Calling a Macro 235

The macro call is processed by the macro processor before any SAS language statements
such as DATA steps are compiled or executed. During macro execution, the macro
processor can communicate directly with the following elements:

• both global and local symbol tables. For example, the macro processor can store
macro variable values with a %LET statement and can resolve macro variable
references.

• the input stack. For example, the macro processor can generate SAS code for
tokenization by the word scanner.

Example: Executing a Macro
This example demonstrates macro execution. Assume that the Printit macro has been
compiled and that it has been stored in the Work.Sasmacr catalog.

1. First, you submit the macro call, as follows:

%printit

2. When the word scanner encounters this call, it passes the call to the macro processor.
The macro processor searches for the compiled macro in the catalog entry
Work.Sasmacr.Printit.Macro.

%macro printit;
 proc print data=&syslast;
 title "Listing of &syslast data set";
 run;
%mend printit;

3. The macro processor begins executing compiled macro language statements.
However, in this example, no compiled macro statements are included in the macro.

4. The macro processor places non-compiled items (SAS language statements) on the
input stack, and pauses as the word scanner tokenizes the inserted text. In this
example, the macro processor places the PROC PRINT step on the input stack.

proc print data=&syslast;
 title "Listing of &syslast data set";
run;

5. The word scanner passes these tokens to the compiler. When the word scanner
encounters a macro variable reference such as &SYSLAST, it passes the reference to
the macro processor for resolution. The macro processor returns the macro variable
value to the input stack, and word scanning continues.

6. After all of the statements in the PROC PRINT step have been compiled, the PROC
PRINT step is executed, and SAS creates output of the most recently created data
set.

7. Once the PROC PRINT step has been executed, the macro processor resumes
execution of any remaining macro language statements in the macro (there are none
in this example). The macro processor ends execution when it reaches the %MEND
statement.

Assume that the most recently created data set is Work.Update_Schedule from an earlier
example. Here is the output that is generated by calling the Printit macro.

236 Chapter 9 • Working with Macro Programs

Figure 9.1 Partial Output: Printit Macro Output: &SYSLAST

The following is written to the SAS log when %printit is submitted, assuming that
the most recently data set is Work.Update_Schedule.

Log 9.2 SAS Log

NOTE: There were 5 observations read from the data set WORK.UPDATE_SCHEDULE.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.02 seconds
 cpu time 0.00 seconds

Notice that in this SAS log message you see a note from PROC PRINT, but not the
PROC PRINT code itself since the call to the macro does not display the text that is sent
to the compiler.

Passing Information into a Macro Using
Parameters

You have seen the basic form for a macro definition. Your macros will often contain
macro variables. To make your macros more dynamic, you could use the %LET
statement to update the values of the macro variables that are used within the macros.
However, parameter lists in your macro definitions enable you to update the macro
variables within your macro programs more conveniently. A parameter list is an optional
part of the %MACRO statement that names one or more macro variables whose values
you specify when you create or call the macro.

Macros That Include Positional Parameters
When you include positional parameters in a macro definition, a macro variable is
automatically created for each parameter when you call the macro. To define macros that
include positional parameters, you list the names of macro variables in the %MACRO
statement of the macro definition. Positional parameters are so named because the order
in which you specify them in a macro definition determines the order in which they are
assigned values from the macro call. That is, when you call a macro that includes
positional parameters, you specify the values of the macro variables that are defined in
the parameters in the same order in which they are defined.

Passing Information into a Macro Using Parameters 237

Syntax, macro definition that includes positional parameters:

%MACRO macro-name(parameter-1<,...,parameter-n>);
text

%MEND <macro-name>;

parameter-1<,...,parameter-n>
specifies one or more positional parameters, separated by commas. You must supply each
parameter with a name: you cannot use a text expression to generate it.

To call a macro that includes positional parameters, precede the name of the macro with
a percent sign, and enclose the parameter values in parentheses. List the values in the
same order in which the parameters are listed in the macro definition, and separate them
with commas, as follows:

%macro-name(value-1<,...,value-n>)

The following statements are true about the values listed in a macro call:

• They can be null values, text, macro variable references, or macro calls.

• They are assigned to the parameter variables using a one-to-one correspondence.

Example: Using Positional Parameters to Create Macro Variables
You can use positional parameters to create the macro variables Dsn and Vars in the
Printdsn macro definition, as follows:

%macro printdsn(dsn,vars);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

In this case, when you call the Printdsn macro you assign values to the macro variables
that are created in the parameters. In the following example, the value
Certadv.Courses is assigned to the macro variable Dsn, and the value
course_codecourse_title days is assigned to the macro variable Vars. Notice
that the value for Dsn is listed first and the value for Vars is listed second, since this is
the order in which they are listed in the macro definition.

%printdsn(certadv.courses,course_code course_title days)

Note: To substitute a null value for one or more positional parameters, use commas as
placeholders for the omitted values, as follows:

%printdsn(,course_code course_title days)

Macros That Include Keyword Parameters
You can also include keyword parameters in a macro definition. Like positional
parameters, keyword parameters create macro variables. However, when you use
keyword parameters to create macro variables, you specify the name, followed by the
equal sign, and the value of each macro variable in the macro definition.

Keyword parameters can be listed in any order. Whatever value you assign to each
parameter (or variable) in the %MACRO statement becomes its default value. Null
values are allowed.

238 Chapter 9 • Working with Macro Programs

Syntax, macro definition that includes keyword parameters:

%MACRO macro-name(keyword-1=<value-1><,...,keyword-n=<value-n>>);
text

%MEND <macro-name>;

keyword-1=<value-1><,...,keyword-n=<value-n>>
names one or more macro parameters followed by equal signs. You can specify default
values after the equal signs. If you omit a default value, the keyword parameter has a null
value.

When you call a macro whose definition includes keyword parameters, you specify the
keyword, followed by the equal sign, and the value for each parameter, in any order. If
you omit a keyword parameter from the macro call, the keyword variable retains its
default value, as follows:

%macro-name(keyword-1=value-1<,...,keyword-n=value-n>)

Example: Using Keyword Parameters to Create Macro Variables
You can use keyword parameters to create the macro variables Dsn and Vars in the
Printdsn macro. This example assigns a default value of Certadv.Courses to the
macro variable Dsn and assigns a default value of course_codecourse_title
days to the macro variable Vars:

%macro printdsn(dsn=certadv.courses,
 vars=
course_code course_title days);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

To call the Printdsn macro with a value of Certadv.Schedule for Dsn and a value of
teacher course_codebegin_date for Vars, issue the following call:

%printdsn(vars=teacher course_code begin_date, dsn=certadv.schedule)

To call the Printdsn macro with default values for the parameters (Certadv.Courses
as the value for Dsn and course_codecourse_title days as the value for Vars),
you could issue the following call:

%printdsn()

Note: To call the macro Printdsn with default values for the parameters, you could also
issue a macro call that specified these values explicitly, as follows:

%printdsn(dsn=certadv.courses,vars=course_code course_title days)

Macros That Include Mixed Parameter Lists

You can also include a parameter list that contains both positional and keyword
parameters in your macro definitions. All positional parameter variables in the
%MACRO statement must be listed before any keyword parameter variable is listed.

Passing Information into a Macro Using Parameters 239

Syntax, macro definition that includes mixed parameters:

%MACRO macro-name(parameter-1<,...,parameter-n>,
keyword-1=<value-1><,...,keyword-n=<value-n>>);
text

%MEND macro-name;

parameter-1<,...,parameter-n>
is listed before keyword-1=<value-1><,...,keyword-n=<value-n>>.

Similarly, when you call a macro that includes a mixed parameter list, you must list the
positional values before any keyword values, as follows:

%macro-name(value-1<,...,value-n>,
 keyword-1=value-1<,...,keyword-n=value-n>)

Example: Using Mixed Parameters to Create Macro Variables
You can use a combination of positional and keyword parameters to create the macro
variables in the Printdsn macro definition. This code uses a positional parameter to
create the macro variable Dsn, and a keyword parameter to create the macro variable
Vars:

%macro printdsn(dsn, vars=course_title course_code days);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

The following call to the Printdsn macro assigns the value Certadv.Schedule to the
macro variable Dsn and assigns the value teacher location begin_date to the
macro variable Vars. Notice that the value for Dsn is listed first, since Dsn is the
positional parameter.

%printdsn(certadv.schedule, vars=teacher location begin_date)

Now, suppose you want to execute the Printdsn macro, assigning the default value
course_titlecourse_code days to the macro variable Vars and assigning the
value Certadv.Courses to the macro variable Dsn. You could issue the following
call:

%printdsn(certadv.courses)

Because this call omits the keyword parameter (Vars), the default value for that
parameter is used.

Controlling Variable Scope

Scope of Macro Variables

Every macro variable has a scope.

Macro variable scope can either be global or local. Global macro variables can be
created at any time during a SAS session, can persist for the duration of the SAS session,

240 Chapter 9 • Working with Macro Programs

and can be referenced anywhere in the SAS session except for the DATALINES
statement. To remove a global macro variable from memory within a SAS session, you
must explicitly delete it using a %SYMDEL statement.

Local macro variables are created only during execution of a macro program, persist
only as long as the macro is executing, and therefore can be referenced only while the
macro is executing. When a macro terminates execution, its local symbol table is
automatically deleted.

The %GLOBAL Statement

Global Symbol Table
Macro variables are stored in symbol tables, which list the macro variable name and its
value. There is a global symbol table, which stores all global macro variables. Local
macro variables are stored in a local symbol table that is created at the beginning of the
execution of a macro.

Figure 9.2 Global Symbol Table

The global symbol table is created during the initialization of a SAS session and is
deleted at the end of the session. The following statements describe macro variables in
the global symbol table:

• They are available anytime during the session.

• They can be created by a user.

• They have values that can be changed during the session (except for some automatic
macro variables).

A Brief Overview of %GLOBAL Statement
Here is what the %GLOBAL statement does:

• It creates one or more macro variables in the global symbol table and assigns null
values to them.

• It can be used either inside or outside a macro definition.

• It can create a READONLY macro variable with an initial value that cannot be
changed.

• It has no effect on variables that are already in the global symbol table.

Controlling Variable Scope 241

You can create global macro variables anytime during a SAS session or job. Except for
some automatic macro variables, you can change the values of global macro variables
anytime during a SAS session or job.

In most cases, once you define a global macro variable, its value is available to you
anywhere in the SAS session or job and can be changed anywhere. So, a macro variable
referenced inside a macro definition is global if a global macro variable already exists by
the same name (assuming that the variable is not specifically defined as local with the
%LOCAL statement or in a parameter list). The new macro variable definition simply
updates the existing global one. The following are exceptions that prevent you from
referencing the value of a global macro variable:

• When a macro variable exists both in the global symbol table and in the local symbol
table, you cannot reference the global value from within the macro that contains the
local macro variable. In this case, the macro processor finds the local value first and
uses it instead of the global value.

• If you create a macro variable in the DATA step with the SYMPUT routine, you
cannot reference the value with an ampersand until the program reaches a step
boundary.

You can create a global macro variable with any of these elements:

• a %LET statement (used outside a macro definition)

• a DATA step that contains a SYMPUT routine

• a DATA step that contains a SYMPUTX routine

• a SELECT statement that contains an INTO clause in PROC SQL

• a %GLOBAL statement

%GLOBAL Statement Syntax

Syntax, %GLOBAL statement:

%GLOBAL macro-variable-1 <...macro-variable-n>;

macro-variable
is either the name of a macro variable or a text expression that generates a macro variable
name.

Example: Using %GLOBAL Statement
To create a global macro variable inside a macro definition, you can use the %GLOBAL
statement. The %GLOBAL statement in the following example creates two global macro
variables, Dsn and Vars. The %LET statements assign values to the new global macro
variables, as follows:

%macro printdsn;
 %global dsn vars;
 %let dsn=certadv.courses;
 %let vars=course_title course_code days;
 proc print data=&dsn;
 var &vars;
 title "Listing of &dsn data set";
 run;
%mend printdsn;

%printdsn

242 Chapter 9 • Working with Macro Programs

Note: You use the %SYMDEL statement to delete a macro variable from the global
symbol table during a SAS session. To remove the macro variable dsn from the
global symbol table, you submit the following statement:

%symdel dsn;

The %LOCAL Statement

Local Symbol Table
A local symbol table is created when a macro that includes a parameter list is called or
when a request is made to create a local variable during macro execution. The local
symbol table is deleted when the macro finishes execution. That is, the local symbol
table exists only while the macro executes.

Figure 9.3 Local Symbol Table

The local symbol table contains macro variables.

• These variables can be created and initialized at macro invocation (that is, by
parameters).

• They can be created or updated during macro execution.

• They can be referenced anywhere within the macro.

A local symbol table is not created until a request is made to create a local variable.
Macros that do not create local variables do not have a local table. Remember, the
SYMPUT routine can create local variables only if the local table already exists.

Since local symbol tables exist separately from the global symbol table, it is possible to
have a local macro variable and a global macro variable that have the same name and
different values.

A Brief Overview
The following is true of the %LOCAL statement:

• It can appear only inside a macro definition.

• It creates one or more macro variables in the local symbol table and assigns null
values to them.

• It has no effect on variables that are already in the local symbol table.

You can create local macro variables with any of these elements:

• parameters in a macro definition

• a %LET statement within a macro definition

• a DATA step that contains a SYMPUT routine within a macro definition

Controlling Variable Scope 243

• a DATA step that contains a SYMPUTX routine within a macro definition

• a SELECT statement that contains an INTO clause in PROC SQL within a macro
definition

• a %LOCAL statement

Note: The SYMPUT routine can create a local macro variable only if a local symbol
table already exists and no variable of the same name exists in the global symbol
table. If no local symbol table exists when SYMPUT executes, the value is assigned
to a global macro variable. The SYMPUTX call routine provides a third argument
(symbol-table) that allows you to explicitly create a variable in a local symbol table
while the macro that generated the DATA step is executing. If no local symbol table
exists when a call to SYMPUTX with a local specification executes, a local symbol
table is created, and then the macro variable is created in the local symbol table.

%LOCAL Statement Syntax

Syntax, %LOCAL statement:

%LOCAL macro-variable-1 <...macro-variable-n>;

macro-variable
is either the name of a macro variable or a text expression that generates a macro variable
name.

Example: Using the %LOCAL Statement
In this example, the first %LET statement creates a global macro variable named Dsn
and assigns a value of CertAdv.Courses to it.

The %LOCAL statement within the macro definition creates a local macro variable
named Dsn, and the %LET statement within the macro definition assigns a value of
Certadv.Register to the local variable Dsn.

The %PUT statement within the macro definition writes the value of the local variable
Dsn to the SAS log, whereas the %PUT statement that follows the macro definition
writes the value of the global variable Dsn to the SAS log:

%let dsn=certadv.courses;

%macro printdsn;
 %local dsn;
 %let dsn=certadv.register;
 %put The value of DSN inside Printdsn is &dsn;
%mend;

%printdsn
%put The value of DSN outside Printdsn is &dsn;

When you submit this code, the following statements are written to the SAS log.

244 Chapter 9 • Working with Macro Programs

Log 9.3 SAS Log

199 %let dsn=certadv.courses;
200
201 %macro printdsn;
202 %local dsn;
203 %let dsn=certadv.register;
204 %put The value of DSN inside Printdsn is &dsn;
205 %mend;
206
207 %printdsn
The value of DSN inside Printdsn is certadv.register
208 %put The value of DSN outside Printdsn is &dsn;
The value of DSN outside Printdsn is certadv.courses

Nested Scope
The scope of a macro variable can be nested, like boxes within boxes. The following
example illustrates nesting variable scope.

%macro test;
 %local x; /* 1 */
 %let x=FALSE; /* 2 */
%macro test;
%test;

1 The macro variable, X, is defined with a %LOCAL statement. When the %LOCAL
statement executes, a local symbol table is created for the test macro, and the macro
variable, X, is created in this local table.

2 When the macro processor executes the %LET statement, it searches the test macro's
local table for a macro variable named X. It finds X in this local table and sets its
value to False.

The local table is deleted when the test macro ends.

Debugging Macros

The MPRINT System Option

A Brief Overview
The MPRINT system option displays the text generated by macro execution. Each SAS
statement begins a new line. Each line of MPRINT output is identified with the prefix
MPRINT(macro-name), to identify the macro that generates the statement.

You can direct MPRINT output to an external file by also using the MFILE option and
assigning the fileref MPRINT to that file.

You might want to specify the MPRINT system option under these conditions:

• You have a SAS syntax error or execution error.

• You want to see the generated SAS code.

Debugging Macros 245

The MPRINT system option is often synchronized with the SOURCE system option to
show, or hide, executed SAS code.

The MPRINT Option Syntax

Syntax, MPRINT system option:

MPRINT | NOMPRINT;

MPRINT
displays the SAS statements that are generated by macro execution. The SAS statements are
useful for debugging macros.

NOMPRINT
does not display SAS statements that are generated by macro execution.

Example: Using the MPRINT Option
Suppose you want to call the Prtlast macro and use the MPRINT system option to show
the SAS code that results from the macro execution.

Catalog Entry

%macro prtlast;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend prtlast;

The following sample code creates a data set named Sales, specifies the MPRINT
system option, and references the Prtlast macro:

data sales;
 price_code=1;
run;
options mprint;
%prtlast

The messages that are written to the SAS log show the text that is sent to the compiler.
Notice that the macro variable reference (&SYSLAST) is resolved to the value
Work.Sales in the MPRINT messages that are written to the SAS log.

Log 9.4 SAS Log

101 %prtlast
MPRINT(PRTLAST): proc print data=WORK.SALES (obs=5);
MPRINT(PRTLAST): title "Listing of WORK.SALES";
MPRINT(PRTLAST): run;
NOTE: There were 1 observations read from the dataset WORK.SALES.
NOTE: PROCEDURE PRINT used:
 real time 0.04 seconds
 cpu time 0.04 seconds

Comments in Macro Programs

A Brief Overview

246 Chapter 9 • Working with Macro Programs

The macro comment statement is useful for describing macro code. Text from a macro
comment statement is not constant text and is not stored in a compiled macro. Because a
semicolon ends the comment statement, the comment cannot contain internal semicolons
unless the internal semicolons are enclosed in quotation marks or a macro quoting
function. Macro comments are not recognized when they are enclosed in quotation
marks.

Quotation marks within a macro comment must match.

Comment Statement Syntax

Syntax, macro comment statement:

/*comment*/;

comment
can be any message. Like other SAS statements, each macro comment statement ends with a
semicolon.

Example: Use Macro Comments
The following code uses macro comments to describe the functionality of the macro:

%macro printit;
 /*The value of &syslast will be substituted appropriately*/
 /* as long as a data set has been created during this session.*/
 proc print data=&syslast(obs=5);
/* Print only the first 5 observations */
 title "Last Created Data Set Is &syslast";
 run;
%mend;

Conditional Processing

The %IF-%THEN Statement and %ELSE Statement

A Brief Overview
You can perform conditional execution at the macro level with %IF-%THEN and
%ELSE statements.

Although they look similar, the %IF-%THEN/%ELSE statement and the IF-THEN/
ELSE statement belong to two different languages. Most of the same rules that apply to
the DATA step IF-THEN/ELSE statement also apply to the %IF-%THEN/%ELSE
statement. However, there are several important differences between the macro %IF-
%THEN statement and the DATA step IF-THEN statement.

%IF-%THEN Rules IF-THEN Rules

Can be used both inside or outside a macro
program.

Is used only in a DATA step program.

Executes during macro execution. Executes during DATA step execution.

Conditional Processing 247

%IF-%THEN Rules IF-THEN Rules

Uses macro variables in logical expressions
and cannot refer to DATA step variables in
logical expressions.

Uses DATA step variables in logical
expressions.

Determines what text should be copied to the
input stack.

Determines what DATA step statement(s)
should be executed. When inside a macro
definition, it is copied to the input stack as
text.

The %IF-%THEN and %ELSE Statement Syntax

Syntax, %IF-%THEN and %ELSE statements:

%IF expression %THEN text;
<%ELSE text;>

expression
can be any valid macro expression that resolves to an integer.

text
can be specified in any of these forms:

• constant text

• a text expression

• a macro variable reference, a macro call, or a macro program statement

If expression resolves to 0, then it is false and the %THEN text is not processed (the
optional %ELSE text is processed instead). If it resolves to any integer other than 0, then
the expression is true and the %THEN text is processed. If it resolves to null or to any
noninteger value, an error message is issued.

The %ELSE statement is optional. However, the macro language does not contain a
subsetting %IF statement. Thus, you cannot use %IF without %THEN.

The %DO-%END Statement with the %IF-%THEN Statement

A Brief Overview
Simple %DO and %END statements often appear in conjunction with %IF-%THEN/
%ELSE statements in order to designate a section of the macro to be processed
depending on whether the %IF condition is true or false. Use %DO and %END
statements following %THEN or %ELSE in order to conditionally place text that
contains multiple statements onto the input stack. Each %DO statement must be paired
with an %END statement.

The %DO statement designates the beginning of a section of a macro definition that is
treated as a unit until a matching %END statement is encountered. This macro section is
called a %DO group. %DO groups can be nested. A simple %DO statement often
appears in conjunction with %IF-%THEN/%ELSE statements to designate a section of
the macro to be processed depending on whether the %IF condition is true or false.

%DO-%END Statement with %IF-%THEN Statement Syntax

248 Chapter 9 • Working with Macro Programs

Syntax, %DO-%END with %IF-%THEN and %ELSE statements:

%IF expression %THEN %DO;
text and/or macro language statements

%END;
%ELSE %DO;

text and/or macro language statements
%END;

text and/or macro language statements
is either constant text, a text expression, and/or a macro statement.

Example: Using %IF-%THEN, %DO-%END with IF-THEN Statements
The following example illustrates using %IF-%THEN and %DO statements with IF-
THEN/ELSE statements to define and call a macro. SYSERR is an automatic macro
variable that is assigned a value of 0 if the previous step executes without error. If there
is an error, SYSERR is assigned another value. In this program, the PROC PRINT step
executes only if the DATA step runs without errors.

data work.sports;
 set sashelp.cars;
 where Type="Sports";
 AvgMPG=mean(MPG_City, MPG_Highway);
run;

%if &syserr ne 0 %then %do;
 %put ERROR: The rest of the program will not execute;
%end;
%else %do;
title "Sports Cars";
proc print data=work.sports noobs;
 var Make Model AvgMPG MSRP;
run;
%end;

Output 9.4 Work Sports (partial output)

Example: Controlling Text Copied to the Input Stack
You can control text that is copied to the input stack with the %IF-%THEN while
controlling DATA step logic with IF-THEN. In this example, the value of the macro

Conditional Processing 249

variable Status determines which variables and observations are included in the new data
set. The value of the data set variable Location determines the value of the new data set
variable Totalfee.

%macro choice(status);
 data fees;
 set certadv.all;
 %if &status=PAID %then %do;
 where paid='Y';
 keep student_name course_code begin_date totalfee;
 %end;
 %else %do;
 where paid='N';
 keep student_name course_code
 begin_date totalfee latechg;
 latechg=fee*.10;
 %end;
 if location='Boston' then totalfee=fee*1.06;
 else if location='Seattle' then totalfee=fee*1.025;
 else if location='Dallas' then totalfee=fee*1.05;
 run;
%mend choice;

If the MPRINT and MLOGIC system options are both set, the SAS log displays
messages showing the text that is sent to the compiler. For example, suppose you submit
the following macro call:

options mprint mlogic;
%choice(PAID)

The following messages are written to the log. Notice that the MLOGIC option shows
the evaluation of the expression in the %IF statement, but it does not show the
evaluation of the expression in the IF statement.

Log 9.5 SAS Log

160 %choice(PAID)
MLOGIC(CHOICE): Beginning execution.
MLOGIC(CHOICE): Parameter STATUS has value PAID
MPRINT(CHOICE): data fees;
MPRINT(CHOICE): set certadv.all;
MLOGIC(CHOICE): %IF condition &status=PAID is TRUE
MPRINT(CHOICE): where paid='Y';
MPRINT(CHOICE): keep student_name course_code begin_date totalfee;
MPRINT(CHOICE): if location='Boston' then totalfee=fee*1.06;
MPRINT(CHOICE): else if location='Seattle' then totalfee=fee*1.025;
MPRINT(CHOICE): else if location='Dallas' then totalfee=fee*1.05;
MPRINT(CHOICE): run;

Suppose you submit the following macro call:

options mprint mlogic;
%choice(OWED)

The following messages are written to the SAS log. Notice that the text that is written to
the input stack is different this time.

250 Chapter 9 • Working with Macro Programs

Log 9.6 SAS Log

161 %choice(OWED)
MLOGIC(CHOICE): Beginning execution.
MLOGIC(CHOICE): Parameter STATUS has value OWED
MPRINT(CHOICE): data fees;
MPRINT(CHOICE): set certadv.all;
MLOGIC(CHOICE): %IF condition &status=PAID is FALSE
MPRINT(CHOICE): where paid='N';
MPRINT(CHOICE): keep student_name course_code begin_date totalfee
 latechg;
MPRINT(CHOICE): latechg=fee*.10;
MPRINT(CHOICE): if location='Boston' then totalfee=fee*1.06;
MPRINT(CHOICE): else if location='Seattle' then totalfee=fee*1.025;
MPRINT(CHOICE): else if location='Dallas' then totalfee=fee*1.05;
MPRINT(CHOICE): run;

During macro compilation, macro statements are checked for syntax errors. If a macro
definition contains macro statement syntax errors, error messages are written to the SAS
log, and a non-executable (dummy) macro is created.

The MLOGIC System Option

A Brief Overview
Use the MLOGIC system option to debug macros. Each line that is generated by the
MLOGIC option is identified with the prefix MLOGIC(macro-name). If MLOGIC is in
effect and the macro processor encounters a macro invocation, the macro processor
displays messages that identify the following:

• the beginning of macro execution

• values of macro parameters at invocation

• execution of each macro program statement

• whether each %IF condition is true or false

• the ending of macro execution

Note: Using MLOGIC can produce a great deal of output in the SAS log.

MLOGIC System Option Syntax

Syntax, MLOGIC system option:

MLOGIC | NOMLOGIC;

MLOGIC
causes the macro processor to trace its execution and to write the trace information to the
SAS log. This option is a useful debugging tool.

NOMLOGIC
does not trace execution. Use this option unless you are debugging macros.

Example: Using MLOGIC System Option
Suppose you want to repeat the previous example with only the MLOGIC system option
in effect. This sample code creates a data set named Sales, sets the MLOGIC system
option, and calls the Prtlast macro.

Conditional Processing 251

data sales;
 price_code=1;
run;
options nomprint mlogic;
%prtlast

When this code is submitted, the messages that are written to the SAS log show the
beginning and the end of macro processing.

Log 9.7 SAS Log

107 %prtlast
MLOGIC(PRTLAST): Beginning execution.
NOTE: There were 1 observations read from the dataset WORK.SALES.
NOTE: PROCEDURE PRINT used:
 real time 0.02 seconds
 cpu time 0.02 seconds
MLOGIC(PRTLAST): Ending execution.

The MLOGIC system option, along with the SYMBOLGEN option, is typically set as
follows:

• turned on for development and debugging purposes

• turned off when the application is in production mode

Iterative Processing

The %DO Statement

A Brief Overview
Many macro applications require iterative processing. With the iterative %DO statement
you can do the following repeatedly:

• execute macro programming code

• generate SAS code

The iterative %DO and %END statements are valid only inside a macro definition. The
index variable is created in the local symbol table if it does not appear in any existing
symbol table.

The iterative %DO statement evaluates the value of the index variable at the beginning
of each loop iteration. The loop stops processing when the index variable has a value
that is outside the range of the start and stop values.

252 Chapter 9 • Working with Macro Programs

%DO Syntax
Syntax, iterative %DO statement with %END statement:

%DO index-variable=start %TO stop <%BY increment>;
text

%END;

index-variable
is either the name of a macro variable or a text expression that generates a macro variable
name.

start and stop
specify either integers or macro expressions that generate integers to control how many
times the portion of the macro between the iterative %DO and %END statements is
processed.

increment
specifies either an integer (other than 0) or a macro expression that generates an integer to be
added to the value of the index variable in each iteration of the loop. By default, increment is
1.

text
can be any of these elements:

• constant text, possibly including SAS data set names, SAS variable names, or SAS
statements

• macro variables, macro functions, or macro program statements

• any combination of the above

Example: Using the %DO Statement
You can use a macro loop to create and display a series of macro variables.

This example creates a series of macro variables named Teach1-Teachn, one for each
observation in the Certadv.Schedule data set, and assigns teacher names to them as
values. Then the Putloop macro uses a %DO statement and a %END statement to create
a loop that writes these macro variables and their values to the SAS log.

proc sql noprint;
 select teacher
 into :teach1-
 from certadv.schedule;
run;

%macro putloop;
 %local i;
 %do i=1 %to &sqlobs
 %put TEACH&i is &teach&i
 %end;
%mend;

%putloop

T I P SQLOBS macro variable stores the number of rows in the previous SQL query.

T I P It is a good idea to specifically declare the index variable of a macro loop as a
local variable to avoid accidentally changing the value of a macro variable that has
the same name in other symbol tables.

Iterative Processing 253

When the Putloop macro is executed, no code is sent to the compiler because the %PUT
statements are executed by the macro processor.

The following messages are written to the SAS log.

Log 9.8 SAS Log

TEACH1 is Hallis, Dr. George
TEACH2 is Wickam, Dr. Alice
TEACH3 is Forest, Mr. Peter
TEACH4 is Tally, Ms. Julia
TEACH5 is Hallis, Dr. George
TEACH6 is Berthan, Ms. Judy
TEACH7 is Hallis, Dr. George
TEACH8 is Wickam, Dr. Alice
TEACH9 is Forest, Mr. Peter
TEACH10 is Tally, Ms. Julia
TEACH11 is Tally, Ms. Julia
TEACH12 is Berthan, Ms. Judy
TEACH13 is Hallis, Dr. George
TEACH14 is Wickam, Dr. Alice
TEACH15 is Forest, Mr. Peter
TEACH16 is Tally, Ms. Julia
TEACH17 is Hallis, Dr. George
TEACH18 is Berthan, Ms. Judy

You can also use a macro loop to generate statements that can be placed inside a SAS
program step.

Example: Generating Complete Steps
You can use the iterative %DO statement to build macro loops that create complete SAS
steps. Suppose you want to generate a roster for each of the 18 classes that you have.
You can use a %DO statement to create a loop that creates a roster for each class.

%macro rosters;
 %do class=1 %to 18;
 title "Roster for Class #&class";
 proc print data=certadv.all;
 where Course_Number=&class
 run;
 %end;
%mend;

%rosters

The macro prints 18 rosters for each course titles.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following is false?

a. A %MACRO statement must always be paired with a %MEND statement.

254 Chapter 9 • Working with Macro Programs

b. A macro definition can include macro variable references, but it cannot include
SAS language statements.

c. Only macro language statements are checked for syntax errors when the macro is
compiled.

d. Compiled macros are stored in a temporary SAS catalog by default.

2. Which of the following examples correctly defines a macro named Print that defines
and resolves parameters named vars and total?

a. %macro print(vars, total);
 proc print data=classes;
 var vars;
 sum total;
 run;
%mend print;

b. %macro print('vars', 'total');
 proc print data=classes;
 var &vars;
 sum &total;
 run;
%mend print;

c. %macro print(vars, total);
 proc print data=classes;
 var &vars;
 sum &total;
 run;
%mend print;

d. %macro print(vars, total);
 proc print data=classes;
 var :vars;
 sum :total;
 run;
%mend print;

3. Which of the following correctly references the macro named Printdsn as shown
here:

%macro printdsn(dsn,vars);
 %if &vars= %then %do;
 proc print data=&dsn;
 title "Full Listing of %upcase(&dsn) data set";
 run;
 %end;
 %else %do;
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
 %end;
%mend;

a. %printdsn(certadv.courses, course_title days);

b. %printdsn(dsn=certadv.courses, vars=course_title days)

c. %printdsn(certadv.courses, course_title days)

Quiz 255

d. %printdsn(certadv.courses, course_title, days)

4. If you use a mixed parameter list in your macro program definition, which of the
following is false?

a. You must list positional parameters before any keyword parameters.

b. Values for both positional and keyword parameters are stored in a local symbol
table.

c. Default values for keyword parameters are the values that are assigned in the
macro definition, whereas positional parameters have a default value of null.

d. You can assign a null value to a keyword parameter in a call to the macro by
omitting the parameter from the call.

5. Which of the following is false?

a. A macro program is compiled when you submit the macro definition.

b. A macro program is executed when you call it (for example, %macro‑name).

c. A macro program is stored in a SAS catalog entry only after it is executed.

d. A macro program is available for execution throughout the SAS session in which
it is compiled.

6. When you use an %IF-%THEN statement in your macro program, which of the
following is true?

a. You must place %DO and %END statements around code that describes the
conditional action, if that code contains multiple statements.

b. The %ELSE statement is optional.

c. You cannot refer to DATA step variables in the logical expression of the %IF
statement.

d. All of the above.

7. Which of the following can be used for debugging macros?

a. MPRINT

b. MLOGIC

c. comments in macro programs

d. All of the above.

8. Which of the following creates a macro variable named Class in a local symbol
table?

a. data _null_;
 set certadv.courses;
 %let class=course_title;
run;

b. data _null_;
 set certadv.courses;
 call symputx('class', course_title);
run;

c. %macro sample(dsn);
 %local class;
 %let class=course_title;
 data_null_;
 set &dsn;

256 Chapter 9 • Working with Macro Programs

 run;
%mend;

d. %global class;
%macro sample(dsn);
 %let class=course_title;
 data _null_;
 set &dsn;
 run;
%mend;

Quiz 257

258 Chapter 9 • Working with Macro Programs

Chapter 10

Advanced Macro Techniques

Storing Macro Definitions in External Files . 259
The %INCLUDE Statement . 259
Example: Using the %INCLUDE Statement . 260

Understanding Session Compiled Macros . 261

Using the Autocall Facility . 262
A Brief Overview . 262
Creating an Autocall Library . 262
Example: Saving a Macro . 262
Default Autocall Library . 263
Example: Using the LOWCASE Macro . 263
Accessing Autocall Macros . 264

Data-Driven Macro Calls . 266
A Brief Overview . 266
The DOSUBL Function . 266
Example: Using the DOSUBL Function . 266

Quiz . 268

Storing Macro Definitions in External Files

The %INCLUDE Statement
One way to store macro programs permanently is to save them to an external file. You
can then use the %INCLUDE statement to insert the statements that are stored in the
external file into a program. If the external file contains a macro definition, the macro is
compiled when the %INCLUDE statement is submitted. Then the macro can be called
again later in the same program, or anytime later in the current SAS session.

Note: %INCLUDE is a global SAS statement, not a macro statement.

259

Syntax, %INCLUDE statement:

%INCLUDE file-specification </SOURCE2>;

file-specification
describes the location of the file that contains the SAS code to be inserted.

SOURCE2
causes the SAS statements that are inserted into the program to be displayed in the SAS log.
If SOURCE2 is not specified in the %INCLUDE statement, then the setting of the SAS
system option SOURCE2 controls whether the inserted code is displayed.

By storing your macro program externally and using the %INCLUDE statement, you
gain several advantages over using session compiled macros.

• The source code for the macro definition does not need to be part of your program.

• A single copy of a macro definition can be shared by many programs.

• Macro definitions in external files are easily viewed and edited with any text editor.

• No special SAS system options are required in order to access a macro definition that
is stored in an external file.

Example: Using the %INCLUDE Statement
You can compile a macro by using the %INCLUDE statement to insert its definition into
a program. Then you can call the macro in order to execute it.

Suppose the following macro definition is stored in the external file
C:\Users\certadv\prtlast.sas:

%macro prtlast;
 %if &syslast ne _NULL_ %then %do;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
 %end;
 %else
 %put No data set has been created yet.;
%mend;

You could submit the following code to access, compile, and execute the Prtlast macro.
The PROC SORT step is included in this example in order to create a data set that the
Prtlast macro can print.

%include 'C:\Users\certadv\prtlast.sas' /source2;
proc sort data=certadv.courses out=work.bydays;
 by days;
run;
%prtlast

Note: The location and names of external files are specific to your operating
environment.

The following messages are written to the SAS log when this code is submitted. Notice
that the macro definition is written to the log because SOURCE2 was specified in the
%INCLUDE statement.

260 Chapter 10 • Advanced Macro Techniques

Log 10.1 SAS Log

NOTE: %INCLUDE (level 1) file prtlast.sas is file
 C:\Users\certadv\prtlast.sas.
31 +%macro prtlast;
32 + %if &syslast ne _NULL_ %then %do;
33 + proc print data=&syslast(obs=5);
34 + title “Listing of &syslast data set”;
35 + run;
36 + %end;
37 + %else
38 + %put No data set has been created yet.;
39 +%mend;
NOTE: %INCLUDE (level 1) ending.
40
41 proc sort data=certadv.courses out=work.bydays;
42 by days;
43 run;

NOTE: There were 6 observations read from the dataset
 CERTADV.COURSES.
NOTE: The data set WORK.BYDAYS has 6 observations and
 4 variables.
NOTE: PROCEDURE SORT used:
 real time 0.04 seconds
 cpu time 0.04 seconds

44
45 %prtlast
NOTE: There were 5 observations read from the dataset
 WORK.BYDAYS.
NOTE: PROCEDURE PRINT used:
 real time 1.07 seconds
 cpu time 0.26 seconds

Output 10.1 PROC PRINT Result of Work.Bydays

Understanding Session Compiled Macros

By default, when a macro definition is submitted, the macro is compiled and stored in a
temporary SAS catalog as Work.Sasmacr. Macros that are stored in this temporary SAS
catalog are known as session compiled macros. Once a macro has been compiled, it can
be invoked from a SAS program.

Understanding Session Compiled Macros 261

Session compiled macros are available for execution during the SAS session in which
they are compiled. They are deleted at the end of the session. But suppose you want to
save your macros so that they are easily reused in another SAS session.

Using the Autocall Facility

A Brief Overview
You can make macros accessible to your SAS session or program by using the autocall
facility to search predefined source libraries for macro definitions. These predefined
source libraries are known as autocall libraries. You can store your macro definitions
permanently in an autocall library, and you can set up multiple autocall libraries.

When you store macro definitions in an autocall library, you do not need to compile the
macro definition ahead of time to make it available for execution. That is, if the macro
definition is stored in an autocall library, then you do not need to submit or include the
macro definition before you submit a call to the macro.

Suppose you have stored a file that contains a macro definition in your autocall library.
Here is what happens when you submit a call to that macro:

• The macro processor searches the autocall library for the macro.

• The macro is compiled and stored as it would be if you had submitted it (that is, the
compiled macro is stored in the default location of Work.Sasmacr).

• The macro is executed.

Once it has been compiled, the macro can be executed as needed throughout the same
SAS session. At the end of the SAS session, the compiled macro is deleted from the
Work.Sasmacr catalog, but the source code remains in the autocall library.

Creating an Autocall Library
An autocall library can be in either of these forms:

• a directory that contains source files

• a SAS catalog

To create an autocall library in a directory-based operating system, create a directory in
which to store macro definitions. Each macro definition in this directory will be a
separate file that has the extension .sas and that has the same name as the macro that it
contains.

Note: On UNIX the file name containing the macro definition must be in all lowercase
letters. It is considered a best practice to use all lowercase letters for macro definition
program files on all operating systems.

Example: Saving a Macro
To save the definition for the macro PrintLast in an autocall library, first determine
where you want to save your autocall macro file. You can either use an existing folder
containing other autocall macro programs (if you have Write access) or you can create a
new folder to store your autocall macros. Then, save your macro definition program in a
file named printlast.sas in the designated folder.

262 Chapter 10 • Advanced Macro Techniques

Default Autocall Library
SAS provides several macros in a default autocall library for you. Some of the macros in
the autocall library that SAS provides are listed here.

Macro Syntax Purpose

%LOWCASE(argument) converts letters in its argument from uppercase to lowercase

%QLOWCASE(argument) converts letters in its argument from uppercase to lowercase,
and returns a result that masks special characters and
mnemonic operators

%LEFT(argument) removes leading blanks from the argument

%TRIM(argument) removes trailing blanks from the argument

%CMPRES(argument) removes multiple blanks from the argument

%DATATYP(argument) returns the string NUMERIC or CHAR, depending on
whether the argument is an integer or a character string

You might be familiar with SAS functions such as TRIM and LEFT. The macros that
SAS supplies look like macro functions, but they are in fact macros. One of the useful
things about these macros is that in addition to using them in your SAS programs, you
can see their source code.

Example: Using the LOWCASE Macro
The macro definition for the LOWCASE macro is shown below. Notice that the
comments that are included in this macro provide information about using the macro. All
of the macros that SAS provides in the autocall library include explanatory comments,
making them easy for you to understand and use.

Using the Autocall Facility 263

Log 10.2 SAS Log

%macro lowcase(string);
%**;
%* *;
%* MACRO: LOWCASE *;
%* *;
%* USAGE: 1) %lowcase(argument) *;
%* *;
%* DESCRIPTION: *;
%* This macro returns the argument passed to *;
%* it unchanged except that all upper-case *;
%* alphabetic characters are changed to their *;
%* lower-case equivalents. *;
%* *;
%* E.g.: %let macvar=%lowcase(SAS Institute Inc.); *;
%* The variable macvar gets the value *;
%* "sas institute inc." *;
%* NOTES: *;
%* Although the argument to the %UPCASE macro *;
%* function may contain commas, the argument to *;
%* %LOWCASE may not, unless they are quoted. *;
%* Because %LOWCASE is a macro, not a function, *;
%* it interprets a comma as the end of a parameter. *;
%**;
%sysfunc(lowcase(%nrbquote(&string)))
%mend;

Accessing Autocall Macros

Overview
Remember that an autocall library is either a SAS catalog, an external directory, or a
partitioned data set. This is true both for the default autocall library that SAS supplies
and for autocall libraries that you create.

In order to access a macro definition that is stored in an autocall library, you must use
two SAS system options, as follows:

• The MAUTOSOURCE system option must be specified.

• The SASAUTOS= system option must be set to identify the location of the autocall
library or libraries.

Both the MAUTOSOURCE and SASAUTOS= system options can be set either at SAS
invocation or with an OPTIONS statement during program execution.

The MAUTOSOURCE System Option
The MAUTOSOURCE system option controls whether the autocall facility is available.

Syntax, MAUTOSOURCE system option:

OPTIONS MAUTOSOURCE | NOMAUTOSOURCE;

MAUTOSOURCE
is the default setting, and specifies that the autocall facility is available.

NOMAUTOSOURCE
specifies that the autocall facility is not available.

264 Chapter 10 • Advanced Macro Techniques

The SASAUTOS System Option
The SASAUTOS= system option controls where the macro facility looks for autocall
macros.

Syntax, SASAUTOS= system option:

OPTIONS SASAUTOS=library-1;
OPTIONS SASAUTOS=(library-1,...,library-n);

the values of library-1 through library-n
are references to source libraries that contain macro definitions. To specify a source library:

• Use a fileref to refer to its location.

• Specify the pathname (enclosed in quotation marks) for the library.

Unless your system administrator has changed the default value for the SASAUTOS=
system option, its value is the fileref Sasautos, and that fileref points to the location
where the default autocall library was created during installation. The Sasautos fileref
can refer to multiple locations that are concatenated.

T I P Remember to concatenate any autocall libraries that you create yourself with the
default autocall library supplied by SAS. Otherwise, the new autocall library will
replace the default or existing libraries in the value of SASAUTOS=, and the
autocall facility will have access to only the new autocall library.

Example: Accessing Autocall Macros
Suppose you want to access the Prtlast macro, which is stored in the autocall library
C:\Mysasfiles. You also want to make sure that the default autocall library (which
the fileref Sasautos points to) is still available to the autocall facility. You would submit
the following code:

options mautosource sasautos=('c:\mysasfiles',sasautos);
%prtlast

When the autocall facility is in effect, if you invoke a macro that has not been previously
compiled, here is what the macro facility automatically does:

1. It searches the autocall library (or each autocall library in turn if multiple libraries
are identified in the SASAUTOS= system option) for a library member that has the
same name as the invoked macro.

2. It brings the source statements into the current SAS session if the library member is
found.

3. It issues an error message if the library member is not found.

4. It submits all statements in the library member in order to compile the macro.

5. It stores the compiled macro in the temporary catalog Work.Sasmacr.

6. It calls the macro.

The autocall facility does not search for a macro in the autocall library if the macro has
already been compiled during the current SAS session. In that case, the session compiled
macro is executed.

Note: To see what SASAUTOS is set to, run the following statements:

%put %sysfunc(getoption(sasautos));
%put %sysfunc(pathname(sasautos));

Using the Autocall Facility 265

Data-Driven Macro Calls
You can create data-driven macro calls using the DOSUBL DATA step function.

A Brief Overview
The DOSUBL function enables the immediate execution of SAS code after a text string
is passed. Macro variables that are created or updated during the execution of the
submitted code are exported back to the calling environment.

DOSUBL returns a value of 0 if SAS code was able to execute, and returns a nonzero
value if SAS code was not able to execute.

DOSUBL should be used in a DATA step. It can also be used with %SYSFUNC outside
a step boundary.

The DOSUBL Function
The DOSUBL function imports macro variables from the calling environment, and
exports macro variables back to the calling environment.

Syntax, DOSUBL function:

DOSUBL(text-string)

text string
specifies the SAS code to run within the DOSUBL function.

Note: In older macro programs, you might see CALL EXECUTE used in a similar
manner to generate macro calls. CALL EXECUTE can encounter timing errors if the
DATA step using CALL EXECUTE was itself generated by a macro program.
DOSUBL avoids this issue.

Example: Using the DOSUBL Function
Suppose you create a macro called DelayReport that executes a PROC SQL query that
joins two tables together.

%macro DelayReport(empid);
title "Flight Delays for Employee &Empid";
proc sql;
 select DelayCategory, Count(*) as Count
 from
 certadv.flightdelays d
 inner join
 certadv.flightschedule s
 on s.date=d.date and s.flightnumber=d.flightnumber
 where empid="&Empid"
 group by DelayCategory
;
quit;
title;

266 Chapter 10 • Advanced Macro Techniques

%mend;

Suppose you want to pull the report for each EmpId in Certadv.FlightCrewNew. Without
a data-driven program you would manually call the macro for each EmpId.

%Delayreport(1928)
%Delayreport(1407)
%Delayreport(1574)
%Delayreport(1777)

Certadv.FlightCrewNew has only four observations, so manually calling the macro is not
too tedious. However, if your data set had hundreds of observations, manually calling the
macro for each EmpId would be time consuming. Instead, you can create a data-driven
program that uses the DOSUBL function to call the DelayReport macro and generate
results for each EmpId.

The DOSUBL function uses the value found in EmpID concatenated between
'%DelayReport (' and ')' to generate a valid macro call.

data _null_;
 set certadv.FlightCrewNew;
 rc=dosubl(cats('%DelayReport(',empid,')'));
run;

Data-Driven Macro Calls 267

Output 10.2 Data-Driven Macro Call Result

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following statements about the %INCLUDE statement is correct?

a. It can be used to insert the contents of an external file into a program.

b. It causes a macro definition that is stored in an external file to be compiled when
the contents of that file are inserted into a program and submitted.

c. It can be specified with the SOURCE2 option in order to write to the SAS log the
contents of the external file that is inserted into a program.

268 Chapter 10 • Advanced Macro Techniques

d. All of the above.

2. What happens if you store a macro definition in a SAS catalog SOURCE entry?

a. The macro definition can be submitted for compilation by using the FILENAME
and %INCLUDE statements.

b. The SOURCE entry will be deleted at the end of the session.

c. You do not need to compile the macro before you invoke it in a program.

d. All of the above.

3. Which of the following programs correctly sets the appropriate system options and
calls the macro Prtlast? Assume that Prtlast is stored in an autocall library as a text
file and that it has not been compiled during the current SAS session.

a. libname mylib 'c:\mylib';
filename macsrc 'mylib.macsrc';
options mautosource sasautos=(macsrc, sasautos);
%prtlast

b. libname mylib 'c:\mylib';
filename macsrc catalog 'mylib.macsrc';
%prtlast

c. filename mylib 'c:\mylib';
options mautosource sasautos=(sasautos,mylib);
%prtlast

d. libname mylib 'c:\mylib';
options mautosource sasautos=mylib;
%prtlast

4. When you submit the following code, what happens?

%macro prtlast;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

a. A session compiled macro named Prtlast is stored in Work.Sasmacr.

b. A macro named Prtlast is stored in the autocall library.

c. The Prtlast macro is stored as a stored compiled macro.

d. The Prtlast macro is stored as a SOURCE entry in a permanent SAS catalog.

5. Why would you want to store your macros in external files?

a. You could easily share your macros with others.

b. You could edit your macros with any text editor.

c. Your macros would be available for use in later SAS sessions.

d. All of the above.

6. Which of the following is not true?

a. The autocall macro facility stores compiled SAS macros in a collection of
external files called an autocall library.

b. Autocall libraries can be concatenated together.

Quiz 269

c. One disadvantage of the autocall facility is that the first time you call an autocall
macro in a SAS session, the macro processor must use system resources to
compile it.

d. The autocall facility can be used with the stored compiled macro facility.

7. Suppose you had the program below, and you wanted to concatenate the values from
the libname and memname columns to create a call to %Report3 for each row of data
read. Which option would correctly run the program below and generate a result?

data _null_;
 set sashelp.vtable;
 where libname='MC1' and memtype='DATA';
 rc=_______________________;
run;

a. rc=dosubl(cats('%Report3(',catx(',',libname,memname),')'));

b. rc=dosubl(catx(%Report3(',catx(',',libname,memname),')'));

c. rc=dosubl(catx(%Report3,',libname,memname),')');

d. rc=dosubl(cats(%Report3,',libname,memname),')');

8. When does the DOSUBL function execute the text string?

a. The function executes the text string during the compilation phase.

b. The function executes the text string immediately.

c. The function does not execute the text string. The text string is stored as a macro.

d. The function executes the text string, but does not return any values.

270 Chapter 10 • Advanced Macro Techniques

Part 3

Advanced SAS Programming
Techniques

Chapter 11
Defining and Processing Arrays . 273

Chapter 12
Processing Data Using Hash Objects . 297

Chapter 13
Using SAS Utility Procedures . 317

Chapter 14
Using Advanced Functions . 337

271

272

Chapter 11

Defining and Processing
Arrays

Defining and Referencing One-Dimensional Arrays . 273
A Brief Overview . 273
ARRAY Statement Syntax . 274
Defining the Number of Elements . 275
Specifying the Array Elements . 275
Using Column Lists as Array Elements . 276
Referencing a One-Dimensional Array . 277
DO Statement Syntax . 277
Example: Processing Repetitive Code . 277
Handling an Unknown Number of Array Elements . 278
Using the DIM Function . 278
Compilation and Execution Phases for Array Processing 279

Expanding Your Use of One-Dimensional Arrays . 283
Creating Character Columns with an Array . 283
Specifying Lower and Upper Bounds . 284
Assigning Initial Values to Arrays . 284
Example: Assigning Initial Values to Arrays . 285
Specifying Temporary Array Elements . 285
Example: Rotating Data . 286

Defining and Referencing Two-Dimensional Arrays . 288
A Brief Overview . 288
Example: Creating a Two-Dimensional Array with Initial Values 288
Example: Creating a Two-Dimensional Array to Perform Table Lookup 290

Quiz . 293

Defining and Referencing One-Dimensional
Arrays

A Brief Overview
Suppose you have a table that contains patient names and five health indicators for each
patient. You want to keep a running total of the count of high values for each patient.
You can do this by using five IF-THEN statements or DO-loops. The only syntax that
differs in each statement is the name of the health indicator column. However, this
creates a program that contains repetitive code and is less efficient. Suppose your data

273

set had fifty health indicators instead of five. With fifty indicators, you would need fifty
assignment statements. Instead of writing repetitive code, you can use an array.

A SAS array provides a way to reference a group of columns for processing in the DATA
step. By grouping columns into an array, you can process the variables in a DO loop.
Each column that is grouped together in an array is referred to as an element. You can
reference an element in the array by using the array-name and a numeric subscript as
shown in the figure below.

Figure 11.1 Referencing a One-Dimensional Array

Arrays are often referenced in DO loops because more than one element in an array must
be processed. By using fewer statements in your program, the DATA step program can
be more easily modified or corrected. The array name distinguishes it from any other
arrays in the same DATA step. The array name is not a variable.

Arrays are used when you want to perform the same task on multiple columns. For
example, you can use arrays to process repetitive code, rotate data, and perform table
lookups. The array is created at compile time, and it is referenced during execution.

ARRAY Statement Syntax
Using arrays is a two-part process. First you define the array with the ARRAY statement.
Second, you reference the array specifying the column that is desired. When you are
defining the array, the ARRAY statement includes the ARRAY keyword, the array name,
and the number of elements, which are also known as columns. Typically, you list the
variables that make up the array. A semicolon is used at the end of the statement.

Syntax, ARRAY statement:

ARRAY array-name [number-of-elements] <array-elements>;

• array-name specifies the name of the array. The name must be a SAS name that is not the
name of a SAS variable in the same DATA step.

• number-of-elements specifies the number of elements included in the array.

• array-elements specifies the variables to be included in the array, which must be either be all
numeric or all character.

Note: The number of elements must be enclosed in either parentheses (), braces { }, or
brackets [].

CAUTION:
Avoid using the name of a SAS function for an array. The array will work, but you
will not be able to use the function in the same DATA step, and a note appears in the
SAS log.

274 Chapter 11 • Defining and Processing Arrays

Defining the Number of Elements
The Certadv.Patdata table contains the patient data with health indicators. Suppose you
need to define an array named Health and specify the correct number of elements.

Figure 11.2 Referencing One-Dimensional Array

The following example illustrates a one-dimensional array named Health. It contains
five elements. The columns are defined as Weight, Temp, Pulse, Resp, and BP.

array health[5] Weight Temp Pulse Resp BP;

The number 5 indicates a one-dimensional array with 5 elements and an implied
subscript range of 1 to 5. The elements 1 through 5 in the Health array can be referenced
by the array name and subscript.

There are several ways to define the number of array elements:

• You can specify a range of values for the array elements when you define an array. In
the following example, the lower bound is 2 and upper bound is 4. Explicitly
specifying lower and upper bounds is beneficial if you want to start the lower bound
at a value other than 1.

array health[2:4] Temp Pulse Resp;

• You can use an asterisk [*] to determine the subscript by counting the variables in the
array. When you specify the asterisk, you must include the elements in the ARRAY
statement. Using an asterisk enables SAS to determine the size of the array based on
the number of elements provided.

array health[*] Weight Temp Pulse Resp BP;

• The array elements can be enclosed in parentheses, braces, or brackets. The
following three statements are equivalent:

array health(5) Weight Temp Pulse Resp BP;

array health{5} Weight Temp Pulse Resp BP;

array health[5] Weight Temp Pulse Resp BP;

Specifying the Array Elements
Elements in the ARRAY statement are optional unless you are using an asterisk[*] to
determine the size of an array. However, if the elements are not specified and they do not
exist in the PDV, then variables are created with default names. The default names are
created by concatenating the array name that has the subscript.

Defining and Referencing One-Dimensional Arrays 275

You can specify the five columns—Weight, Temp, Pulse, Resp, and BP—as your array
elements. The array elements can be specified in any order and do not have to be
positioned consecutively in the PDV. Weight corresponds with the first element, Temp is
the second element, and so on.

array health[5] Weight Temp Pulse Resp BP;

Array elements can be specified using column lists. The double hyphen specifies that all
columns will be ordered as they are in the PDV. Since these columns are located
consecutively in the PDV, you can refer to the first column, followed by a double
hyphen, and then the last column.

array health[5] Weight--BP;

Using Column Lists as Array Elements
You can specify column lists in the forms shown below.

Column Description Form

Numbered range list Specifies all columns from x1 to xn
inclusive. You can begin with any
number and end with any number as
long as you do not violate the rules for
user-supplied column names and the
numbers are consecutive.

x1–xn

Name range list Specifies all columns ordered as they
are in the program data vector, from x
to b, inclusive.

x- - b

Specifies all numeric columns from x
to b, inclusive.

x-numeric-b

Specifies all character columns from x
to b, inclusive.

x-character-b

Name prefix list Specifies all the columns that begin
with REV, such as REVJAN,
REVFEB, and REVMAR.

REV:

Special SAS name lists Specifies all numeric columns that are
already defined in the current DATA
step.

NUMERIC

Specifies all character columns that
are already defined in the current
DATA step.

CHARACTER

Specifies all columns that are already
defined in the current DATA step.

Note: Variables must be either all
numeric or character.

ALL

276 Chapter 11 • Defining and Processing Arrays

Referencing a One-Dimensional Array
Once an array has been defined, elements within the array can be referenced. To
reference an element, specify the name of the array followed by the number of the
desired element. The value of element-number is the number of the element desired. The
array reference is in the following form:

array-name[element-number]

An array reference enables you to reference a column in a DATA step. For example, if
you wanted to reference the third element in the Health array, you would be referencing
the Pulse column. The following example references the third element in the Health
array.

health[3]

What gives arrays their power is their ability to reference the elements of an array by
subscripts. Typically, arrays are used with DO loops to process multiple variables and to
perform repetitive calculations.

DO Statement Syntax
An array is typically referenced within a DO loop. You can use the index column to
specify which element to reference. The index column changes for each iteration of the
DO loop from a start value to a stop value, which can be the number of array elements.

Syntax, DO statement:

DO index-column = 1 TO number-of-elements;
. . . array-name[index-column]. . .

• index-column is used to reference the element number.

• number-of-elements refers to the number of elements included in the array.

• array-name specifies the name of the array. The name must be a SAS name that is not the
name of a SAS variable in the same DATA step.

Example: Processing Repetitive Code
Suppose you want to keep a running total of the count of high values for each patient.
You can use the Health array in your IF-THEN statement within a DO loop.

data work.highcount;
 set certadv.patdata;
 array health[5] Weight--BP;
 do i = 1 to 5;
 if health[i]='High' then HighCount+1;
 end;
run;

When i is equal to 1, SAS looks at the value of the first element, which is the Weight
column. When i is equal to 2, it looks at the second element, which is the Temp column,
and so on. SAS iterates over the DO loop five times to reference the five health indicator
columns to calculate the HighCount column.

Defining and Referencing One-Dimensional Arrays 277

Output 11.1 Work.HighCount Data Set

Handling an Unknown Number of Array Elements
Suppose that you are asked to create a data set where there are a varying number of
observations for a variable in the original data set. When you have an unknown number
of array elements, use an asterisk (*) within your brackets when defining an array. SAS
determines the number of elements by counting the number of columns referenced in the
ARRAY statement.

The following example specifies that all columns starting with Ordt will be in the Ordt
array, Deldt will be in the Deldt array, and Q will be in the Q array. The colon after the
words Ordt, Deldt, and Q specifies that all columns that start with that specific string.

array Ordt[*] Ordt:;

array Deldt[*] Deldt:;

array Q[*] Q:;

Using the DIM Function

DIM Function Syntax
If the number of array elements is unknown, the DIM function can be used to return the
number of elements in the array. When using DO loops to process arrays, you can also
use the DIM function to specify the value for the TO clause of the iterative DO
statement. For an array, specify the array name as the argument for the DIM function.

Syntax, DIM function:

DIM(array-name)

• array-name specifies the name of the array.

Example: Using the DIM Function in an Iterative DO Statement
When you specify the array name as the single argument for the DIM function, the
function returns the number of elements in the array.

data work.sysbp2 (drop=i);
 set work.sysbp;
 array sbparray[*] sbp:;
 do i=1 to dim(sbparray);
 if sbparray[i]=999 then sbparray[i]=.;
end;

278 Chapter 11 • Defining and Processing Arrays

run;

Compilation and Execution Phases for Array Processing
Suppose you have survey data Certadv.Salary from Silicon Valley. The data set contains
four salary variables identifying the four different people who took the survey at one
time. You are asked to create a running total of the number of people whose salaries are
less than or equal to the average salary of 51,000.

Compilation Phase
The following program is submitted.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

During the compilation phase, the PDV is created. The ARRAY statement is a compile-
time statement only. At compile time, SAS reads the ARRAY statement and associates
the four salary variables, Salary1 through Salary4, with the BelowAvgS array. The
variables Salary1 through Salary4 are already in the PDV because they are existing
variables in the input file being read by the SET statement, Certadv.Salary. If the
variables were not already in the PDV, then SAS would add the variables to the PDV as
new variables.

The array name BelowAvgS and array references are not included in the PDV. Syntax
errors in the ARRAY statement are detected during the compilation phase.

Note: The array name is not included in the PDV because it is not a variable. It is a
name that is used to reference a collection of variables. The array exists only for the
duration of the DATA step.

Execution Phase
1. At the beginning of the execution phase, _N_ is set to 1 in the PDV. BelowAge is

initialized to 0 because it is created using the SUM statement.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

Defining and Referencing One-Dimensional Arrays 279

The remaining variables are set to missing.

2. The SET statement copies the first observation from Certadv.Salary to the PDV.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

3. The ARRAY statement is a compile-time statement. Therefore, it is ignored in the
execution phase.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

4. In the first iteration of the DO loop, the index variable i is to set to 1.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

280 Chapter 11 • Defining and Processing Arrays

The array reference BelowAvgS[i] becomes BelowAvgS[1]. BelowAvgS[1] refers to
the first array element, Salary1. Since Salary1 through Salary4 are higher than
51,000, the BelowAvg column does not update its count to 1. Since all Salary values
for this observation are above 51,000, the BelowAvg column remains 0.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

SAS reaches the end of the DO loop. SAS reaches the end of the first iteration of the
DATA step, and the implicit OUTPUT statement writes the contents from the PDV to
the data set Work.SurvSalary. SAS returns to the beginning of the DATA step.

5. At the beginning of the second iteration, _N_ increments to 2, and the variables
Salary1 through Salary4 retain their values because they are being read from an
existing SAS data set. BelowAvg remains 0 because its value is automatically
retained.

6. The SET statement reads the second observation from Certadv.Salary into the PDV.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

Defining and Referencing One-Dimensional Arrays 281

7. On the first iteration of the DO loop, the index variable i is set to 1. The array
reference BelowAvgS[i] becomes BelowAvgS[1]. BelowAvgS[1] refers to the first
array element, Salary1. Since Salary1 is not less than or equal to 51,000, the
BelowAvg column remains 0.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

8. The DO loop iterates through to the fourth iteration when the index variable i is set
to 4. The array reference BelowAvgS[4] refers to the fourth array element, Salary4.
Because Salary4 is less than 51,000, the BelowAvg column increments to 1.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

282 Chapter 11 • Defining and Processing Arrays

SAS reaches the end of the second iteration of the DATA step and the implicit
OUTPUT statement writes the contents from the PDV to the data set
Work.SurvSalary. SAS returns to the beginning of the DATA step.

The rest of the iterations of the DATA step are processed the same as above.

Graphical Displaying of Array Processing
As the DATA step continues processing, new observations are loaded into the PDV. The
DO loop iterates over the four salary variables for each observation, checking to see
whether any of those values are below $51,000. When a value below $51,000 is
encountered, the BelowAvg variable is incremented by 1.

data work.survsalary (drop=i);
 set certadv.salary;
 array BelowAvgS[4] Salary1-Salary4;
 do i=1 to 4;
 if BelowAvgS[i] <=51000 then BelowAvg+1;
 end;
run;

Output 11.2 PROC PRINT Output of Work.SurvSalary

Expanding Your Use of One-Dimensional Arrays

Creating Character Columns with an Array
Suppose you need to create an array named States with 50 character columns.

Expanding Your Use of One-Dimensional Arrays 283

By default, array columns are created as numeric and with the length of each column as
8. For character columns, you can specify a length other than 8 following the dollar sign
($).

The following example creates the States array with 50 character elements named
State1-State50, each with a length of 12.

array States[50] $12 State1-State50;

If you do not specify a length, the default length of 8 is assigned to State1-State50.

array States[50] $ State1-State50;

Specifying Lower and Upper Bounds
When you specify an array with an asterisk (*), by default, the lower bound is 1, and the
upper bound is the number of elements in the array. For example, both the following
ARRAY statements have a lower bound of 1 and an upper bound of 6. The first element
is referred to as element 1, and the second element as 2, and so on.

array years[6] yr2011-yr2016;
array years[*] yr2011-yr2016;

However, for some DATA step code it might be more efficient if the element number is
referenced by another value. For example, it might be useful to reference the following
element yr2011 as element 2011, the second as 2012, and so on. To do so, you can
specify the lower and upper bounds using a colon between the two values.

array years[2011:2016] yr2011-yr2016;
do i=2011 to 2016;

When lower and upper bounds are specified, but the names of the variables are omitted,
SAS does not create variable names with the bound values as the suffix. The following
example creates the variables Years1, Years2, and so on, with the array. It does not create
the variables Years2011, Years2012, and so on.

array years[2011:2016];

Assigning Initial Values to Arrays
It can be useful to assign initial values to elements of an array when you define the array.

 array goal[4] g1 g2 g3 g4 (initial values);

To assign initial values in an ARRAY statement:

1. Place the values after the array elements.

2. Specify one initial value for each corresponding array element.

3. Separate each value with a comma or blank.

4. Enclose the initial values in parentheses.

5. Enclose each character value in quotation marks.

It is also possible to assign initial values to an array without specifying each array
element. The following statement creates the variables Var1, Var2, Var3, and Var4, and
assigns them initial values of 1, 2, 3, and 4:

 array Var[4] (1 2 3 4);

284 Chapter 11 • Defining and Processing Arrays

Example: Assigning Initial Values to Arrays
Suppose you want to compare the actual sales figures in the Certadv.Qsales data set to
the sales goals for each sales representative at the beginning of the year. The sales goals
are not recorded in Certadv.Qsales.

data work.report (drop=i); /* 1 */
 set certadv.qsales;
 array sale[4] sales1-sales4; /* 2 */
 array Goal[4] (9000 9300 9600 9900); /* 3 */
 array Achieved[4]; /* 4 */
 do i=1 to 4; /* 5 */
 achieved[i]=100*sale[i]/goal[i];
 end;
run;
proc print data=work.report noobs;
run;

1 The DATA step reads the Certadv.Qsales data set to create the Work.Report data set.
You can drop the index variable from the new data set by adding a DROP= option to
the DATA statement.

2 The first ARRAY statement creates an array, Sale. The four sales variables, Sales1
through Sales4, are being read from the input table Certadv.Qsales.

3 The second ARRAY statement creates the array, Goal, along with four variables
Goal1 through Goal4, to provide the Sales goals for each quarter. The Goal array is
assigned initial values of 9000, 9300, 9600, and 9900.

4 The third ARRAY statement creates the variables Achieved1 through Achieved4 to
store the comparison of actual sales versus sales goals.

5 A DO loop executes four times to calculate the value of each element of the
Achieved array (expressed as a percentage).

The output data set shows the variables that were read from Certadv.Qsales and the eight
variables that were created with ARRAY statements.

Figure 11.3 PROC PRINT Results of SAS Data Work.Report

Note: Variables to which initial values are assigned in an ARRAY statement are
automatically retained.

Specifying Temporary Array Elements
Suppose you need to create an array with initial values. However, you know that you do
not need to keep the values in the final table. You can specify the _TEMPORARY_
keyword in place of the array elements.

Expanding Your Use of One-Dimensional Arrays 285

Temporary data elements do not have column names and can be referenced with the
array reference. The temporary data elements do not appear in the output table and are
also automatically retained. When you use the word _TEMPORARY_ there is no need
to use a DROP statement to eliminate the unneeded columns in the final table.

When defining a temporary array, you must explicitly specify the number of elements
within the array using a constant value within the array brackets. You cannot use an
asterisk (*).

array salesquota[5] _temporary_;

Temporary arrays can either be numeric or character. You can create a temporary
character array by including the dollar sign ($) after the array brackets.

array Names[20] $ _temporary_;

Temporary array elements are retained automatically between the iterations of the DATA
step. You do not need to use the RETAIN statement. Temporary values within the array
elements are never written to the output data set.

When referencing elements of a temporary array, use the array name and the number of
elements (for example, SalesQuota[1] or Names[1]). Since there are no variables
associated with the array, a reference to the columns SalesQuota1 or Names1 would not
refer to the first element of the array.

Example: Rotating Data
Suppose you have the Certadv.QtrSales data set, which contains 25 rows of data. It
contains sales data for the past five years for five different countries. For each country
and year there are corresponding SalesQ columns. However, you are asked to create a
new data set with the quarter sales values in one column.

286 Chapter 11 • Defining and Processing Arrays

Figure 11.4 Original Data versus Desired Output

To rotate the data, use an array pointing to the four quarterly sales variables. Then use a
DO loop to assign the appropriate quarter value to the new Sales column.

data work.yrsales;
 set certadv.qtrsales;
 array Yr[4] SalesQ1-SalesQ4;
 do Quarter=1 to 4;
 Sales=Yr[Quarter];
 output;
 end;
run;

Your output data contains the following variables: Country, Year, SalesQ1, SalesQ2,
SalesQ3, SalesQ4, Quarter, and Sales. To limit the number of variables displayed in the
output, use the VAR statement with PROC PRINT to display only Country, Year,
Quarter, and Sales.

proc print data=work.yrsales;
 var Country Year Quarter Sales;
run;

The output data set contains 100 observations.

Expanding Your Use of One-Dimensional Arrays 287

Output 11.3 PROC PRINT of Work.YrSales (partial output)

Defining and Referencing Two-Dimensional
Arrays

A Brief Overview
Multidimensional arrays can also be created.

With a two-dimensional array, two numbers separated by a comma are used to specify
the array size. Think of a two-dimensional array as consisting of rows and columns. The
first number corresponds to a row, and the second number corresponds to a column.
However, in the PDV, the values are still just specified as columns. A two-dimensional
array is useful because you can take data from a table and load it into an array. The
following figure is an example of a two-dimensional array. The array has two rows and
two columns.

Figure 11.5 Two-Dimensional Array

Example: Creating a Two-Dimensional Array with Initial Values
Suppose you have the Certadv.StCoup data set, which contains unique data about a
store’s most recent customer order. You are asked to create a coupon value for each of
the store’s customers. Customers will receive coupons ranging from 10% to 40% off
their next purchase based on the type and size of their last order.

288 Chapter 11 • Defining and Processing Arrays

Figure 11.6 Creating a Two-Dimensional Array

The ARRAY statement creates a two-dimensional array containing coupon values. The
array named CpnValue has three rows and four columns. The initial values are a range
from 0.10 to 0.40. Once this array is defined, you can refer to any of the columns by
using array referencing.

Figure 11.7 Two-Dimensional Array with Initial Values

However, this example references the initial value columns by using OrderType as the
row and Quantity as the column. If OrderType=1 and Quantity=1, then
CouponValue=.10. If OrderType=3 and Quantity=1, then CouponValue=0.20, and so on.

data work.customercoupons;
 array cpnvalue[3,4] _temporary_ (.10, .15, .20, .25,
 .30, .40, .10, .15,

Defining and Referencing Two-Dimensional Arrays 289

 .20, .25, .15, .10);
 set certadv.stcoup (keep=CustomerID OrderType Quantity);
 CouponValue=cpnvalue[OrderType,Quantity];
 format CouponValue percent10.;
run;
title 'Coupons for October 2019';
proc print data=work.customercoupons;
run;

Output 11.4 Partial Output of Work.CustomerCoupons

Example: Creating a Two-Dimensional Array to Perform Table
Lookup

Suppose you are asked to combine two SAS data sets, Certadv.US_Goals and
Certadv.US_Sales, and find the difference between the quarterly sales amount and the
quarterly goal.

290 Chapter 11 • Defining and Processing Arrays

Figure 11.8 Performing Table Lookup Using an Array (Illustration)

You could use a DATA step with MERGE statement. However, that solution takes
several steps because the two data sets are not laid out with a common column. You
would need to use the TRANSPOSE procedure to rotate the Certadv.US_Goals data set,
sort the data, and then merge the data sets. Instead, you can use a two-dimensional array
in a single DATA step to accomplish the same task. The two-dimensional array solution
is more efficient and requires less coding.

data work.diffsales;
 array yrsales[2014:2018,4] _temporary_; /* 1 */
 if _N_=1 then do Yr=2014 to 2018; /* 2 */
 set certadv.us_sales; /* 3 */
 array qtrsal[4] SalesQ1-SalesQ4; /* 4 */
 do Qtr=1 to 4; /* 5 */
 yrsales[Yr,Qtr]=qtrsal[Qtr];
 end;
 end;
 set certadv.us_goals; /* 6 */
 Sales=yrsales[Year,QtrNum]; /* 7 */
 Difference=Sales-Goal; /* 8 */
 drop Yr Qtr SalesQ1-SalesQ4; /* 9 */

Defining and Referencing Two-Dimensional Arrays 291

run;
proc print data=work.diffsales;
 format Goal Sales Difference dollar14.2;
run;

1 The ARRAY statement defines a two-dimensional array named YrSales. The
YrSales array contains five rows starting with 2014 and ending with 2018, and four
columns that correspond to quarterly sales values. There are 20 elements in the
YrSales array. Since the array is temporary, the elements do not appear in the output
table.

2 The IF-THEN statement loads the YrSales array only the first time through the
DATA step. The DO statement loops through enough times to read in every row of
input data.

3 The SET statement reads in the four quarterly values from Certadv.US_Sales into the
PDV.

4 The ARRAY statement defines a one-dimensional array named QtrSal with four
elements, SalesQ1–SalesQ4.

Note: The result is two ARRAY statements. The first one contains 20 values, and
the second one is used to read in the quarterly sales values from the input table.

5 The DO loop reads in the four quarterly sales values for each year, loading the
YrSales array.

6 The SET statement reads in the values from Certadv.US_Goals.

7 A new variable named Sales is created and assigns the YrSales array to the variable.
The Sales variable looks up the Sales value based on the values of Year and QtrNum.

8 A new variable named Difference is created. The difference between the variable
Sales and Goal is calculated to determine whether the sales team met their goals each
quarter for the past five years.

9 The DROP statement is used to drop the index variables and any other nonessential
variable.

292 Chapter 11 • Defining and Processing Arrays

Output 11.5 PROC PRINT Output of Work.DiffSales

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which statement is false regarding an ARRAY statement?

a. It is an executable statement.

b. It can be used to create variables.

c. It must contain either all numeric or all character elements.

d. It must be used to define an array before the array name can be referenced.

2. Which statement contains the incorrect syntax for a one-dimensional array?

a. array coupon[3] (.10, .20, .25);

b. array year[2014:2018) Year2014-Year2018;

c. array student[4] Student1-Student4;

d. array student[4] _temporary_ $16

Quiz 293

('Anna Johnson', 'Ramesh Pinto', 'Ela Minsur', 'David Michaelsen');

3. For the program below, select an iterative DO statement to process all elements in
the Contrib array.

data work.contrib;
 array contrib[4] qtr1-qtr4;
 ...
 contrib[i]=contrib[i]*1.25;
 end;
run;

a. do i=4;

b. do i=1 to 4;

c. do until i=4;

d. do while i le 4;

4. Complete the ARRAY statement to create temporary array elements that have the
following initial values: 100, 85, 70, and 60.

array quizscore[4] _____________________;

a. temporary (100 85 70 60)

b. _temporary_ 100 85 70 60

c. (temporary) 100, 85, 70, 60

d. _temporary_ (100, 85, 70, 60)

5. What is the value of diff[i] at the end of the second iteration of the DO loop for
the first iteration of the DATA step?

 array wt[*] weight1-weight10;
 array diff[9];
 do i=1 to 9;
 diff[i]=wt[i+1]-wt[i];
 end;

a. 15

b. 10

c. 8

d. -7

6. Which ARRAY statement correctly loads the following values into the array
DataSurv?

294 Chapter 11 • Defining and Processing Arrays

a. array datasurv [3,4] (3, 3, 2, 1,
 4, 4, 2, 4,
 5, 4, 1, 2);

b. array datasurv [3:4] (3, 3, 2, 1,
 4, 4, 2, 4,
 5, 4, 1, 2);

c. array datasurv [4,2] (3, 3, 2, 1,
 4, 4, 2, 4,
 5, 4, 1, 2);

d. array datasurv [4:2] (3, 3, 2, 1,
 4, 4, 2, 4,
 5, 4, 1, 2);

7. Which DO statement processes all of the elements in the Yearx array?

array Yearx[12] Jan--Dec;

a. do i=1 to dim(yearx);

b. do i=1 to 12;

c. do i=Jan to Dec;

d. a and b only.

8. Given the following program, which statement is not true?

data work.lookup1;
 array Targets[2016:2018,12] _temporary_;
 if _n_=1 then do i=1 to 3;
 set certadv.ctargets;
 array mnth[*] Jan--Dec;
 do j=1 to dim(mnth);
 targets[year,j]=mnth[j];
 end;
 end;
 set certadv.monthsum(keep=salemon revcargo monthno);
 year=input(substr(salemon,4),4.);
 Ctarget=targets[year,monthno];
run;

a. The IF-THEN statement specifies that the Targets array is loaded once.

b. During the first iteration of the DATA step, the outer DO loop executes three
times.

c. After the first iteration of the DO loop, the pointer drops down to the second SET
statement.

d. During the second iteration of the DATA step, the condition _N_=1 is false. So,
the DO loop does not execute.

Quiz 295

296 Chapter 11 • Defining and Processing Arrays

Chapter 12

Processing Data Using Hash
Objects

Declaring Hash Objects . 297
A Brief Overview . 297
Key Components . 298
Data Components . 299
Declaring a Hash Object . 299
Hash Object Process . 300

Defining Hash Objects . 300
Hash Object Methods . 300
Defining a Hash Object . 301
Example: Defining a Hash Object . 301

Finding Key Values in a Hash Object . 302
The FIND Method . 302
Retrieving Matching Data . 303

Writing a Hash Object to a Table . 304
The ADD Method . 304
Example: Adding Key and Data Values . 305
The OUTPUT Method . 305
Controlling Output with the OUTPUT Method . 305
Avoiding Messages in the SAS Log . 306

Hash Object Processing . 306

Using Hash Iterator Objects . 311
What Is a Hash Iterator Object? . 311
Declaring and Defining a Hash Object and a Hash Iterator Object 312
Retrieving Hash Object Data with the Hash Iterator Object 312
Example: Using the Hash Iterator Object . 313

Quiz . 314

Declaring Hash Objects

A Brief Overview
Hash objects are helpful when performing table lookups. A hash object is an in-memory
table that contains key and data components. In the following example, the hash object

297

contains two key columns, col_A and col_B, and three data columns, col_C, col_D, and
col_E.

Figure 12.1 Hash Object with Key and Data Components

You can quickly and efficiently store, search, and retrieve data based on the key
components. When the key component values are found, the data values are copied to
the program data vector (PDV).

The use of hash objects is specific to the DATA step. A hash object is available only to
the DATA step that creates it. When the DATA step is over, the hash object is deleted.
Whereas an array is defined at compile time, a hash object is defined at execution. This
makes the size of a hash object dynamic, and that means that the object can expand and
shrink as data is added or deleted.

A hash object resembles a table with rows and columns and contains key and data
components.

Key Components
• Key components can consist of one or more key columns.

• Key components can be numeric, character, or both.

• Key components must be defined as PDV columns, and your hash object does not
have to be sorted by the keys.

• Be default, each row of keys must be unique.

298 Chapter 12 • Processing Data Using Hash Objects

Data Components
• You can have multiple data components per each row of key components.

• Data components can be numeric, character, or both.

• Data components must be defined as PDV columns.

Declaring a Hash Object

The DECLARE statement creates an instance of data, and initializes data for an object.
Use the DECLARE statement to name your hash object and specify information such as
the name of the table that should be used to load the hash object.

Syntax, DECLARE statement:

DECLARE object object-name(<argument_tag-1:value-1, ...>);

object
specifies the component object. An object can be one of the following values:

hash
indicates a hash object.

hiter
indicates a hash iterator object.

object-name
specifies the name of the hash object.

argument_tag-1
specifies the information that is used to create an instance of the component object.

DATASET: 'data-set-name <(data-set-option)>'

value
specifies the value for an argument tag. Valid values depend on the component object.

In the following example, you are creating a hash object named States. The example
does not contain any arguments or tag values. The parentheses are still required.

declare hash States();

In the following example, you are reading the data for the hash object from a table. In
the example, the DATASET argument loads the Work.Population_USStates table into
the hash object. After the argument DATASET, place a colon and then the value of the
argument. If you specify a literal value for the table, enclose the value in single or double
quotation marks. Within those quotation marks and after the table name, specify data set
options such as WHERE=, DROP=, KEEP=, RENAME=, or OBS=.

declare hash States(dataset:'work.population_usstates
 (where=(StatePop2017>20000000))');

If you have duplicate key values, use the MULTIDATA argument in the DECLARE
statement. If you want to allow duplicate key components, then set MULTIDATA to
'YES'. The default value is 'NO'.

declare hash ContName(MULTIDATA:'YES');

Declaring Hash Objects 299

Hash Object Process
Besides declaring the hash object, you must also provide key and data components by
using the three DEFINE methods. Once the hash object is declared and defined, the hash
object can be used. Finding values in a hash object is only one of the ways that you can
use hash objects. Other ways include adding data to the hash object and writing data
from the hash object to an output table.

Table 12.1 Hash Object Process

Steps Syntax Example

Declare the hash
object.

DECLARE object object-name
(<argument_tag-1:value-1, ...>);

declare hash ContName();

Define the hash
object.

object-name.DEFINEKEY('key-1' <, ...'key-n'>); ContName.definekey('ContinentID');

object-name.DEFINEDATA('data-1' <, ...'data-n'>); ContName.definedata('ContinentName');

object-name.DEFINEDONE(); ContName.definedone();

Use the hash
object.

object-name.FIND(<KEY:value-1, ... KEY:value-n>); rc=ContName.find();

Defining Hash Objects

Hash Object Methods
Hash object methods are operations that are performed on a hash object using dot
notation. With dot notation, specify the name of the hash object to the left of the dot and
specify the method to the right of the dot. All methods include a set of parentheses.
Within the parentheses, arguments can be specified.

Table 12.2 Hash Object Methods

Method Description Syntax

ADD Adds the specified data that is
associated with the given key to the
hash object.

object-name.ADD()

DEFINEDATA Defines data to be stored in the hash
object.

object-name.DEFINEDATA()

DEFINEDONE Specifies that all key and data
definitions are complete.

object-name.DEFINEDONE()

300 Chapter 12 • Processing Data Using Hash Objects

Method Description Syntax

DEFINEKEY Defines key components to the hash
object.

object-name.DEFINEKEY()

FIND Determines whether the key is stored
in the hash object.

object-name.FIND()

OUTPUT Creates one or more data sets
containing the data in the hash
object.

object-name.OUTPUT()

Defining a Hash Object
To define a hash object, three DEFINE methods are required.

object-name.DEFINEKEY('key-1' <, ...'key-n '>)
object-name.DEFINEDATA('data-1' <, ...'data-n '>)
object-name.DEFINEDONE();

• The DEFINEKEY method defines the columns that make up the key component. A
column can be specified as numeric or character. A character column can be literal in
quotation marks, a character column, or a character expression.

• The DEFINEDATA method defines the columns that make up the data component. A
column can be specified as a character literal in quotation marks, a character column,
or a character expression.

• The DEFINEDONE method indicates that all key and data components are
complete. This method also loads the hash object if a table is specified in the
DECLARE statement.

T I P Multiple DEFINEKEY and DEFINEDATA statements can be used for one hash
object.

Example: Defining a Hash Object
The following example defines the hash object Airports.

data work.report;
 if 0 then
 set certadv.ctcities (keep=Code City Name);
 if _N_=1 then do; /* 1 */
 declare hash airports (dataset: "certadv.ctcities"); /* 2 */
 airports.definekey ("Code"); /* 3 */
 airports.definedata ("City", "Name"); /* 4 */
 airports.definedone(); /* 5 */
end;

1 When _N_ is equal to 1, the code declares and defines the hash object only for the
first DATA step iteration. This statement is never executed, but it makes a place in
the PDV for every column that is in the table. Without this logic, the statements that
are associated with the hash object are all executable. Hash object memory is not
released and reused each time. You can potentially run out of memory if you have a
lot of data to load into the hash object.

Defining Hash Objects 301

2 The DECLARE statement declares a hash object named Airports. The DATASET
argument refers to the Certadv.CtCities data set that contains the values to be loaded.

3 The DEFINEKEY method defines Code as the key component.

4 The DEFINEDATA method defines City and Name as the data components.

5 The DEFINEDONE method loads the Certadv.CtCities data set into the hash object.

Table 12.3 Hash Object Airports

Key: Code Data: City Data: Name

ANC Anchorage, AK Anchorage International Airport

BNA Nashville, TN Nashville International Airport

CDG Paris Charles de Gaulle

LAX Los Angeles, CA Los Angeles International Airport

RDU Raleigh-Durham, NC Raleigh-Durham International Airport

Note: The hash object can store multiple key variables as well as multiple data
variables.

Finding Key Values in a Hash Object

The FIND Method
The FIND method searches the hash object for the current key values. The method
returns a code of 0 if the key value is found, or matched. If the value is not found, then a
nonzero value is returned. If the value is found, the FIND method copies the data
component values to the PDV.

Syntax, FIND method:

object-name.FIND(<KEY: value-1, ... KEY: value-n>)

object-name
specifies the name of the component object.

value
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY:value” pairs depends on the number of key variables that you define
by using the DEFINEKEY method.

302 Chapter 12 • Processing Data Using Hash Objects

Retrieving Matching Data
The following example retrieves the value of ContinentName from the hash object,
ContName, based on the value of ContinentID. The KEY argument is not needed if the
PDV column has the same name as the key component.

rc=ContName.find();

Figure 12.2 Retrieving Matching Data - Find Matching Value

rc=ContName.find();

The FIND method returns Austrialia/Pacific as the continent name. A return value of 0
indicates success. If the value is not found, then the RC value is equal to a nonzero
value. If the method does not find a match, no data is returned to the PDV.

Finding Key Values in a Hash Object 303

Figure 12.3 Retrieving Matching Data - Find Matching Value

The KEY argument is required if the PDV column has a different name from the key
component.

rc=ContName.find(key:ID)

You can also use multiple KEY arguments. If your hash object has multiple key
components, then the key arguments must be specified in the order in which the key
components are defined in the DEFINEKEY method. In this example, the value for the
CITY key component must be specified first, followed by values for the MONTH key
component.

Monthly.definekey('City','Month');
Monthly.find(key:CityName,key:MonthName);

Writing a Hash Object to a Table

The ADD Method
The ADD method adds data in the PDV columns to the corresponding key and data
components within a hash object. This method returns a zero if adding is successful and
a nonzero if adding is not successful.

Syntax, ADD method:

object-name.ADD()

object-name
specifies the name of the component object.

Tip: A zero value indicates success, and a nonzero value indicates failure.

304 Chapter 12 • Processing Data Using Hash Objects

Example: Adding Key and Data Values
The ADD method adds the key and data values to the hash object.

ContName.add(key:91, data:'North America');
ContName.add(key:93, data:'Europe');
ContName.add(key:94, data:'Africa');
ContName.add(key:95, data:'Asia');
ContName.add(key:96, data:'Australia/Pacific');

The OUTPUT Method
The OUTPUT method creates a table containing the data components of the hash object.
The DATASET argument is used with the OUTPUT method to name the desired output
table.

Syntax, OUTPUT method:

object-name.OUTPUT(DATASET:'data-set-name<(data-set-option)>');

object-name
specifies the name of the component object.

DATASET:data-set-name
names the desired output table.

Tip: A zero value indicates success, and a nonzero value indicates failure.

Controlling Output with the OUTPUT Method
When you write a hash object to a table, you can specify how the output table should be
sorted. Use the ORDERED argument in the DECLARE statement for the hash object,
along with the OUTPUT method. The ORDERED argument specifies an order of
ascending or descending for the key components.

(ORDERED:'option'<, ...>)

In the following example, when the ContName hash object is written to a table, the rows
will be in descending order of the key components.

declare hash ContName (ordered:'descending');

Once you have read in all of your input data and added data to the hash object, you can
write the hash object to a table. To determine when you have read in the last row of data,
use the END= option. This option is applied in the SET statement and is not specific to
hash objects. This option is set equal to a new column that you are creating. Note that
this column is temporary, exists in the PDV, but is not in the final output table. SAS
supplies for the column a value based on whether it is the end of file of the input table. A
value of 0 means that it is not the last row of the input table, and a value of 1 means that
it is the last row of the input table.

END=column

The following example sets the END= option to a new column, LastRow. Then, in a
conditional statement, it checks to see whether LastRow is equal to 1 or the end of the
file. If so, it writes the ContName hash object to an output table named Work.ContName.

set certadv.country(keep=ContinentID Country CountryName) end=lastrow;

Writing a Hash Object to a Table 305

if lastrow=1 then ContName.output(dataset: 'work.contname');

Avoiding Messages in the SAS Log
The hash object does not assign values to key variables, and the SAS compiler cannot
detect the implicit key and data variable assignments that are handled by the hash object.
Therefore, if no explicit assignment to a key or data variable appears in the program,
SAS writes a note to the SAS log stating that the variables are uninitialized.

To avoid receiving these notes, use the CALL MISSING routine with the key and data
variables as parameters. The CALL MISSING routine assigns a missing value to the
specified character or numeric variables.

call missing(ContinentName);

Note: Another way to avoid receiving notes stating that the variables are uninitialized is
to provide an initial assignment statement that assigns a missing value to each key
and data variable.

Hash Object Processing
At the beginning of the DATA step execution that follows, the hash object ContName is
declared with a key component of ContinentID and data component of ContinentName.
The Certadv.Country table is used to populate the hash object.

data work.countrycode;
 drop rc;
 length ContinentName $30;
 if _n_=1 then do; /* 1 */
 call missing (ContinentName); /* 2 */
 declare hash ContName(); /* 3 */
 ContName.definekey('ContinentID'); /* 4 */
 ContName.definedata('ContinentName'); /* 5 */
 ContName.definedone(); /* 6 */
 ContName.add(key: 91, data: 'North America'); /* 7 */
 ContName.add(key: 93, data: 'Europe');
 ContName.add(key: 94, data: 'Africa');
 ContName.add(key: 95, data: 'Asia');
 ContName.add(key: 96, data: 'Australia/Pacific');
 end; /* 8 */
 set certadv.country /* 9 */
 (keep=ContinentID Country CountryName);
 rc=ContName.find(); /* 10 */
run; /* 11 */
proc print data=work.countrycode noobs;
run;

1. if _n_1= then do;

When the _N_ is equal to 1, it declares and defines the hash object only one time.

306 Chapter 12 • Processing Data Using Hash Objects

2. call missing (ContinentName);

CALL MISSING sets the key column, ContinentName, to missing.

3. declare hash ContName();

The DECLARE statement declares a hash object named ContName with no
arguments.

4. ContName.definekey('ContinentID');

The DEFINEKEY method specifies the ContinentID column as the key component.

Hash Object Processing 307

5. ContName.definedata('ContinentName');

The DEFINEDATA method specifies the ContinentName column as the data
component.

6. ContName.definedone();

The DEFINEDONE method indicates that the key and data components are
complete.

308 Chapter 12 • Processing Data Using Hash Objects

7. ContName.add(key: 91, data: 'North America');
ContName.add(key: 93, data: 'Europe');
ContName.add(key: 94, data: 'Africa');
ContName.add(key: 95, data: 'Asia');
ContName.add(key: 96, data: 'Australia/Pacific');

The ADD method adds the specified data that is associated with the given key to the
hash object. This method returns a zero if adding is not successful.

8. end;

The END statement ends the group processing.

9. set certadv.country (keep=ContinentID Country CountryName);

The SET statement reads observations from Certadv.Country data set and the KEEP=
data set option keeps only the specified variables.

Hash Object Processing 309

10. rc=ContName.find();

The FIND method searches the ContName hash object for the current key values.
The function returns a 0 if the key is found. The key value is not returned to the PDV.

310 Chapter 12 • Processing Data Using Hash Objects

11. The RUN statement has an implicit OUTPUT statement and an implicit RETURN
statement.

The DATA statement initializes the PDV again after the RUN statement. On the second
iteration of the DATA step the IF statement does not execute again because _N_ is not
equal to 1. This continues until the end-of-file marker is reached.

Output 12.1 PROC PRINT of Work.Countrycode

Using Hash Iterator Objects

What Is a Hash Iterator Object?
A hash iterator object is associated with a hash object, enabling you to retrieve hash
object data in either forward or reverse key order. Think of the hash iterator object, or
hiter, as an ordered view of a hash object.

Figure 12.4 Hash Object Iterator

Note: Declare the hash object before defining the hash iterator object.

Using Hash Iterator Objects 311

In the following example, the Certadv.Orderfact table is loaded into the hash object
Customer. The hash object Customer then feeds into the hash iterator object C. Notice
that there is a DECLARE statement for the hash object Customer and a DECLARE
statement for hiter (hash iterator) object C. The hash object name must be enclosed in
quotation marks when it is referenced in the DECLARE statement for the hash iterator
object.

declare hash Customer (dataset: 'certadv.orderfact', ordered: 'descending');
...statements..
declare hiter C('Customer');

The ORDERED argument in the hash object is not controlling the sort order of the hash
object. The ORDERED argument controls the sort order of an output table only if an
OUTPUT method is used in the hash object or the sort order of a hash iterator object that
points to the hash object.

Declaring and Defining a Hash Object and a Hash Iterator Object
The hash object loads the data in the order in which it occurs in the data set. The
ORDERED argument specifies retrieving data from the hash object by descending order
of key values.

declare hash Customer(dataset: 'certadv.orderfact', ordered: 'descending');

The DEFINEKEY, DEFINEDATA, and DEFINEDONE methods execute. The key
values are not returned to the PDV.

customer.definekey('TotalRetailPrice', 'CustomerID');
customer.definedata('TotalRetailPrice', 'CustomerID', 'ProductID');
customer.definedone();

The second DECLARE statement defines the hash iterator object, C. It points to the hash
object, Customer, whose data is in descending order of key values.

declare hiter C('customer');

Retrieving Hash Object Data with the Hash Iterator Object
Hash iterator methods are operations that are performed on a hash iterator object using
dot notation. The FIRST and NEXT methods read data in forward key order. The LAST
and PREV methods read data in reverse key order.

Table 12.4 Hash Iterator Methods

Method Description Syntax Example

FIRST Returns the first data value in the
underlying hash object.

object-name.FIRST(); declare hiter C('customer');
<more SAS code>;
C.first();

LAST Returns the last data value in the
underlying hash object.

object-name.LAST(); declare hiter C('customer');
<more SAS code>;
C.last();

312 Chapter 12 • Processing Data Using Hash Objects

Method Description Syntax Example

NEXT Returns the data components in key
order.

Note: If you use the NEXT method
without the FIRST method, it returns
the first item in the hash object.

object-name.NEXT(); C.first();
<more SAS code>;
C.next();

C.next();

PREV Returns the data components in reverse
key order.

object-name.PREV(); C.prev();

object-name
specifies the name of the hash iterator object.

• The FIRST method returns the first data item in the hash object. The LAST method
returns the last data component in the hash object.

• You can use the NEXT method to return the next data component in the hash object.

• Use the PREV method iteratively to traverse the hash object and return the data
components in reverse key order.

Note: The PREV method sets the data variable to the value of the data component so
that it is available for use after the method call.

Example: Using the Hash Iterator Object
Suppose you need to identify which two customers ordered the most and least expensive
items. You can use the hash iterator object to retrieve the data in either ascending or
descending key order to efficiently identify these four customers.

data work.topbottom;
 drop i;
 if _N_=1 then do;
 if 0 then set certadv.Orderfact (keep=CustomerID
 ProductID TotalRetailPrice);
 declare hash customer(dataset: 'certadv.Orderfact',
 ordered: 'descending');
 customer.definekey('TotalRetailPrice', 'CustomerID');
 customer.definedata('TotalRetailPrice', 'CustomerID',
 'ProductID');
 customer.definedone();
 declare hiter C('customer');
end;
 C.first();
 do i=1 to 2;
 output work.topbottom;
 C.next();
 end;
 C.last();
 do i=1 to 2;
 output work.topbottom;
 C.prev();
 end;
 stop;
run;

Using Hash Iterator Objects 313

Output 12.2 PROC PRINT Output of Work.TopBottom

Quiz
1. In which step does the SAS hash object exist?

a. PROC step

b. DATA step

c. OPTIONS

d. a and b only.

2. What does a component object consist of?

a. Methods

b. Attributes

c. Both a and b.

d. None of the above.

3. What are the DEFINE methods that are required to define a hash object?

a. DEFINEKEY

b. DEFINEDATA

c. DEFINEDONE

d. All of the above.

4. What does the FIND hash object method do?

a. Adds data associated with a key to the hash object.

b. Determines whether the key is stored in the hash object.

c. Defines key variables to the hash object.

d. Specifies that all key and data definitions are complete.

5. What does the PREV method do?

a. Returns the first value in the underlying hash object.

b. Returns the next value in the underlying hash object.

c. Returns the last value in the underlying hash object.

d. Returns the previous value in the underlying hash object.

6. What does the CALL MISSING routine do?

a. Instantiates the hash object.

314 Chapter 12 • Processing Data Using Hash Objects

b. Assigns a missing value to the specified character or numeric variables.

c. Declares a hash object.

d. Calls to retrieve multiple data values.

7. You can define a hash iterator without defining a hash object.

a. True

b. False

8. Which of the following programs correctly associates more than one data value with
one key?

a. data work.sample1;
 if 0 then
 set certadv.acities(keep= Code City Name);
 if _N_=1 then do;
 declare hash airports (dataset:"certadv.acities");
 airports.defineKey ("Code");
 airports.defineData ("City", "Name");
 airports.defineDone();
 end;
run;

b. data work.sample2;
 if 0 then
 set certadv.acities(keep= Code City Name);
 if _N_=1 then do;
 declare hash airports (dataset:"certadv.acities");
 airports.defineKey ("City", "Name");
 airports.defineData ("Code");
 airports.defineDone();
 end;
run;

c. data work.sample3;
 if 0 then
 set certadv.acities(keep= Code City Name);
 if _N_=1 then do;
 declare hash airports (dataset:"certadv.acities");
 airports.defineKey ("Code", "City");
 airports.defineData ("City", "Name");
 airports.defineDone();
 end;
run;

d. data work.sample4;
 if 0 then
 set certadv.acities(keep= Code City Name);
 if _N_=1 then do;
 declare hash airports ();
 airports.defineKey ();
 airports.defineData ();
 airports.defineDone();
 end;
run;

Quiz 315

316 Chapter 12 • Processing Data Using Hash Objects

Chapter 13

Using SAS Utility Procedures

Creating Picture Formats with the FORMAT Procedure 317
A Brief Overview . 317
PICTURE Statement Syntax . 318
Example: Using the PICTURE Statement . 318
Creating Custom Date, Time, and Datetime Formats Using Directives 319
Specifying Date and Time Directives . 320
Example: Using Directives . 321
Creating Custom Numeric Formats . 322

Creating Functions with PROC FCMP . 328
A Brief Overview . 328
PROC FCMP Syntax . 328
CMPLIB= Option Syntax . 329
Example: Creating a Custom Character Function with One Argument 329
Example: Creating a Custom Numeric Function with One Argument 330
Example: Creating a Custom Character Function with Multiple Arguments 332

Quiz . 334

Creating Picture Formats with the FORMAT
Procedure

A Brief Overview
The FORMAT procedure enables you to define your own formats for variables. The
VALUE statement is commonly used to create numeric or character formats by defining
character strings to display in place of values. Suppose you have airline data and you
want to create several custom formats that you can use for your report. You need to
create three different types of formats to do these tasks:

• group airline routes into zones

• label airport codes as International or Domestic

• group cargo revenue figures into ranges

You can use PROC FORMAT with the VALUE statement to create two character
formats, $ROUTES. and $DEST., and a numeric format, REVFMT.

317

Suppose one of the variables in your data set has numeric values that you want to format
a certain way. For example, you have an emergency phone number listed for each of the
flight crew members in your data set. The number is listed as 5556874239 and you want
to format it as (555) 687-4239.

Use the PICTURE statement to create a custom format that specifies a template for
displaying a numeric value. Define a format that accepts special characters, such as
leading zeros, commas, and negative numbers. Only numeric variables can have picture
formats. For example, the following PICTURE statement tells SAS to print numbers in
the specified format.

PICTURE phonepix OTHER= '(999)999-9999';

PICTURE Statement Syntax
The PICTURE statement creates a format that specifies a template for displaying
numeric values.

Syntax, PROC FORMAT with the PICTURE statement:

PROC FORMAT;
PICTURE format-name <(format-options)>

<value-range-set-1 = 'template-value' (template-options)>
<value-range-set-n = 'template-value' (template-options)>;

RUN;

format-name
is the name of the format that you are creating.

Note: A user-defined format cannot be the name of a format supplied by SAS. The name
must be a valid SAS name. A numeric format name can be up to 32 characters long.

value-range-set
specifies one or more variable values and a template for printing those values. value-range-
set has the following form: value-or-range = 'template-value'.

value-or-range
a single value, such as 12 or a range of values, such as 1-100.

template-value
specifies a template for formatting values of numeric variables.

digit selectors
are numeric characters (0 through 9) that define positions for numeric values.

directives
are special characters that you can use in the template to format date, time, or datetime
value.

template options
are specific to the specified template.

format options
are specific to the format as a whole, which includes all templates created by the PICTURE
statement.

Example: Using the PICTURE Statement
The following example uses the PICTURE statement, which contains both digit selectors
and message characters. Since the RAINAMT. format has nonzero digit selectors, values
are printed with leading zeros. A numeric range is used to include or exclude values in a

318 Chapter 13 • Using SAS Utility Procedures

range using the less than symbol (<) preceded or followed by the value. For example, the
2<‑4 range does not include 2, but includes 4. However, 4<‑<10 excludes both 4 and 10.
The keyword OTHER is used to print values and message characters for any values that
do not fall into the specified range.

Note: Not all values are printed with leading zeros. Values that are printed with leading
zeros might not have an available format to display.

proc format;
 picture rainamt
 0-2='9.99 slight'
 2<-4='9.99 moderate'
 4<-<10='9.99 heavy'
 other='999 check value';
run;
proc print data=certadv.rain;
 format amount rainamt.;
run;

The following output shows the values with the RAINAMT. format applied.

Figure 13.1 PROC PRINT Output with the RAINAMT. Format Applied

Creating Custom Date, Time, and Datetime Formats Using
Directives

Suppose you have the date value July 1 2019 and the time value 8:30:10 a.m. You need
to create three new columns with the date and time values, StartDate, StartTime, and
StartDateTime columns. You are given specific requirements for displaying the date and
time values in those columns. The data in the columns must look like the figure below.

Figure 13.2 Custom Date, Time, and Datetime Formats Illustration

Currently, SAS does not supply formats that can create the columns that match the figure
above. However, you can use directives to create the templates that you need. Directives
are special characters that define a template to display date, time, or datetime values. If
you use directives, you must specify the DATATYPE= option in the PICTURE statement
after the template. This option specifies that the picture applies to a SAS date, SAS time,
or SAS datetime value.

Creating Picture Formats with the FORMAT Procedure 319

Syntax, PICTURE statement with the DATATYPE= option:

PICTURE format-name (DEFAULT=length)
value-or-range-1='directives'
(DATATYPE=DATE|TIME|DATETIME);

RUN;

(DEFAULT=length)
specifies the default length of the formatted value. If the DEFAULT= option is not used, the
length of the formatted value is based on the length of the longest template.

'directives'
specifies special characters that define a template for the display of date, time, or datetime
values. The special characters must be placed within quotation marks.

(DATATYPE=DATE | TIME | DATETIME)
enables the use of directives in the template to format date, time, or datetime values. The
DATATYPE= option must be specified for each value-range set. The DATATYPE= option
must be placed within parentheses.

Specifying Date and Time Directives

The percent sign (%) followed by a letter indicates a directive. Directives that you can
use to create a picture format are listed in the table below.

Table 13.1 Date Directives

Directive Description Result

%A Weekday name in full Wednesday

%a Weekday name, the first three
letters

Wed

%d Day of the month in one or two
digits

2 or 11

%0d Day of month two digits 02

%B Month name in full January

%3B Month name, the first three letters Jan

%m Month number in one or two
digits

4 or 12

%0m Month number in two digits 04

%Y Year in four digits 2019

%0y Year in two digits 19

320 Chapter 13 • Using SAS Utility Procedures

For example, the SAS date value of 21731 is equivalent to Mon-1–Jul-2019. You would
use the following directives to transform 21731 to Mon-1-Jul-2019: %a-%d-%3B-%Y.

Table 13.2 Time Directives

Directive Description Result

%H Hour, 24-hour clock in one or two
digits

21

%0H Hour, 24-hour clock in two digits
with a leading zero

021

%I Hour, 12-hour clock in one or two
digits

9

%0I Hour, 12-hour clock in two digits
with a leading zero

09

%M Minute in one or two digits 13

%0M Minute, in two digits with a
leading zero

013

%S Second in one or two digits 5

%0S Second in two digits with a
leading zero

05

%p AM or PM PM

The time value 30610 is equivalent to H:8 M:30 S:10. You would use the following
directive to transform 30610 to 8:30:10: H:%H M:%M S:%S.

Or you can transform 30610 to H:08 M:30 S:10 using the following directive: H:%0H
M:%0M S:%0S.

Note: To add a leading zero before a single digit, insert a 0 before the directive. When
you add a leading zero, it is changing only the values of hour, minute, seconds, and
so on, to display a leading zero. It is not changing any other part of the output.

When you create a template with a directive, the maximum length of the formatted value
is the length of 8. Use DEFAULT= to set a length that is greater than the default length
of 8.

Example: Using Directives
Suppose you want to display values for employee hire dates in the format dd-mmmyyyy
(such as 25-JAN2017) for the Certadv.Empdata data set.

Creating Picture Formats with the FORMAT Procedure 321

Figure 13.3 Certadv.Empdata Data Set before Format Is Applied (partial output)

This format requires spaces for 10 characters.

• The keywords LOW and HIGH are used to include all values.

• The %0d directive indicates that if the day of the month is one digit, it should be
preceded by a 0.

• Because there are only nine characters inside the single quotation marks, use
DEFAULT= to increase the length to 10. If you omit DEFAULT=, the length is 8.

proc format;
 picture mydate (default=10)
 low-high='%0d-%3b%Y' (datatype=date);
run;

proc print data=certadv.empdata
 (keep=division hireDate lastName obs=5);
 format hiredate mydate.;
run;

The output below shows the values for HireDate formatted with the MYDATE. picture
format.

Figure 13.4 PROC PRINT Result of MYDATE. Picture Format (partial output)

Creating Custom Numeric Formats

PICTURE Statement Syntax with Digit Selectors
The PICTURE statement can also use digit selectors with non-numeric characters. You
can use the ROUND, MULTIPLIER=, and PREFIX= options for the template.

322 Chapter 13 • Using SAS Utility Procedures

Syntax, PICTURE statement using digit selectors:

PICTURE format-name (ROUND DEFAULT=length)
value-or-range-1='digit selectors with non-numeric characters'
(MULT | MULTIPLIER=n PREFIX='prefix');

RUN;

(ROUND)
rounds the value to the nearest integer.

(MULT | MULTIPLIER=n)
specifies a number to multiply the value by.

(PREFIX='prefix')
specifies a character string to place in front of the formatted value.

Digit Selectors with Non-Numeric Characters
You can use digit selectors (0 through 9) to define positions for numeric values. Digit
selectors of 0 do not print leading zeros. Nonzero digit selectors print leading zeros. The
digit selector 9 is commonly used as the nonzero digit selector. Non-numeric characters
are printed as specified. The following example specifies a digit selector with non-
numeric characters.

picture Discount (round) low-high='009.9%' (multiplier=10);

If the template contains digit selectors, then a digit selector must be the first character in
the template. Use the PREFIX= option to specify a character string to place in front of
the formatted value.

The MULTIPLIER= Option
Use the MULTIPLER=n option to specify a number that the variable's value will be
multiplied by before the variable is formatted. The value of the MULTIPLIER= option
depends both on the result of the multiplication and on the digit selectors in the picture
portion of value-range-set.

Suppose you have the data set Certadv.Grocery. You need to create a format that formats
the CustomDiscount variable to a percentage. For example, if the value is 5, it should be
5.0%.

Creating Picture Formats with the FORMAT Procedure 323

Figure 13.5 Certadv.Grocery Data Set (partial output)

proc format;
 picture Discount low-high='009.0%' (multiplier=10);
run;
data work.customerdiscount;
 set certadv.grocery;
 format CustomDiscount Discount.;
run;
proc print data=work.customerdiscount noobs;
run;

The values for CustomDiscount are multiplied by 10.

Note: The default is 10n, where n is the number of digits after the first decimal point in
the picture. For example, suppose your data contains a value 123.456, and you want
to print it using a picture of '999.999'. The format multiplies 123.456 by 103 to obtain
a value of 123456, which results in a formatted value of 123.456.

The PREFIX= Option
You can create custom numeric formats with a character prefix using the PREFIX=
option. The PREFIX= option specifies a character prefix to place in front of the
formatted value. The prefix is placed in front of the value's first significant digit. You
must use zero-digit selectors or the prefix is not used. Typical uses for PREFIX= are
printing leading currency symbols and minus signs.

The following example uses the Work.CustomerDiscount created in the previous
example. The PICTURE statement creates a new format named NewPrice that formats
the values for the NewPrice column with a dollar sign. The NewPrice column is
produced by multiplying CustomDiscount by the value in the Price column.

proc format;
 picture NewPrice low-high='000,009.99' (prefix='$');

324 Chapter 13 • Using SAS Utility Procedures

run;
data work.newprice;
 set work.customerdiscount;
 NewPrice=Price-(Price*(CustomDiscount*0.01));
 format NewPrice NewPrice. CustomDiscount Discount.;
run;
proc print data=work.newprice;
run;

Output 13.1 PROC PRINT Result of Work.NewPrice (partial output)

CAUTION:
Truncation of the prefix. If the picture is not wide enough to contain both the value
and the prefix, then the format is truncated or the prefix is omitted, which results in
inaccurate data.

The ROUND Option
The ROUND option rounds the value to the nearest integer before formatting. Without
the ROUND option, the format multiplies the variable value by the multiplier, truncates
the decimal portion (if any), and prints the result according to the template that you
define. With the ROUND option, the format multiplies the variable value by the
multiplier, rounds that result to the nearest integer, and then formats the value according
to the template.

T I P The ROUND option rounds a value of .5 to the next highest integer.

CAUTION:
The picture must be wide enough for an additional digit if rounding a number
adds a digit to the number. For example, the picture for the number .996 could be
‘99’ (prefix ‘.’ mult=100). After rounding the number and multiplying it by 100, the
resulting number is 100. When the picture is applied, the result is .00, an inaccurate
number. In order to ensure accuracy of numbers when you round numbers, make the
picture wide enough to accommodate larger numbers.

Example: Creating a Custom Percent Format
In the previous examples, two new custom formats were created: Discount., which
created a percent format, and NewPrice., which applied a prefix of a dollar sign ($). For
this example, create a custom format that rounds your Difference column and applies a
prefix of a dollar ($). First, the format applies the multiplier, if applicable. Then it rounds
the values, and finally the format applies the numeric value to the template.

Creating Picture Formats with the FORMAT Procedure 325

Figure 13.6 Certadv.Grocery Data Set (partial output)

proc format;
 picture Discount low-high='009.0%' (multiplier=10);
 picture NewPrice low-high='000,009.99' (prefix='$');
 picture Diff (round) low-high='000,009.99' (prefix='$');
run;
data work.newPriceTot;
 set certadv.grocery;
 NewPrice=Price-(Price*(CustomDiscount*0.01));
 Difference=Price-NewPrice;
 format CustomDiscount Discount. NewPrice NewPrice. Difference Diff.;
run;
proc print data=work.newPriceTot;
run;

Example: Creating a Custom Numeric Format for Large Numbers
The following example illustrates how you can create a custom numeric format for large
numbers. This example uses the ROUND, PREFIX, and MULTIPLIER= options.

Suppose you have the data set Certadv.Values, where the UnformattedValues column
represents your original numbers with no formats applied. The Multiplier column
displays the multiplier for each unformatted number, and the MultiValues column
displays the values with the Multiplier applied. The MultiValuesRound column displays
the values from the MultiValues column, but with the ROUND option applied.

The FormattedValues column below does not have any formats applied.

326 Chapter 13 • Using SAS Utility Procedures

Figure 13.7 Certadv.Values Data Set

Create a PICTURE format named dollar_KM that does the following:

• formats values less than 1000 with a dollar sign and with a multiplier of 1

• formats values between 1000 and 1000000 with a K, a dollar sign, and with a
multiplier of 0.01

• formats values greater than 1000000 with an M, a dollar sign, and with a multiplier
of 0.00001.

proc format;
 picture dollar_KM (round default=7)
 low-<1000='009' (prefix='$' multiplier=1)
 1000-<1000000='009.9K' (prefix='$' multiplier=.01)
 1000000-high='009.9M' (prefix='$' multiplier=.00001);
run;

When you apply this format to the FormattedValues column in a PROC PRINT step, the
values are displayed as desired.

proc print data=certadv.values noobs;
 format MultiValues 12.5
 FormattedValues dollar_KM.;
run;

Output 13.2 PROC PRINT Output of Certadv.Values

Creating Picture Formats with the FORMAT Procedure 327

Creating Functions with PROC FCMP

A Brief Overview
Within SAS, you can create your own functions. Creating your own functions is useful
when you have repetitive routines in your programs. The SAS Function Compiler
(FCMP) procedure enables you to create custom functions using DATA step syntax. This
feature enables programmers to more easily read, write, and maintain complex code with
independent and reusable routines.

PROC FCMP Syntax
Use PROC FCMP to build user-defined functions and call routines with DATA step
syntax.

Syntax, PROC FCMP step:

PROC FCMP OUTLIB=libref.table.package;
FUNCTION function-name(arguments)<$> <length>;
. . . programming statements. . .
RETURN(expression);
ENDSUB;

QUIT;

OUTLIB=libref.table.package
specifies the table and package that stores the compiled function. This is a required argument
that must be specified in the PROC FCMP statement.

FUNCTION statement
The FUNCTION statement specifies the function-name and the function arguments, as well
as whether the function returns a character or numeric value.

function-name(arguments)<$> <length>
specifies a subroutine declaration for a routine that returns a value. The FUNCTION
statement begins the definition of a function.

<$>
specifies that the function returns a character value. If $ is not specified, the function
returns a numeric value.

argument
specifies one or more arguments for the function. You specify character arguments by
placing a dollar sign ($) after the argument name.

function-name
specifies the name of the function.

<length>
specifies the length of a character value.

RETURN(expression)
specifies the value that is returned by the function.

ENDSUB
ends the function.

328 Chapter 13 • Using SAS Utility Procedures

CMPLIB= Option Syntax
In order for SAS to find the custom function, the CMPLIB= option must be specified in
the OPTIONS statement. This option names the table where the function is stored within
a package. The CMPLIB option is a global option. Once you set this option it remains in
effect until you cancel, change, or exit your SAS session.

OPTIONS CMPLIB=libref.table | (libref.table-1...libref.table-n)

libref.table
specifies the table or tables that SAS searches for a package that contains the desired
function.

Example: Creating a Custom Character Function with One
Argument

Suppose you need to create a new data set with the names of baseball players and their
teams. The names of the baseball players in the Certadv.Baseball data set is in the wrong
order. The Certadv.Baseball data set currently lists the players by last name followed by
first name, and names are separated by commas. You need to create a custom function to
reverse the order of the name so that the players’ first names are followed by their last
names, separated by a space.

proc fcmp outlib=certadv.functions.dev; /* 1 */
 function ReverseName(lastfirst $) $ 40; /* 2 */
 First=scan(lastfirst,2,','); /* 3 */
 Last=scan(lastfirst,1,',');
 return(catx(' ',First,Last)); /* 4 */
 endsub; /* 5 */
run;

1 The FCMP procedure enables you to create a custom function. The OUTLIB= option
specifies Certadv.Functions as the table in which the Dev package is stored. The Dev
package is a collection of routines that have unique names.

2 The FUNCTION statement specifies the function name as ReverseName.
ReverseName is a custom function that has one character argument named LastFirst
and it returns a character value with a length of 40. If a return value type and length
are not specified, the default is numeric with a length of 8.

3 The body of the function consists of DATA step syntax. The assignment statement
creates two new variables, First and Last, that are created using the SCAN function.
The new variable First uses the SCAN function to return the second word from the
LastFirst variable and the Last variable returns the first word from the LastFirst
variable.

4 The RETURN statement specifies the value of ReverseName. The RETURN
statement defines the value returned by the function. It uses the CATX function to
concatenate the first and last variable values created within the function definition
separated by a space.

5 The ENDSUB statement ends the function.

Now that you have created your custom function, you can use it in a DATA step just like
any other SAS function.

Creating Functions with PROC FCMP 329

options cmplib=certadv.functions; /* 1 */
data work.baseball; /* 2 */
 set certadv.baseball;
 Player=reversename(Name); /* 3 */
 keep Name Team Player;
run;
proc print data=work.baseball;
run;

1 The CMPLIB= option specifies the Certadv.Functions table for SAS to search for a
package that contains the desired function.

2 The DATA step reads Certadv.Baseball to create Work.Baseball.

3 The DATA step creates a new variable named Player by referencing the custom
function, ReverseName. The function reverses the order of FirstName and LastName
values within Name and returns the string to the Player variable.

Output 13.3 PROC PRINT Result of Work.Baseball (partial output)

Example: Creating a Custom Numeric Function with One Argument
Suppose you need to create a custom function to generate fiscal quarter buckets based on
the value of Dates in your data set. The following example uses one numeric argument
and returns a numeric value for the function.

proc fcmp outlib=certadv.functions.dat; /* 1 */
 function MyQuarter(month); /* 2 */
 if month in(2,3,4) then myqtr=1; /* 3 */
 else if month in(5,6,7) then myqtr=2;
 else if month in (8,9,10) then myqtr=3;
 else myqtr=4;
 return(myqtr); /* 4 */
 endsub; /* 5 */
run;

options cmplib=certadv.functions; /* 6 */
data work.dates; /* 7 */

330 Chapter 13 • Using SAS Utility Procedures

 do Dates='15JAN2019'd to '31DEC2019'd by 30;
 MonNum=month(Dates);
 FiscalQuarter=MyQuarter(MonNum); /* 8 */
 output;
 end;
run;

proc print data=work.dates; /* 9 */
 format Dates mmddyy10.;
run;

1 The FCMP procedure enables you to create a custom function. The OUTLIB= option
specifies Certadv.Functions as the table in which the Dat package is stored. The Dat
package is a collection of routines that have unique names.

2 The FUNCTION statement specifies a new function named MyQuarter that accepts
one numeric argument named Month.

3 The body of the function consists of DATA step IF-THEN/ELSE syntax. This
conditional logic defines the value to assign to MyQtr based on the value of the input
argument Month.

4 The RETURN statement is used to return a value to the MyQtr function.

5 The ENDSUB statement ends the function.

6 The CMPLIB= option specifies the Certadv.Functions table for SAS to search for a
package that contains the desired function.

7 The DATA step creates a temporary data set named Work.Dates. The DATA step
uses the DO loop to create a Dates column with values from January 15 2019 to
December 31 2019.

The assignment statement creates a new variable MonNum that uses the month
function. SAS supplies the MONTH function to generate a value using the Dates
variable.

8 The assignment statement creates the FiscalQuarter variable using the custom
function MyQuarter and the value of MonNum as the argument.

9 The PRINT procedure prints the Work.Dates data set. The FORMAT statement,
applied to the Dates column, displays the dates as mmddyy10.

Creating Functions with PROC FCMP 331

Output 13.4 PROC PRINT Output of Work.Dates

Example: Creating a Custom Character Function with Multiple
Arguments

Thus far, the examples in this chapter have focused on creating functions that contained
one argument. You can specify multiple arguments for custom functions by separating
the arguments with a comma (,). If the argument is a character value, then a dollar sign
($) is placed after the argument before the comma.

The following example creates a character function called ReverseName with two
character arguments, LastFirst and Pos.

proc fcmp outlib=certadv.functions.dev; /* 1 */
 function ReverseName(lastfirst $, pos $) $ 40; /* 2 */
 First=scan(lastfirst,2,','); /* 3 */
 Last=scan(lastfirst,1,',');
 if substr(pos,2,1)='F' then
 return(catx(' ','Outfielder',First,Last));
 else if substr(pos,2,1)='B' then
 return(catx(' ','Baseman',First,Last));
 else return(catx(' ',pos,First,Last));
 endsub; /* 4 */
quit;

options cmplib=work.functions; /* 5 */

data work.baseball; /* 6 */
 set certadv.baseball;
 Player=reversename(Name,Position); /* 7 */
 keep Name Team Position Player;
run;
proc print data=baseball;
run;

332 Chapter 13 • Using SAS Utility Procedures

1 The FCMP procedure enables you to create a custom function. The OUTLIB= option
specifies Certadv.Functions as the table in which the Dev package is stored. The Dev
package is a collection of routines that have unique names.

2 The FUNCTION statement specifies the function name as ReverseName.
ReverseName has two character arguments named LastFirst and Pos, and it returns
character values with the length of 40. If a return value type and length are not
specified, the default is numeric with a length of 8.

3 The body of the function consists of DATA step syntax. The assignment statement
creates two new variables First and Last using the SCAN function. The new variable
First uses the SCAN function to return the second word from the LastFirst variable
value and the Last variable returns the first word from the LastFirst variable value.

The IF-THEN/ELSE statements use the SUBSTR function to extract the second
character of the Pos value. Based on the value returned by the SUBSTR function, the
appropriate concatenation is made using CATX. For example, in the fourth
observation the second character in the Pos value is F so the ReverseName function
returns Outfielder Andre Dawson.

If none of the criteria for the IF-THEN statements are met, then the ELSE statement
returns by the value of Pos and the reversed order of the name.

4 The ENDSUB statement ends the function.

5 The CMPLIB= option specifies the Certadv.Functions table for SAS to search for a
package that contains the desired function.

6 The DATA step creates a temporary data set named Work.Baseball by reading
Certadv.Baseball.

7 The DATA step creates a new variable named Player and references the custom
function, ReverseName. The function reverses the order of Name concatenated with
the value of position and returns the string to the Player variable.

Creating Functions with PROC FCMP 333

Output 13.5 PROC PRINT Result of Work.Baseball (partial output)

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which PICTURE statement displays a nine-digit account number with six leading
asterisks followed by the last five digits, such as ******56789?

a. picture actfmt low-high='99999'(prefix='******');

b. picture actfmt (prefix='******') low-high='99999';

c. picture actfmt low-high='999999999' (prefix='******');

d. picture actfmt (prefix='*****') low-high='999999999';

2. Which PICTURE statement generates a date format that produces the following
results when used with the Date column?

334 Chapter 13 • Using SAS Utility Procedures

a. picture DateFmt low-high='%m/%d/%Y' (datatype=date);

b. picture DateFmt (default=10)low-high='%m/%d/%Y'
 (datatype=date);

c. picture DateFmt low-high='%m/%d/%Y'
 (datatype=date default=10);

d. picture DateFmt (default=10) low-high='%m/%d/%Y'
 (datatype=datetime);

3. Which of the following are format options that can be placed after the format name?

PICTURE format-name<(format-options)>
<value-range-set-1 = 'template-value' (template-options)>
<value-range-set-n = 'template-value' (template-options)>;

a. DEFAULT=

b. DATATYPE=

c. MULTIPLIER=

d. ROUND

e. a and d only.

f. b and c only.

4. What system option do you have to specify in order to use the new function that you
created in a DATA step or a supported PROC step?

a. FCMPLIB=

b. LIBCMP=

c. CMPLIB=

d. OUTLIB=

5. Which directives create the following value?

2019.03.19 @ 8:25:19 PM

a. %Y.%m.%d@%H:%M:%S%p

b. %Y.%m.%d@%I:%0M:%0S%p

c. %Y.%0m.%0d @ %I:%0M:%0S%p

d. %0Y.%0m.%0d@%H:%0M:%0S%p

6. Complete the FUNCTION statement to create a function named TitleName that
consists of two character arguments.

proc fcmp outlib=certadv.functions.samp;
 function TitleName ___________________ $50;
 if JobCode='S' then return(catx(' ','Software',',JobTitle'));
 else if JobCode='M' then return(catx(' ','Manager of ',',JobTitle'));

a. (JobTitle, JobCode)

b. (JobTitle $, JobCode $)

c. ('JobTitle' $, 'JobCode' $)

d. ('JobTitle $', 'JobCode $')

7. Which statement is true concerning the following PROC FCMP statement?

Quiz 335

proc fcmp outlib=certadv.funcs.dev;

a. The custom function will be stored in the SAS table Funcs.Dev.

b. The custom function will be stored in the Certadv package within the SAS table
Funcs.Dev.

c. The custom function will be stored in the Dev folder within the SAS package
Certadv.Funcs.

d. The custom function will be stored in the Dev package within the SAS table
Certadv.Funcs.

336 Chapter 13 • Using SAS Utility Procedures

Chapter 14

Using Advanced Functions

Using a Variety of Advanced Functions . 337
The LAG Function . 337
The COUNT/COUNTC/COUNTW Function . 340
The FIND/FINDC/FINDW Function . 342

Performing Pattern Matching with Perl Regular Expressions 344
A Brief Overview . 344
Using Metacharacters . 345
Example: Using Metacharacters . 346
The PRXMATCH Function . 347
The PRXPARSE Function . 349
The PRXCHANGE Function . 351

Quiz . 355

Using a Variety of Advanced Functions

The LAG Function

A Brief Overview
Suppose you have the Certadv.Stock6Mon data set that contains opening and closing
stock prices for the past six months for two different companies. You are trying to
determine which company has the bigger difference in the daily opening price between
consecutive days.

To start, consider what you want the LAG function to return, as shown below.

337

Figure 14.1 Desired LAG Function Results for ABC Company, by Day

The LAG function enables you to compare the daily opening prices between consecutive
days by retrieving the previous values of a column from the last time that the LAG
function executed.

LAG Function Syntax
The LAG function retrieves a value from a previous observation. It is able to do so
because the function maintains a queue of the previous values. If you use LAG or LAG1,
you are looking for the previous value one row back. LAG2 gives you the previous value
two rows back. LAG3 gives you the previous value three rows back, and so on. The
LAG function is useful for computing differences between rows and computing moving
averages.

Syntax, LAG function:

LAG<n>(column);

n
specifies the number of lagged values.

column
specifies a numeric or character constant, variable, or expression.

Example: Retrieving Previous Values
The following example uses the LAG function to retrieve previous values using
assignment statements. The LAG function also creates new variables based on the
previous values of Open. Using March 6 as an example, the first previous value is 59.45,
the second previous value is 59.53, and the third previous value is 54.37. These values
are highlighted in the table below.

Note: For the first observation, there are no previous values to look up, so the
assignment statement returns a missing value. For the second observation, there is a
first previous value but no second and third previous values, and so on.

data work.stockprev;
 set certadv.Stock6Mon(drop=Close);
 FirstPrevDay=lag1(Open);
 SecondPrevDay=lag2(Open);
 ThirdPrevDay=lag3(Open);
run;
proc print data=work.stockprev;
run;

338 Chapter 14 • Using Advanced Functions

Output 14.1 PROC PRINT Output of Work.StockPrev (partial output)

Example: Calculating a Moving Average
In addition to computing differences between rows, you can calculate a moving average
using the LAG function.

Suppose you have stock prices for the Random Company. The data set contains the
opening stock price for the first work day of each month. You need to calculate a moving
three-month average. Again, consider what you want the LAG function to return, as
shown below.

Figure 14.2 Desired LAG Function Results for Random Company, by Month

You can use the LAG function to get the stock price for the past two months. The third
row is the first row that calculates an average based on three values.

data work.stockavg;
 set certadv.stocks(drop=Close);
 Open1Month=lag1(Open);
 Open2Month=lag2(Open);
 Open3MonthAvg=mean(Open,Open1Month,Open2Month);

Using a Variety of Advanced Functions 339

 format Open3MonthAvg 8.2;
run;
proc print data=work.stockavg;
run;

Output 14.2 PROC PRINT Output of Work.StockAvg

Note: The best practice is to create a lagged value in an assignment statement before
using it in a conditional statement.

The COUNT/COUNTC/COUNTW Function

A Brief Overview
Suppose you have the Certadv.Slogans data set, which contains numerous slogans that a
company can use for its business. You are asked to identify the number of times a
specific word, 24/7, was used in a slogan and how many words were in a slogan. The
slogans are separated by commas in a row.

You can use the COUNT function to count the number of times a specific word such as
24/7 appears in the slogan, or you can use the COUNTW function to count the number
of words in a slogan. You could even use the COUNTC function to count the number of
characters in a slogan.

Note: Word is defined as a character constant, variable, or expression.

COUNT/COUNTC/COUNTW Syntax
There are three variations of the COUNT function. Note the slight difference in syntax
for the three functions.

Table 14.1 COUNT/COUNTC/COUNTW Syntax

Function Name Syntax Function Definition

COUNT COUNT(string, substring <,modifiers>) Counts the number of times that a specified
substring appears within a character string.

COUNTC COUNTC(string, character-list <,modifiers>) Counts the number of characters in a string
that appear or do not appear in a list of
characters.

340 Chapter 14 • Using Advanced Functions

Function Name Syntax Function Definition

COUNTW COUNTW(string <,delimiters><,modifiers>) Counts the number of words in a character
string.

character-list
specifies a character constant, variable, or expression that initializes a list of
characters. COUNTC counts characters in this list, provided that you do not specify
the V modifier in the modifier argument. If you specify the V modifier, all characters
that are not in this list are counted. You can add more characters to the list by using
other modifiers.

delimiters
can be any of several characters that are used to separate words. You can specify the
delimiters by using the chars argument, the modifier argument, or both.

modifiers
is a character constant, variable, or expression that specifies one or more modifiers.
modifiers is an optional argument.

i or I
ignores the case of the characters. If this modifier is not specified, COUNT
counts character substrings only with the same case as the characters in substring.

t or T
trims trailing blanks from string, substring, and chars arguments.

string
specifies a character constant, variable, or expression in which substrings are to be
counted.

T I P Enclose a literal string of characters in quotation marks.

substring
is a character constant, variable, or expression that specifies the substring of
characters to search for in string.

T I P Enclose a literal substring of characters in quotation marks.

Example: Counting the Number of Words
The following example uses the COUNT function to count the number of times 24/7
appears in the Slogans column. The COUNTW function counts the number of words in
the Slogans column. The COUNTW function does not specify any delimiter. Therefore,
a default list of blank ! $ % & () * + , ‑ . / ; < ^ | is used.

data work.sloganact;
 set certadv.slogans;
 Num24=count(Slogans,'24/7');
 NumWord=countw(Slogans);
run;
proc print data=work.sloganact;
run;

The COUNT function returns the number of times 24/7 appeared in the Slogan column
and assigns the value to Num24. Notice that observation 5 contains 24/365. However,
this was not counted as a part of the 24/7. If you change the string to search for to 24/,

Using a Variety of Advanced Functions 341

then 24/365 would appear in the Num24 column. The COUNTW function counts the
number of words in each slogan and assigns the value to NumWord.

Output 14.3 PROC PRINT Output of Work.SloganAct

The FIND/FINDC/FINDW Function

A Brief Overview
Suppose you were asked to identify the starting position of the first occurrence of 24/7 in
a string. The FIND function finds the starting position of the first occurrence of a
substring in a string. Alternatives to the FIND function are the FINDC and FINDW
functions, which are also based on finding the first occurrence. The FINDC function
returns the starting position where a character from a list of characters is found in a
string, and the FINDW function returns the starting position of a word in a string or the
number of the word in a string.

FIND/FINDC/FINDW Function Syntax
There are three variations of the FIND function. Note the slight difference in syntax for
the three functions.

Table 14.2 FIND/FINDC/FINDW Function Syntax

Function
Name Syntax Function Definition

FIND FIND (string, substring <, modifiers><, start-
position>);

Searches for a specific substring of characters
within a character string.

Returns the starting position where a substring
is found in a string.

FINDC FINDC (string, character-list <, modifiers> <, start-
position>);

Searches a string for any character in a list of
characters.

Returns the starting position where a character
from a list of characters is found in a string.

342 Chapter 14 • Using Advanced Functions

Function
Name Syntax Function Definition

FINDW FINDW (string, word<, delimiters><, modifiers> <,
start-position>);

Returns the character position of a word in a
string, or returns the number of the word in a
string.

character-list
is a constant, variable, or character expression that initializes a list of characters.
FINDC searches for the characters in this list, provided that you do not specify the K
modifier in the modifiers argument. If you specify the K modifier, FINDC searches
for all characters that are not in this list of characters. You can add more characters to
the list by using other modifiers.

delimiters
can be any of several characters that are used to separate words. You can specify the
delimiters by using the chars argument, the modifiers argument, or both.

modifiers
is a character constant, variable, or expression that specifies one or more modifiers.

i or I
ignores the case of the characters. If this modifier is not specified, FIND searches
only for character substrings with the same case as the characters in substring.

t or T
trims trailing blanks from the string, word, and chars arguments.

start-position
is a numeric constant, variable, or expression with an integer value that specifies the
position at which the search should start and the direction of the search.

string
specifies a character constant, variable, or expression that will be searched for
substrings.

T I P Enclose a literal string of characters in quotation marks.

substring
is a character constant, variable, or expression that specifies the substring of
characters to search for in string.

T I P Enclose a literal substring of characters in quotation marks.

word
is a character constant, variable, or expression that specifies the word to be searched
for.

Example: Finding the Word Number
You can use the FINDW function to return the number of the word 24/7 in the Slogans
string. The third argument uses a blank to specify the delimiter separating the words in
the string. The E modifier tells SAS to count the number of words instead of returning
the starting position. The modifiers argument must be positioned after the delimiters
argument. The E modifier is just one of the modifiers that can be used.

data work.sloganact;
 set certadv.slogans;
 Num24=count(Slogans,'24/7');
 NumWord=countw(Slogans);
 FindWord24=findw(Slogans,'24/7',' ','e');

Using a Variety of Advanced Functions 343

run;
proc print data=work.sloganact;
run;

Output 14.4 PROC PRINT Output of Work.SloganAct (partial output)

Performing Pattern Matching with Perl Regular
Expressions

A Brief Overview
Perl regular expressions enable you to perform pattern matching by using functions. A
regular expression is a sequence of strings that defines a search pattern.

For example, suppose you have the Certadv.NANumbr data set, which contains phone
numbers for the United States, Canada, and Mexico.

Figure 14.3 Certadv.NaNumbr Data Set (partial output)

344 Chapter 14 • Using Advanced Functions

By using a regular expression, you can find valid values for Phone. The advantage of
using regular expressions is that you can often accomplish in only one Perl regular
expression function something that would require a combination of traditional SAS
functions to accomplish.

In SAS, you use Perl regular expressions within the functions and call routines that start
with PRX. The PRX functions use a modified version of the Perl language (Perl 5.6.1) to
perform regular expression compilation and matching.

Using Metacharacters
The Perl regular expressions within the PRX functions and call routines are based on
using metacharacters. A metacharacter is a character that has a special meaning during
pattern processing. You can use metacharacters in regular expressions to define the
search criteria and any text manipulations. The following table lists the metacharacters
that you can use to match patterns in Perl regular expressions.

Table 14.3 Basic Perl Metacharacters and Their Descriptions

Metacharacter Description Example

/.../ Provides the starting and ending
delimiter.

s/ ([a‑z]) / X / substitutes X in
place of a space followed by a lowercase
letter and then a space.

(...) Enables grouping. f(u|boo)bar matches "fubar" or
"foobar".

| Denotes the OR situation.

\d Matches a digit (0–9). \d\d\d\d matches any four-digit string
(0-9) such as "1234" or "6387"

\D Matches a non-digit such as a letter or
special character.

\D\D\D\D matches any four non-digit
string such as "WxYz" or "AVG%"

\s Matches a whitespace character such
as a space, tab, or newline.

x\sx matches "x x" (space between the
letters x) or "x x" (tab between the letters
x).

\w Matches a group of one or more
characters (a-z, A-Z, 0-9, or an
underscore).

\w\w\w matches any three-word characters.

. Matches any character. mi.e matches "mike" and "mice".

[...] Matches a character in brackets. [dmn]ice matches "dice" or "mice" or
"nice"

\d[6789]\d matches "162" or "574" or
"685" or "999"

[^...] Matches a character not in brackets. [^] matches

[^] matches " " but not " "

Performing Pattern Matching with Perl Regular Expressions 345

Metacharacter Description Example

^ Matches the beginning of the string. d[^a]me matches "dime" or "dome" but
not "dame".

$ Matches the end of the string. ter$ matches "winter" not "winner"
or "terminal".

\b Matches a word boundary (the last
position before a space).

bar\b matches "bar food" but not
"barfood" or "barter" .

\B Matches a non-word boundary. bar\B matches "foobar" but not "bar
food".

* Matches the preceding character 0 or
more times.

• zo* matches "z" and "zoo"

• * is equivalent to {0,}

+ Matches the preceding character 1 or
more times.

• zo+ matches "zo" and "zoo".

• zo+ does not match "z"

• + is equivalent to {1,}

? Matches the preceding character 0 or
1 times.

• do(es)? matches the "do" in "do" or
"does"

• ? is equivalent to {0,1}

{n} Matches exactly n times. fo{2}bar matches "foobar" but not
"fobar" or "fooobar".

\ Overrides the next metacharacter such
as a (or ?)

final\. matches "final." "final" is
followed by the character '.'

Example: Using Metacharacters
A valid United States, Canada, or Mexico phone number contains a three-digit area
code, followed by a hyphen (-), a three-digit prefix, and then the remaining numbers.
More specifically, the first digit of the area code and prefix cannot start with 0 or 1.

A Perl regular expression must start and end with a delimiter. The following example
uses parentheses to represent a group of numbers that is required. The first two groups
specify that first there must be a digit 2 through 9 followed by two more digits. In the
last group, there must be four digits. The hyphens between the groups signify the
hyphens between the numbers in the output.

/([2-9]\d\d)-([2-9]\d\d)-(\d{4})/

346 Chapter 14 • Using Advanced Functions

Output 14.5 Certadv.NaNumbr Data Set (partial output)

The PRXMATCH Function

A Brief Overview
The Perl regular expression using metacharacters can be used with the PRX functions.
The PRXMATCH function searches for a pattern match and returns the position at which
the pattern is found. A value of zero is returned if no match is found. This function has
two arguments. The first argument specifies the Perl regular expression that contains
your pattern. The second argument is the character constant, column, or expression that
you want to search.

PRXMATCH Syntax

Syntax, PRXMATCH function:

PRXMATCH (Perl-regular-expression, source);

Perl-regular-expression
specifies a character value that is a Perl regular expression. The expression can be
referenced using a constant, a column, or a pattern identifier number.

source
specifies a character constant, variable, or expression that you want to search.

Example: PRXMATCH Function Using a Constant
The PRXMATCH function is commonly used for validating data. The following
example uses the PRXMATCH function to validate whether a phone number pattern is
present.

If the pattern is present, a numeric value is returned to the pattern’s starting position. For
this example, the pattern was found in 19 rows.

The example specifies the expression as a hard-coded constant as the first argument of
the function. When a constant value is specified, the constant must be in quotation marks
(either single or double). When you specify the expression as a constant, the expression
is compiled once, and each use of the PRX function reuses the compiled expression.

Performing Pattern Matching with Perl Regular Expressions 347

Compiling the expression only once saves time. The compiled version is saved in
memory.

data work.matchphn;
 set certadv.nanumbr;
 loc=prxmatch('/([2-9]\d\d)-([2-9]\d\d)-(\d{4})/',PhoneNumber);
run;
proc print data=work.matchphn;
 where loc>0;
run;

Output 14.6 PROC PRINT Result of Work.MatchPhn

Example: PRXMATCH Function Using a Column
Instead of using the first argument to specify a constant for the regular expression, you
can refer to a column that contains the expression. This is a commonly used technique
when you might need to manipulate the assignment statement that is specifying the
expression.

When the first argument refers to a column instead of a constant, the expression is
compiled for each execution of the function. To avoid compiling the expression each
time, specify the option of a lower or uppercase O at the end of the expression. This
makes SAS compile the expression only once. This is a useful approach when you have
large data sets, as it decreases your processing time.

data work.phnumbr (drop=Exp);

348 Chapter 14 • Using Advanced Functions

 set certadv.nanumbr;
 Exp='/([2-9]\d\d)-([2-9]\d\d)-(\d{4})/o';
 Loc=prxmatch(Exp,PhoneNumber);
run;
proc print data=work.phnumbr;
 where loc>0;
run;

Output 14.7 PROC PRINT Result of Work.PhNumbr

The PRXPARSE Function

A Brief Overview
Another method for specifying the Perl regular expression is to specify a pattern
identifier number. Before using PRXMATCH, you can use the PRXPARSE function to
create the pattern identifier number. This function references the regular expression
either as a constant or a column. The function returns a pattern identifier number. This
number can then be passed to PRX functions and call routines to reference the regular
expression. It is not required to use the pattern identifier number with the PRXMATCH
function, but some of the other PRX functions and call routines do require the pattern
identifier number.

Performing Pattern Matching with Perl Regular Expressions 349

PRXPARSE Function Syntax
The PRXPARSE function returns a pattern identifier number that is used by other PRX
functions and call routines.

Syntax, PRXPARSE function:

pattern-ID-number=PRXPARSE (Perl-regular-expression);

pattern-ID-number
is a numeric pattern identifier that is returned by the PRXPARSE function.

Perl-regular-expression
specifies a character value that is a Perl regular expression. The expression can be
referenced using a constant, a column, or a pattern identifier number.

Example: PRXPARSE and PRXMATCH Function Using a Pattern ID
Number
In this example, the regular expression is being assigned to the column Exp. The
PRXPARSE function is referencing this column. Because the expression ends with the O
option, the function compiles the value only once. The PRXPARSE function returns a
number that is associated with this expression. In this example, the number is a value of
1, and the value is being stored in the Pid column.

PRXMATCH then references this number in the Pid column as its first argument. If the
O option had not used at the end of the Perl regular expression, the value of Pid would
differ for each row.

data work.phnumbr (drop=Exp);
 set certadv.nanumbr;
 Exp='/([2-9]\d\d)-([2-9]\d\d)-(\d{4})/o';
 Pid=prxparse(Exp);
 Loc=prxmatch(Pid,PhoneNumber);
run;
proc print data=work.phnumbr;
run;

Output 14.8 PROC PRINT Output of Work.PhNumbr (partial output)

350 Chapter 14 • Using Advanced Functions

The PRXCHANGE Function

A Brief Overview
The PRXCHANGE function performs a substitution for a pattern match. This function
has three arguments. The first argument is the Perl regular expression, which can be
specified as a constant, a column, or a pattern identifier number that comes from the
PRXPARSE function. The second argument is a numeric value that specifies the number
of times to search for a match and replace it with a matching pattern. If the value is -1,
then the matching pattern continues to be replaced until the end of the source is reached.
The third argument is the character constant, column, or expression that you want to
search for.

PRXCHANGE Function Syntax
The PRXCHANGE function performs a substitution for a pattern match.

Syntax, PRXCHANGE function:

PRXCHANGE (Perl-regular-expression, times, source)

Perl-regular-expression
specifies a character value that is a Perl regular expression. The expression can be
referenced using a constant, a column, or a pattern identifier number.

times
is a numeric constant, variable, or expression that specifies the number of times to search for
a match and replace a matching pattern.

source
specifies a character constant, variable, or expression that you want to search.

Example: Using the PRXCHANGE Function to Standardize Data
The PRXCHANGE function is commonly used to standardize data. For example, the
Certadv.SocialAcct data set contains social media preference data for users between the
ages of 18 and 50. The goal is to standardize the Certadv.SocialAcct data set by
substituting Facebook for Fb and FB as well as Instagram for IG.

Performing Pattern Matching with Perl Regular Expressions 351

Figure 14.4 Certadv.SocialAcct (partial output)

When you are writing the Perl regular expression for substitution, start the expression
with a lowercase s. The lowercase s signifies that substitution needs to happen instead of
matching.

Following the lowercase s, place the beginning delimiter before the forward slash. Also,
place the forward slash at the end of the expression. There is another forward slash
between the starting and ending forward slashes.

Before the middle forward slash, specify the pattern that you are searching for, enclosed
in parentheses. After the middle forward slash, specify the pattern that is to be used for
substitution.

In this example, you are looking for the capital letters FB and IG in both
Social_Media_Pref1 and Social_Media_Pref2 variables. If the pattern is found, then
replace with Facebook and Instagram, respectively. The i modifier ignores the case of
the pattern that you are searching for.

data work.prxsocial;
 set certadv.socialacct;
 Social_Media_Pref1=prxchange('s/(FB)/Facebook/i',-1,Social_Media_Pref1);
 Social_Media_Pref1=prxchange('s/(IG)/Instagram/i',-1,Social_Media_Pref1);
 Social_Media_Pref2=prxchange('s/(FB)/Facebook/i',-1,Social_Media_Pref2);
 Social_Media_Pref2=prxchange('s/(IG)/Instagram/i',-1,Social_Media_Pref2);
run;
proc print data=work.prxsocial;
run;

352 Chapter 14 • Using Advanced Functions

Output 14.9 PROC PRINT Output of Work.PrxSocial (partial output)

Example: Changing the Order Using the PRXCHANGE Function
Suppose you have the Certadv.SurvNames data set with names from the self-reported
survey. Every 50th surveyor is given a gift card that is to be mailed to the surveyor’s
home. You are asked to quickly reverse the names of the survey takers. You can use the
PRXCHANGE function to reverse the order of the names.

data work.revname;
 set certadv.survnames;
 ReverseName=prxchange('s/(\w+), (\w+)/$2 $1/', -1, name);
run;
proc print data=work.revname;
run;

Performing Pattern Matching with Perl Regular Expressions 353

Output 14.10 PROC PRINT Result of Work.RevName

Example: Capture Buffers for Substitution Using the PRXCHANGE
Function
Suppose you have the data set Certadv.Email with email addresses, longitude, and
latitude of those who have visited the company website. You are asked to reorder the
longitude and latitude values to latitude and longitude.

When specifying a substitution value, you might need to rearrange pieces of the found
pattern. This is possible using capture buffers.

In an earlier section, parentheses were used to represent grouping. When you use
parentheses for grouping, you are creating capture buffers. Each capture buffer is
referenced with a sequential number starting at 1. The first set of parentheses is for
capture buffer 1. The second set of parentheses is for capture buffer 2, and so on.

When referencing a capture buffer, use a dollar sign in front of the capture buffer
number. In the following example, specify the third buffer first and the first buffer last.

data work.latlong;
 set certadv.email;
 LatLong=prxchange('s/(-?\d+\.\d*)(@)(-?\d+\.\d*)/$3$2$1/', -1, LongLat);
run;
proc print data=work.latlong;
run;

354 Chapter 14 • Using Advanced Functions

Output 14.11 PROC PRINT Output of Work.LatLong (partial output)

Quiz
1. If a substring is not found in a string, the FIND function returns which value?

a. 0

b. 1

c. 2

d. Not found.

2. Given the following DATA step, what is the value of USNum and WordNum?

data work.Count;
 Text='AUSTRALIA, ENGLAND, CANADA, AUSTRIA, ITALY, US, SPAIN';
 USNum=count(Text,'CANADA');
 WordNum=countw(Text);
run;

a. 0, 7

b. 1, 7

c. 3, 0

d. 3, 0

3. Which program would correctly generate two separate lagged variables for each
observation?

a. data work.samp1;
 set work.lag0;
 y=lag1-lag2(item);
run;
proc print data=work.samp1;
run;

b. data work.samp2;
 set work.lag0;

Quiz 355

 y=lag2(item);
run;
proc print data=work.samp2;
run;

c. data work.samp3;
 set work.lag0;
 x=lag1(item);
 y=lag2(item);
run;
proc print data=work.samp3;
run;

d. data work.samp4;
 set work.lag0;
 y=lag1(item);
 y=lag2(item);
run;
proc print data=work.samp4;
run;

4. What is the value of the column Position?

Position=prxmatch('/Dutch/','Sawyer Dutch Kenai');

a. 2

b. 7

c. 8

d. 12

5. Which program correctly searches a string for a substring and returns the position of
a substring?

a. data _null_;
 position=prxmatch('/mind/', 'Learning never exhausts the mind.');
 put position=;
run;

b. data _null_;
 position=prxchange('/mind/', 'Learning never exhausts the mind.');
 put position=;
run;

c. data _null_;
 position=prxparse('/mind/', 'Learning never exhausts the mind.');
 put position=;
run;

d. data _null_;
 position=findw('/mind/', 'Learning never exhausts the mind.');
 put position=;
run;

6. Which program correctly changes the order of first and last names?

a. data work.reverse;
 set certadv.reversedNames;
 name=prxmatch('/name/', name);
run;

b. data work.reverse;

356 Chapter 14 • Using Advanced Functions

 set certadv.reversedNames;
 name=prxchange('s/(\w+),(\w+)/$2 $1/', -1, name);
run;

c. data work.reverse;
 if _N_=1 then do;
 pattern='/name';
 name=prxparse(pattern);
 end;
 set certadv.reversedNames;
run;

d. None of the above.

7. Perl regular expressions in the PRXMATCH function must start and end with a
delimiter.

a. True

b. False

8. Which Perl regular expression replaces the string ABC with the string ABC87?

a. 'r/ABC/ABC87/'

b. 'r/ABC87/ABC/'

c. 's/ABC87/ABC/'

d. 's/ABC/ABC87/'

Quiz 357

358 Chapter 14 • Using Advanced Functions

Part 4

Workbook

Chapter 15
Practice Programming Scenarios . 361

359

360

Chapter 15

Practice Programming
Scenarios

Differences between the Workbook and Certification Exam 362

Scenario 1 . 362
Directions . 362
Test Your Code . 363
Exam Objective . 363

Scenario 2 . 363
Directions . 363
Test Your Code . 363
Exam Objective . 363

Scenario 3 . 363
Directions . 363
Test Your Code . 364
Exam Objective . 364

Scenario 4 . 364
Directions . 364
Test Your Code . 365
Exam Objective . 365

Scenario 5 . 365
Directions . 365
Test Your Code . 365
Exam Objective . 365

Scenario 6 . 366
Directions . 366
Test Your Code . 366
Exam Objective . 366

Scenario 7 . 366
Directions . 366
Test Your Code . 367
Exam Objective . 367

Scenario 8 . 367
Directions . 367
Test Your Code . 367
Exam Objective . 367

Scenario 9 . 368
Directions . 368
Test Your Code . 368

361

Exam Objective . 368

Scenario 10 . 368
Directions . 368
Test Your Code . 369
Exam Objective . 369

Differences between the Workbook and
Certification Exam

• The workbook scenarios ask you to answer questions about the results from your
performance-based projects. You compare your answers with the answer key to
determine whether you solved the problem correctly.

• By contrast, the certification exam requires you to use a scoring macro to assess your
work. The macro investigates the results of your project to determine whether you
solved the problem correctly. It looks at parameters and the content of any output
data set, as well as values of macro variables that are stored in the symbol tables. The
macro also investigates the code that you wrote.

The scoring macro returns a 3-digit value to the SAS log. You record this 3-digit
value as your answer to each project to determine your score. These are broad
checks, so there is still a significant amount of freedom in your chosen coding
solution. For example, in the SQL topic, the macro is checking to see whether an
SQL procedure was used to create the output data set rather than a DATA step.

Note: To prepare for the exam, you might want to take the practice exam. Practice
exams are available for purchase through SAS and Pearson VUE. For more
information about practice exams, see https://www.sas.com/certification/sas-
practice-exams.html. When working through the practice exam, be sure to use the
techniques that are specified in the instructions. Otherwise, you will not get an
accurate representation of the live certification exam.

Scenario 1

Directions
This scenario uses the Certadv.All data set. Write a SAS program that does the
following:

• In a PROC FCMP step, create a temporary custom function called Adding with a
numeric argument named Val. The function itself returns the value of Final, which
is the value of 38 added to the value of Val. Store the function in the output library
Work with the table name of Function and the package name of Add.

• In a global statement, add the appropriate option so that SAS knows where to search
for the custom function.

• In a DATA step, create the temporary data set named Work.StudentCost by reading
in the data set Certadv.All. Create a custom function for the Fee variable to create a
variable named Final_Cost.

362 Chapter 15 • Practice Programming Scenarios

https://www.sas.com/certification/sas-practice-exams.html
https://www.sas.com/certification/sas-practice-exams.html

• In a PROC PRINT step, create a report based on Work.StudentCost with the
following variables displayed: Student_Name, Course_Code, Fee, and Final_Cost.

Test Your Code
1. What is the value of Final_Cost for observation 144?

2. What is the value of Final_Cost for observation 282?

Exam Objective
Create custom functions with the FCMP procedure.

Scenario 2

Directions
This scenario uses the Certadv.Monsal data set. Write a SAS program that does the
following:

• Use PROC FORMAT to create a numeric format that specifies a template for
displaying month values.

• If the value is 1 through 12, display the value as a two-digit number (month
values 1 through 9 should contain a leading zero).

• If the value is not a number between 1 and 12 inclusive, display the value 'Not a
valid month'.

• Name the custom format Monthfmt.

• Use a PROC PRINT step to create a report based on Certadv.Monsal. Apply the
Monthfmt custom format to the Month variable.

Test Your Code
How many instances of 'Not a valid month' does your output contain?

Exam Objective
Specify a template using the PICTURE statement within the FORMAT procedure.

Scenario 3

Directions
This scenario uses the Certadv.Airports and Certadv.Continent data sets. Write a SAS
program that does the following:

Scenario 3 363

• Write a SAS DATA step that reads the Certadv.Airports data set and creates two
temporary data sets named Work.Success and Work.Fail.

• During the first iteration of the DATA step, load a hash object named C from the
data set Certadv.Continent.

• Use the numeric variable ID as the key component.

• Use the character variable CtName as the data component.

• Assign a length of 30 for the character variable CtName.

• Set the initial value to missing to eliminate the uninitialized variable note.

• In the DATA step, look up the value of ID variable from Certadv.Airports in the C
hash object.

• Retrieve the value of CtName from the hash object.

• Create a variable named RC that contains a numeric value representing whether a
match is found.

• Store the results of successful lookups in the Work.Success data set.

• Store the results of the unsuccessful lookups in the Work.Fail data set.

Test Your Code
1. How many observations are in the Work.Success data set?

2. How many observations are in the Work.Fail data set?

Exam Objective
Process data using hash objects.

Scenario 4

Directions
This scenario uses the Certadv.All data set. Write a SAS program that does the
following:

• Create a footnote that contains the text 'Printed on ' followed by the current date
obtained using a SAS function, and formatted month, day, year (for example, 'Printed
on July 30, 2019').

• Create a macro named Test that does the following:

• accepts two keyword parameters, Vars and Dsn

• produces a PROC PRINT report from the data set specified in the Dsn parameter,
which contains only the columns specified in the Vars parameters and only the
rows that have a Begin_Date of 21774

• calls the Test macro, with the Dsn value of Certadv.All and a Vars value of
Course_Code and Fee

364 Chapter 15 • Practice Programming Scenarios

Test Your Code
1. How many observations are in the output?

2. Are all the values for Course_Code C004?

Exam Objective
• Automate programs by defining and calling macros using the SAS macro language.

• Use macro functions.

Scenario 5

Directions
This scenario uses the Certadv.Schedule data set. Write a SAS program that does the
following:

• Create a macro named CourseLoc with no parameters.

• Use the SQL procedure to create a series of macro variables named LOC1, LOC2,
and so on, that store the distinct values of the Location column in the
Certadv.Schedule table.

• Use the %DO loop to execute a PROC PRINT step once for each LOCn macro
variable that is created. The PROC PRINT step should filter data based on the value
of Location and the LOCn macro variable. Add a title with the text 'Courses Offered
in' and substitute the value of the LOCn macro variable.

• Call the CourseLoc macro program.

Test Your Code
1. What is the value of Location for observation 18?

2. What is the observation number where the Course_Code is C001, and Location is
Boston?

Exam Objective
• Automate programs by defining and calling macros using the SAS macro language.

• Create data-driven programs using the SAS macro language.

Scenario 5 365

Scenario 6

Directions
This scenario uses the Certadv.Staff data set. Write a SAS program that does the
following:

• Define a macro variable named Job with a value of Analyst.

• Use a DATA step to create a temporary data set Work.Staff from the data set
Certadv.Staff. Within this DATA step, do the following:

• Read in only those rows from the Certadv.Staff data set that contain the text
specified in the macro variable Job.

• Create a new column that keeps a running total of Salary. Code:Total
+Salary;

• Create a Count variable and increment its value by one for each observation.
Code: Count+1;

• Create a new macro variable named Avg. The value of Avg is the value of Total
divided by the value of Count. Format Avg as DOLLAR9.

• Use PROC PRINT to print Work.Staff. The output should include these elements:

• a title with the value of the macro variable Job followed by the constant text
'Staff'.

• a footnote with the constant text 'Average Salary:' followed by the value of the
macro variable Avg.

Test Your Code
1. What is the average salary?

2. How many observations are printed?

Exam Objective
Create and use user-defined and automatic macro variables within the SAS macro
language.

Scenario 7

Directions
This scenario uses the Certadv.Empdata data set. Write an SQL query that does the
following:

• Create a temporary table Work.Bonus.

366 Chapter 15 • Practice Programming Scenarios

• Include only the following variables in your report: EmpID, JobCode, and Salary.

• Create a new column named Bonus that contains an amount equal to 10% of the
employee’s salary.

• Order the query by the variable JobCode and then by Salary.

Test Your Code
1. What is the Bonus amount for EmpID E00029?

2. What is the value of Bonus for observation 4 in the Work.Bonus table?

Exam Objective
Generate detailed reports by working with a single table, joining tables, or using set
operators in SQL.

Scenario 8

Directions
This scenario uses the Certadv.Empdata and Certadv.Newsals data sets. Write an SQL
query that does the following:

• Create a temporary table Work.Raise.

• Include the following variables in your report: EmpID, LastName, Salary,
NewSalary, and Raise.

• Join both Certadv.Empdata and Certadv.Newsals based on the EmpID column to
display only matching rows of the data.

• Create a new column named Raise whose value is the difference between NewSalary
and Salary. Format the column as DOLLAR10.2

• Display only the rows where the value of Raise is greater than 3000 and order the
query by the EmpID.

• Include the row numbers in your report.

Test Your Code
1. What is the employee’s last name where the value of Raise is $5,141.86?

2. What is the value of Raise for employee ID number E0028 and last name of
Lichtenstein?

Exam Objective
Generate detailed reports by working with a single, joining tables, or using set operators
in SQL.

Scenario 8 367

Scenario 9

Directions
This scenario uses the Certadv.Salesstaff data set. Write an SQL query that does the
following:

• Create a report that displays the total salary and total count for each unique JobTitle.

• Use a SAS function to concatenate a string that combines the constant text 'Total
Paid to All' with the value of JobTitle and the constant text 'Staff'. For example,
the string should be displayed in the output as 'Total Paid to All Sales Rep. I
Staff'.

• Find the total salary for each unique JobTitle. Use the DOLLAR14. format and a
label of TotalSalary.

• Use a function to count the total number of sales representatives in each unique
JobTitle. Use the COMMA14. format and a label of Total.

• Summarize the data in the Certadv.Salesstaff data set for those rows that have a
unique JobTitle.

Test Your Code
1. What is the total number of Sales Rep. III staff?

2. What is the total paid to all Sales Rep. II staff?

Exam Objective
Generate summary reports by working with a single table, joining tables, or using set
operators in SQL.

Scenario 10

Directions
This scenario uses the Certadv.EmpAdd, Certadv.EmpOrg, and Certadv.EmpPh data sets.
Write an SQL query that does the following:

• Create a view named Work.PhoneList that contains the following columns:

• Department with a format of $25.

• EmployeeName with a format of $25.

• PhoneNumber with a format of $16. and a label of Home Phone

• Use the data found in the following tables. Column names that you need from each
data set are in parentheses.

368 Chapter 15 • Practice Programming Scenarios

• certadv.empadd (EmployeeID, EmployeeName)

• certadv.emporg (EmployeeID, Department)

• certadv.empph (EmployeeID, PhoneNumber, PhoneType)

• Use an alias for each table for simpler programming. Use 'a' for certadv.empadd,
'o' for certadv.emporg, and 'p' for certadv.empph.

• Include only those phone numbers in the view where the PhoneType was Home and
where EmployeeID matches across all three tables.

• Use the Work.PhoneList view to create an SQL query:

• The query must contain only the EmployeeName and PhoneNumber columns.

• Subset the data to include only those employees who are in the Sales
Management department.

• Order the query by EmployeeName.

• Add a title to the report: Sales Management Department Home Phone Numbers.

• Display row numbers for the report.

Test Your Code
1. How many observations are displayed in the query result?

2. What is the value for Name in observation 6?

Exam Objective
Construct in-line views within an SQL procedure step.

Scenario 10 369

370 Chapter 15 • Practice Programming Scenarios

Part 5

Solutions

Chapter 16
Chapter Quiz Answer Keys . 373

Chapter 17
Programming Scenario Solutions . 387

371

372

Chapter 16

Chapter Quiz Answer Keys

Chapter 1: PROC SQL Fundamentals . 373

Chapter 2: Creating and Managing Tables . 374

Chapter 3: Joining Tables Using PROC SQL . 375

Chapter 4: Joining Tables Using Set Operators . 376

Chapter 5: Using Subqueries . 377

Chapter 6: Advanced SQL Techniques . 378

Chapter 7: Creating and Using Macro Variables . 379

Chapter 8: Storing and Processing Text . 380

Chapter 9: Working with Macro Programs . 381

Chapter 10: Advanced Macro Techniques . 382

Chapter 11: Defining and Processing Arrays . 383

Chapter 12: Processing Data Using Hash Objects . 384

Chapter 13: Using SAS Utility Procedures . 384

Chapter 14: Using Advanced Functions . 385

Chapter 1: PROC SQL Fundamentals
1. Correct answer: a

The SELECT clause in the program is written incorrectly. Columns that are listed in
the clause must be separated by commas, not just blanks.

2. Correct answer: a

There are two statements, the PROC SQL statement and the SELECT statement. The
SELECT statement contains three clauses: the SELECT clause, the FROM clause,
and the ORDER BY clause.

3. Correct answer: b

The SELECT clause lists the columns from both tables to be queried. You must use a
prefix with the Address column because it appears in both tables. The prefix
specifies the table from which you want the column to be read.

373

4. Correct answer: b

The ORDER BY clause specifies how the rows are to be sorted. You follow the
keywords ORDER BY by one or more column names or numbers, separated by
commas.

5. Correct answer: c

In the FROM clause, you list the names of the tables to be queried, separated by
commas.

6. Correct answer: b

To create a new column and assign a column alias to the column, you specify the
following in the SELECT clause, in the order shown here: an expression, (optional)
the keyword AS, and a column alias. The case that you use when you create the
column name is the one that will be displayed in the output.

7. Correct answer: a

The GROUP BY clause is used in queries that include one or more summary
functions. If you specify a GROUP BY clause in a query that does not contain a
summary function, your clause is changed to an ORDER BY clause.

8. Correct answer: b

The table names that are specified in the FROM clause must be separated by
commas. Note that you can specify columns in the WHERE clause that are not
specified in the SELECT clause.

Chapter 2: Creating and Managing Tables
1. Correct answer: c

The CREATE TABLE statement enables you to store your results in a SAS table
instead of displaying the query results as a report.

2. Correct answer: b

The CREATE TABLE statement that includes a LIKE clause copies the column
names and attributes from an existing table into a new table. No rows of data are
inserted.

3. Correct answer: a

The CREATE TABLE statement that includes the AS keyword and query clauses
creates a table and loads the results of the query into the new table. The WHERE
clause selects only the rows for the level-1 flight attendants.

4. Correct answer: a

The INSERT statement is used to insert new rows into a new or existing table. There
is no LOAD statement in PROC SQL, VALUES is a clause, and the CREATE
TABLE statement is used to create a table.

5. Correct answer: b

The DESCRIBE TABLE statement lists the column attributes for a specified table.

6. Correct answer: a

374 Chapter 16 • Chapter Quiz Answer Keys

The CREATE TABLE statement can include column specifications to create an
empty table. The entire group of column specifications must be enclosed in a single
set of parentheses. You must list each column's name, data type, and (for character
columns) length. The length is specified as an integer in parentheses. Multiple
column specifications must be separated by commas.

Chapter 3: Joining Tables Using PROC SQL
1. Correct answer: a

A Cartesian product is returned when join conditions are not specified in a PROC
SQL join. In a Cartesian product, each row from the first table is combined with
every row from the second table.

2. Correct answer: b

This PROC SQL query is an inner join. It combines the rows from the first table that
match rows from the second table, based on the matching criteria that are specified in
the WHERE clause. Columns are not overlaid, so all columns from the referenced
tables (including any columns with duplicate names) are displayed. Any unmatched
rows from either table are not displayed.

3. Correct answer: a

This PROC SQL query is a left outer join, which retrieves all rows that match across
tables (based on the join conditions in the ON clause), plus nonmatching rows from
the left (first) table. No columns are overlaid, so all columns from both tables are
displayed.

4. Correct answer: c

Inner joins combine the rows from the first table that match rows from the second
table, based on one or more join conditions in the WHERE clause. The columns
being matched must have the same data type, but they are not required to have the
same name. For joins, the tables being joined can have different numbers of columns,
and the rows do not need to be sorted.

5. Correct answer: c

In order to generate the same output as the DATA step and PROC PRINT steps, the
PROC SQL full outer join must use the COALESCE function with the duplicate
columns specified as arguments.

6. Correct answer: d

The use of summary functions does not require the use of table aliases. All of the
other statements about table aliases that are shown here are true.

7. Correct answer: d

If you are joining two tables that contain a same-named column, you must use a
prefix to specify the table or tables from which you want the column to be read.
Remember that if you join tables that do not contain columns that have matching
data values, you can produce a huge amount of output. Be sure to specify a WHERE
clause to select only the rows that you want.

Chapter 3: Joining Tables Using PROC SQL 375

Chapter 4: Joining Tables Using Set Operators
1. Correct answer: c

In set operations that use the operators EXCEPT, INTERSECT, or UNION, and no
keyword, columns are overlaid based on their position in the SELECT clause. It does
not matter whether the overlaid columns have the same name. When columns are
overlaid, the column name is taken from the first table that is specified in the
SELECT clause.

2. Correct answer: d

By default, when processing a set operation that contains the EXCEPT,
INTERSECT, and UNION set operators, PROC SQL makes an extra pass through
the data to eliminate duplicate rows. The keyword ALL is used to suppress that
additional pass through the tables, allowing duplicate rows to appear in the result set.
Because the OUTER UNION set operator displays all rows, the keyword ALL is
invalid and cannot be used with OUTER UNION.

3. Correct answer: d

The output contains all rows that are unique in the combined set of rows from both
tables, and the columns have been overlaid by position. This output is generated by a
set operation that uses the set operator UNION without keywords.

4. Correct answer: a

The PROC SQL set operation that uses the set operator OUTER UNION without a
keyword is the only code shown that does not overlay any columns in output.

5. Correct answer: a

The keyword CORR (CORRESPONDING) can be used alone or together with the
keyword ALL.

6. Correct answer: b

This PROC SQL output includes all rows from the table Pets that do not appear in
the table Dogs. No duplicates are displayed. A PROC SQL set operation that
contains the set operator EXCEPT without keywords produces these results.

7. Correct answer: b

The set operator EXCEPT returns all the rows in the first table that do not appear in
the second table. The keyword ALL suppresses the extra pass that PROC SQL
makes through the data to eliminate duplicate rows. The EXCEPT operator when
used alone also produces the output that is specified in the question.

8. Correct answer: c

The set operator UNION returns all rows that are unique in the combined set of rows
from both tables.

9. Correct answer: c

The set operator INTERSECT returns all rows that are common to both tables.
Specifying the keyword ALL suppresses PROC SQL's additional pass through the
data to eliminate duplicate rows.

376 Chapter 16 • Chapter Quiz Answer Keys

Chapter 5: Using Subqueries
1. Correct answer: d

To remove duplicate values from PROC SQL output, you specify the DISTINCT
keyword before the column name in the SELECT clause.

2. Correct answer: d

To list rows that have no data (that is, missing data), you can use either of these other
conditional operators: IS MISSING or IS NULL. The NOT EXISTS operator is used
specifically with a subquery, and resolves to true if the subquery returns no values to
the outer query.

3. Correct answer: b

When a WHERE clause references a new column that was defined in the SELECT
clause, the WHERE clause must specify the keyword CALCULATED before the
column name.

4. Correct answer: c

To determine how PROC SQL calculates and displays output from summary
functions, consider the key factors. This PROC SQL query has a GROUP BY clause,
and it does not specify any columns that are outside summary functions. Therefore,
PROC SQL calculates and displays the summary function for each group. There are
7 unique values of FlightNumber, but the HAVING clause specifies only the flights
that have an average number of boarded passengers greater than 150. Because 4 of
the 7 flight numbers meet this condition, the output will contain 4 rows.

5. Correct answer: b

Your PROC SQL query needs to use data from both tables. The outer query reads the
name and number of books checked out from Certadv.Circulation. The multiple-
value noncorrelated subquery selects the names of volunteers from
Certadv.Volunteers and passes these names back to the outer query. The outer query
then selects data for only the volunteers whose names match the names that are
returned by the subquery. The subquery is indented under the outer query's WHERE
clause, is enclosed in parentheses, and does not require a semicolon inside the
closing parenthesis.

6. Correct answer: c

A noncorrelated subquery is a nested query that executes independently of the outer
query. The outer query passes no values to the subquery.

7. Correct answer: a

The syntax in this PROC SQL query is valid, so the first statement is false. The
query contains a correlated subquery, so the second statement is true. The
VALIDATE keyword is used after the PROC SQL statement, so the third statement is
true. And the last statement correctly indicates that the VALIDATE keyword causes
the SAS log to display a special message if the query syntax is valid, or standard
error messages if the syntax is not valid.

8. Correct answer: c

In this PROC SQL query, the outer query uses the operator NOT EXISTS with a
correlated subquery. The outer query selects all rows from Certadv.Donors whose

Chapter 5: Using Subqueries 377

names do not appear in Certadv.Current. In other words, this PROC SQL query
output lists all donors who did not make a contribution in the current year.

9. Correct answer: c

The third statement about data remerging is correct.

10. Correct answer: c

PROC SQL can execute this query, but the query will not produce the results that
you want. If you omit the GROUP BY clause in a query that contains a HAVING
clause, then the HAVING clause and any summary functions treat the entire table as
one group. Without a GROUP BY clause, the HAVING clause in this example
calculates the average circulation for the table as a whole (all books in the library),
not for each group (each category of books). The output contains either all the rows
in the table (if the average circulation for the entire table is less than 2500) or none of
the rows in the table (if the average circulation for the entire table is greater than
2500).

Chapter 6: Advanced SQL Techniques
1. Correct answer: a

You can use the INTO clause to create one or more macro variables in the SELECT
clause. The INTO keyword is followed by a colon (:) and then the macro variable
name.

2. Correct answer: c

You cannot create a macro variable in the same SQL step in which you are calling
the macro variable. To create a report that does not contain any duplicate items
including the values in the macro variable, use the DISTINCT keyword in the
SELECT clause.

3. Correct answer: d

When storing a value in a single macro variable, PROC SQL preserves leading or
trailing blanks. You can use the TRIMMED option in the INTO clause to remove the
leading and trailing blanks. Use the INTO keyword followed by a colon (:), followed
by the macro variable named, followed by the keyword TRIMMED.

4. Correct answer: a

You can use the SEPARATED BY keyword in the INTO clause to specify a character
to delimit the values into a macro variable. You do not need to use the TRIMMED
keyword with the SEPARATED BY keyword because it removes leading and trailing
blanks from each value before performing the concatenation of values.

5. Correct answer: b

While the foundation of PROC FedSQL syntax is similar to PROC SQL, there are a
few differences when it comes to specific SAS enhancements such as formats. In
order to associate a format with a variable in the output, use the PUT function.

6. Correct answer: d

In PROC FedSQL when you want to limit the number of rows, use the LIMIT clause
in the SELECT statement. The LIMIT clause is the LIMIT keyword followed by the
count or the number of rows you want to display in the output. You cannot use
INOBS= in PROC FedSQL.

378 Chapter 16 • Chapter Quiz Answer Keys

Chapter 7: Creating and Using Macro Variables
1. Correct answer: b

Macro variables are always text strings that are independent of SAS data sets. The
value of a macro variable can be up to 65,534 characters long, and the name of a
macro variable can be up to 32 characters long. A macro variable can be defined or
referenced anywhere in a SAS program except within data lines. There are two types
of macro variables: automatic and user-defined.

2. Correct answer: c

To reference a macro variable, you precede the name with an ampersand. You do not
need to enclose the macro variable reference in quotation marks.

3. Correct answer: a

There are two ways to display the value of a macro variable in the SAS log: you can
turn on the SYMBOLGEN system option to list the values of all macro variables that
are used, or you can use the %PUT statement to write specific text, including macro
variable values, to the log. Therefore, answers b, c, and d are all valid ways to
display the value of the macro variable in the SAS log.

4. Correct answer: d

You use the %LET statement to define a macro variable. You do not need to enclose
the value in quotation marks. If you do include quotation marks in the assigned value
for a macro variable, the quotation marks will be stored as part of the value.

5. Correct answer: d

Macro variables are stored as character strings. Quotation marks and most special
characters are stored exactly as they are assigned, but leading blanks are stripped
from assigned values. You can also include references to other macro variables
within %LET statements.

6. Correct answer: a

Macro triggers alert the word scanner that the subsequent code should be sent to the
macro processor. When a macro trigger is embedded within a literal token and you
want to resolve the trigger, enclose the literal string in double quotation marks. If you
do not enclose the string in double quotation marks, the macro variable reference is
not resolved.

7. Correct answer: b

The word scanner recognizes four types of tokens. Expressions are not a type of
token.

8. Correct answer: b

The word scanner, not the macro processor, breaks SAS programs into tokens.

9. Correct answer: a

The word scanner detects the end of a token when it encounters a new token or a
blank delimiter. When the word scanner finds a blank or the beginning of a new
token, it removes a token from the input stack and transfers it to the bottom of the
queue.

Chapter 7: Creating and Using Macro Variables 379

Chapter 8: Storing and Processing Text
1. Correct answer: c

Most macro functions are handled by the macro processor before any SAS language
statements in the DATA step are executed. For example, the %LET statement and
any macro variable references (&macvar) are passed to the macro processor before
the program is compiled. In order to create or update macro variables during DATA
step execution, you use the SYMPUT routine.

2. Correct answer: d

The SYMPUTX routine enables you to assign a data set variable as the value of a
macro variable. You can also use the SYMPUTX routine to create a series of related
macro variables. Because all macro variable values are character strings, SYMPUTX
automatically converts any numeric value that you attempt to assign as a value for a
macro variable.

3. Correct answer: b

You can use multiple ampersands to create an indirect reference when the value of
one macro variable is the name of another. If you enclose the DATA step variable
name in quotation marks in the SYMPUTX routine, the new macro variable will
have the same name as the DATA step variable rather than having the DATA step
variable's value as a name. Use the SYMGET function to obtain the value of a macro
variable during the execution of a DATA step.

4. Correct answer: b

If more than four consecutive ampersands precede a name token, re-scanning
continues from left to right until no more triggers can be resolved. The Forward Re-
scan rule describes how the macro processor resolves macro variable references that
start with multiple ampersands or with multiple percent signs.

5. Correct answer: c

To create a macro variable during the execution of a PROC SQL step, use the INTO
clause of the SELECT statement. In the INTO clause, you precede the name of the
macro variable with a colon.

6. Correct answer: c

You can use multiple ampersands to delay the resolution of a macro variable
reference. You can also combine macro variable references in order to create new
tokens. In this example, the reference &&teach&crs resolves to &teach3 on the
first scan. On the next scan, &teach3 resolves to Forest, Mr. Peter.

7. Correct answer: b

The SYMPUTX routine can be used in a DATA step. In the DATA step, the
SYMPUTX routine performs automatic conversion on numeric values that you
attempt to assign as values for macro variables, using the BEST12. format. However,
you cannot use the SYMPUTX routine to create a macro variable during the
execution of a PROC SQL query.

380 Chapter 16 • Chapter Quiz Answer Keys

Chapter 9: Working with Macro Programs
1. Correct answer: b

A macro definition must begin with a %MACRO statement and must end with a
%MEND statement. The macro definition can include macro language statements as
well as SAS language statements. When the macro is compiled, macro language
statements are checked for syntax errors. The compiled macro is stored in a
temporary SAS catalog by default.

2. Correct answer: c

To include positional parameters in a macro definition, you list the parameters in
parentheses and separate them with commas. When the macro is executed, macro
variables are created in the local symbol table, and they have the same names as the
parameters. You can then use these macro variables within the macro.

3. Correct answer: c

To call a macro that includes positional parameters, you precede the macro name
with a percent sign. You list the values for the macro variables that are defined by the
parameters in parentheses. List values in the same order in which the parameters are
listed, and separate them with commas. Remember that a macro call is not a SAS
language statement and does not require a semicolon.

4. Correct answer: d

In a mixed parameter list, positional parameters must be listed before any keyword
parameters. Both positional and keyword parameters create macro variables in the
local symbol table. To assign a null value to a keyword parameter, you list the
parameter without a value in the macro call.

5. Correct answer: c

When you submit a macro definition, the macro is compiled and is stored in a SAS
catalog. Then when you call the macro, the macro is executed. The macro is
available for execution anytime throughout the current SAS session.

6. Correct answer: d

You can use %IF-%THEN statements to conditionally process code. Within a %IF-
%THEN statement, you must use %DO and %END statements to enclose multiple
statements. %IF-%THEN statements are similar to IF THEN statements in the DATA
step, but they are part of the macro language.

7. Correct answer: d

You can use MPRINT and MLOGIC options for debugging macros along with
entering comments in macro programs. MPRINT displays the SAS statements that
are generated by macro execution. MLOGIC causes the macro processor to trace its
execution and to write the trace information to the SAS log.

8. Correct answer: c

There are several ways to create macro variables in the local symbol table. Macro
variables that are created by parameters in a macro definition or by a %LOCAL
statement are always created in the local table. Macro variables that are created by a
%LET statement or by the SYMPUT routine inside a macro definition might be
created in the local table as well.

Chapter 9: Working with Macro Programs 381

Chapter 10: Advanced Macro Techniques
1. Correct answer: d

The %INCLUDE statement can be used to insert the contents of an external file into
a SAS program. If a macro definition is stored in an external file, the %INCLUDE
statement causes the macro definition to be compiled when it is inserted into the SAS
program. The contents of the macro definition are written to the SAS log only if the
SOURCE2 option is specified.

2. Correct answer: a

When a macro definition is stored as a catalog SOURCE entry, you must compile it
before you can call it from a SAS program. You compile a macro that is stored as a
catalog SOURCE entry by using the CATALOG access method. This creates a
session compiled macro that is deleted at the end of the SAS session. The PROC
CATALOG statement enables you to view a list of the contents of a SAS catalog.

3. Correct answer: c

To call a macro that is stored in an autocall library, you must specify both the
MAUTOSOURCE system options and the SASAUTOS= system option. The
SASAUTOS= system option can be set to include multiple pathnames or filerefs.
Once these two system options are set, you can call the macro by preceding the
macro name with a percent sign.

4. Correct answer: a

When you submit a macro definition, SAS creates a session compiled macro and
stores it in the temporary SAS catalog Work.Sasmacr. This macro is deleted at the
end of the SAS session.

5. Correct answer: d

If you store your macro definitions in external files, you can easily share these files
with others. Also, you can edit a macro definition that is stored in an external file
with any text editor, and you can reuse the macro in other SAS sessions.

6. Correct answer: a

The autocall macro facility stores macro definitions — not compiled macros —
permanently. The first time an autocall macro is called during a SAS session, the
macro is compiled and a session compiled macro is created in Work.Sasmacr. You
can have multiple autocall libraries that are concatenated, and you can use the
autocall facility in conjunction with the Stored Compiled Macro Facility.

7. Correct answer: a

The DOSUBL function uses the values that are found in the Libname and Memname
columns concatenated between %Report3 (' and ') to generate a valid macro call.

8. Correct answer: b

The DOSUBL function enables the immediate execution of SAS code after a text
string is passed. Macro variables that are created or updated during the execution of
the submitted code are exported back to the calling environment.

382 Chapter 16 • Chapter Quiz Answer Keys

Chapter 11: Defining and Processing Arrays
1. Correct answer: a

An ARRAY statement is not an executable statement; it merely defines an array.

2. Correct answer: d

The items in an ARRAY statement must be specified in the following order:

ARRAY array-name[number-of-array-elements]<$ length array-elements
TEMPORARY (initial-values)>;

3. Correct answer: b

In the DO statement, you specify the index variable that represents the values of the
array elements. Then specify the start and stop positions of the array elements.

4. Correct answer: d

To create a list of temporary array elements, use the _TEMPORARY_ keyword. The
list of initial values must be enclosed in parentheses and separated by commas or
blanks.

5. Correct answer: a

At the end of the second iteration, diff[i] resolves as follows:

diff[2]=wt[2+1]-wt[2];
diff[2]=215-200

6. Correct answer: a

In a two-dimensional array, elements are referenced using two numbers. The first
number corresponds to the row and the second number corresponds to the column.
The dimension values are separated with a comma. Initial values are loaded into a
two-dimensional array by specifying the values one row at a time, left to right.

7. Correct answer: d

To process all of the elements in an array, you can either use the DIM function with
the array name as the argument or you can specify a stop value corresponding to the
number of elements in the array.

8. Correct answer: c

The IF-THEN statement specifies that the Targets array is loaded only once, during
the first iteration of the DATA step. During the first iteration of the DATA step, the
condition _N_=1 is true, so the outer DO loop executes three times—once for each
observation in Cert.Ctargets. After the third iteration of the DO loop, the pointer
drops down to the second SET statement, and the values from the first observation in
Cert.Monthsum are read into the program data vector. During the second iteration of
the DATA step, the condition _N_=1 is false. So, the DO loop does not execute
again.

Chapter 11: Defining and Processing Arrays 383

Chapter 12: Processing Data Using Hash Objects
1. Correct Answer: b

A SAS hash object exists only within the DATA step in which it creates the hash
objects. When the DATA step ends, SAS deletes the hash object.

2. Correct Answer: c

Component objects are data elements that consist of attributes and methods.
Attributes are the properties that specify the information while methods define the
operations that an object can perform.

3. Correct Answer: d

There are three DEFINE methods that are required to define a hash object. The
DEFINEKEY method defines the columns that make up the key component. The
DEFINEDATA method defines the columns that make up the data component. The
DEFINEDONE method indicates that all key and data components are complete.

4. Correct Answer: b

The FIND hash object method determines whether the key is stored in the hash
object. The FIND method returns a value to indicate a found or not found key. You
can use multiple FIND methods calls to retrieve multiple data values.

5. Correct Answer: d

The PREV method returns the previous value in the underlying hash object. This
method can be used to iteratively transverse the hash object and return the data items
in reverse key order.

6. Correct Answer: b

The CALL MISSING routine assigns a missing value to the specified character or
numeric variables. Using the CALL MISSING routine helps you avoid receiving
notes in the SAS log that your variables are uninitialized.

7. Correct Answer: b

The statement is false. You cannot define an iterator without also defining a hash
object. The hash iterator is designed to work with a hash object.

8. Correct Answer: a

Answer a is correct because the code correctly associates two data values, City and
Name, with one key, Code. The code also uses the three required methods correctly.
Answer b defines two keys and one data value, while answer c defines two data and
two keys. Answer d is invalid because it does not use the required methods properly.

Chapter 13: Using SAS Utility Procedures
1. Correct answer: a

The five-digit digit selector truncates the leading digits, and the PREFIX= option
specifies a character string to place in front of the formatted value. The PREFIX=
option must be specified after the template.

384 Chapter 16 • Chapter Quiz Answer Keys

2. Correct answer: b

Without the DEFAULT= option, the length for the format is 8 characters, but 10
characters are needed. The DEFAULT= option is specified after the format name.
The DATATYPE= value must match the data, which is Date in this example. %m
displays a one- or two-digit month, %d displays a one- or two-digit day, and %Y
displays a four-digit year.

3. Correct answer: e

DEFAULT= and ROUND are format options that are specified after the format
name. DEFAULT= specifies the default length of the formatted value. ROUND
rounds the value to the nearest integer. DATATYPE= and MULTIPLIER= are
template options that are specified after the template value.

4. Correct answer: c

The CMPLIB= system option specifies where to look for previously compiled
functions and subroutines.

5. Correct answer: c

The correct directives are %Y, which produces a four-digit year, %0m,which produces
a two-digit month, and %0d, which produces a two-digit day. Separate all date
directives with a period. Following the date directives, use the @ symbol and use the
time directives. The correct time directives are %I: %M:%S %p or %0I:%0M:%0S
%p. You would use %I or %0I because the output shows 8 in the evening, which is
in the 12-hour clock and not the 24-hour clock.

6. Correct answer: b

Character arguments must be followed by a dollar sign and separated with a comma.
No quotation marks are needed.

7. Correct answer: d

Custom functions are stored in a package within a SAS table. The OUTLIB= option
consists of a three-level name. The first two levels refer to the SAS table
(libref.table-name), and the third level refers to the package.

Chapter 14: Using Advanced Functions
1. Correct answer: a

The FIND function searches for a specific substring of characters within a character
string. When the FIND function finds a substring, FIND returns the value of 1. When
the substring is not found, FIND returns the value of 0.

2. Correct answer: b

The COUNT function counts the number of times CANADA appeared within the
Text string. The COUNTW function counts the number of words in the Text string.
A default list of delimiters is used when there are no delimiters specified.

3. Correct answer: c

The LAG function retrieves the previous value of a numeric or character column.
You can use multiple LAG functions within a program. Answer c correctly assigns
the variables and uses the LAG function to generate two lagged values.

4. Correct answer: c

Chapter 14: Using Advanced Functions 385

PRXMATCH searches for a pattern match and returns the position at which the
pattern is found. The string Dutch is found starting in the eighth position.

5. Correct answer: a

Use the PRXMATCH function in a Perl regular expression to search a string for a
substring and return the position of a substring.

6. Correct answer: b

Use the PRXCHANGE function to change the order of first and last names. This
PRXMATCH program uses metacharacters to define the search criteria and any text
manipulation.

7. Correct answer: a

A Perl regular expression within the PRXMATCH function must start and end with a
delimiter such as the forward slash.

8. Correct answer: d

The / (forward slash) is the beginning delimiter for a regular expression. The
lowercase s specifies a substitution in a regular expression. ABC matches the letters
ABC that you are attempting to replace. The / (forward slash) or middle delimiter
separates the search pattern from the substitution pattern. ABC87 matches the letter
ABC87 that are you attempting to substitute for ABC. The / (forward slash) is the
ending delimiter for the regular expression.

386 Chapter 16 • Chapter Quiz Answer Keys

Chapter 17

Programming Scenario
Solutions

Scenario 1 . 388
Code Solution . 388
Test Your Code Solution . 389

Scenario 2 . 389
Code Solution . 389
Test Your Code Solution . 390

Scenario 3 . 390
Code Solution . 390
Test Your Code Solution . 392

Scenario 4 . 392
Code Solution . 392
Test Your Code Solution . 393

Scenario 5 . 393
Code Solution . 393
Test Your Code Solution . 395

Scenario 6 . 395
Code Solution . 395
Test Your Code Solution . 396

Scenario 7 . 396
Code Solution . 396
Test Your Code Solution . 397

Scenario 8 . 398
Code Solution . 398
Test Your Code Solution . 399

Scenario 9 . 399
Code Solution . 399
Test Your Code Solution . 400

Scenario 10 . 400
Code Solution . 400
Test Your Code Solution . 402

387

Scenario 1

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

proc fcmp outlib=work.function.add; /* 1 */
 function adding(val); /* 2 */
 final=38+val;
 return(final); /* 3 */
 endsub; /* 4 */
run;

options cmplib=work.function; /* 5 */

data work.studentcost; /* 6 */
 set certadv.all;
 Final_Cost=adding(fee); /* 7 */
run;

proc print data=work.studentcost; /* 8 */
 var Student_Name Course_Code Fee Final_Cost;
run;

1 The FCMP procedure enables you to create custom functions using DATA step
syntax. The OUTLIB= option specifies Work.Function as the table in which the Add
package is stored. The Add package is a collection of routines that have unique
names.

2 The FUNCTION statement specifies the function name and the function arguments,
as well as whether the function returns a character or numeric value. The Adding
custom function has one numeric argument named Val, and it returns a numeric
value. The variable Final is computed as 38 plus the value of the function's
argument.

3 The RETURN statement specifies the value of Final to be returned from the
function.

4 The ENDSUB statement ends the syntax for the function.

5 The CMPLIB= option specifies Work.Function table for SAS to search for a package
that contains the desired function.

6 The DATA step creates a temporary data set named Work.StudentCost. SAS reads
Certadv.All data set to create Work.StudentCost.

7 The DATA step creates a new variable named Final_Cost. The Final_Cost
encompasses the fee for the course and an additional student fee. The new variable
references the custom function Adding. The function adds a constant value of 38 to
the value of Fee. The function returns the value of Final, which is then assigned to
the value of Final_Cost.

8 The PROC PRINT step displays the output data with only the specified variables:
Student_Name, Course_Code, Fee, and Final_Cost.

388 Chapter 17 • Programming Scenario Solutions

Output 17.1 PROC PRINT of Work.StudentCost (partial output)

Test Your Code Solution
1. Correct Answer: 438

2. Correct Answer: 688

Scenario 2

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

proc format;
 picture monthfmt 1-12='99' /* 1 */
 other ='Not a valid month'; /* 2 */
run;
proc print data=certadv.monsal;
 format month monthfmt.; /* 3 */
run;

1 The PICTURE statement creates a template called Monthfmt in which it specifies
that characters in a range of 1 through 12 are numeric. Using digit selectors (99)
specifies the positions for the numeric values. Using a digit selector of 1 through 9
guarantees a leading zero for the month values of 1 through 9. If a digit selector of 0
is used, then there are no leading zeros.

2 The PICTURE statement also adds another definition to the template. It specifies that
if the value is not between 1 through 12 inclusive, display the value Not a valid
month.

3 The PROC PRINT step displays the data set Certadv.Monsal. You can use the
FORMAT statement to apply the custom format Monthfmt to the Month variable.

Scenario 2 389

Output 17.2 PROC PRINT Output of Certadv.Monsal with MonthFmt Template Applied
(partial output)

Test Your Code Solution
Correct Answer: 7

Scenario 3

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

data work.success work.fail; /* 1 */
 drop rc;
 length CtName $30; /* 2 */
 if _N_=1 then do; /* 3 */
 call missing (CtName);
 declare hash C(dataset:'certadv.continent'); /* 4 */
 c.definekey('ID'); /* 5 */
 c.definedata('CtName'); /* 6 */
 c.definedone(); /* 7 */
 end;
 set certadv.airports; /* 8 */
 rc=c.find(); /* 9 */
 if rc=0 then output work.success; /* 10 */
 else output work.fail;
run;
proc print data=work.success; /* 11 *
run;
proc print data=work.fail;
run;

390 Chapter 17 • Programming Scenario Solutions

1 The DATA step creates two temporary SAS data sets named Work.Success and
Work.Fail by reading in Certadv.Airports.

2 The LENGTH statement assigns the length of 30 to the character variable CtName.

3 The IF-THEN/DO statement loads the hash object named C for the first iteration of
the DATA step only. The CALL MISSING routine assigns missing values to the
CtName character variable to eliminate the uninitialized variable note in the SAS
log.

4 The DECLARE statement declares the hash object named C and loads the hash
object with observations and variables from the data set Certadv.Continent.

5 The DEFINEKEY method defines the variable ID as the key component.

6 The DEFINEDATA method defines CtName as the data component.

7 The DEFINEDONE method completes the definition of the hash object.

8 The SET statement reads the data from the Certadv.Airports data set.

9 The FIND method retrieves the value of CtName from the hash object if the value of
ID from Certadv.Airports is in the hash object C. The RC value is equal to 0 if a
match is found. If a match is not found, the RC value is a nonzero value.

10 The IF-THEN/ELSE statement subsets the data to two separate data sets. If the value
for RC is 0, then output to Work.Success. If the value for RC is a nonzero number,
then write output to Work.Fail.

11 The PROC PRINT step displays the observations in the Work.Success and Work.Fail
data sets with the value of RC.

Output 17.3 PROC PRINT Result of Work.Success (partial output)

Output 17.4 PROC PRINT Result of Work.Fail

Scenario 3 391

Test Your Code Solution
1. Correct Answer: 46

2. Correct Answer: 3

Scenario 4

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly :

footnote 'Printed on
 %sysfunc(today(),worddate.)'; /* 1 */
%macro test (dsn=, vars=); /* 2 */
 proc print data=&dsn;
 where begin_date=21774;
 var &vars;
 run;
%mend test; /* 3 */
%test(dsn=certadv.all, vars=course_code fee); /* 4 */

1 The %SYSFUNC function executes the SAS function TODAY and formats the value
Worddate. using the macro facility.

2 The %MACRO statement defines the macro Test, which accepts the keyword
parameters Vars and Dsn. The macro generates a PROC PRINT step.

3 The %MEND statement ends the macro definition of Test.

4 The %test statement calls the macro Test with a Dsn parameter value of
Certadv.All and Vars parameter values of Course_Code and Fee. When
executed, it generates a PROC PRINT step that reads the Certadv.All data set and
prints only the columns Course_Code and Fee.

392 Chapter 17 • Programming Scenario Solutions

Output 17.5 PROC PRINT of Certadv.All (partial output)

Test Your Code Solution
1. Correct Answer: 23

2. Correct Answer: Yes

Scenario 5

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

%macro CourseLoc; /* 1 */
proc sql noprint;
 select distinct Location into:
 loc1-
 from certadv.schedule;
quit;
%do i=1 %to &sqlobs; /* 2 */
title "Courses Offered in &&loc&i";
proc print data=certadv.schedule;
 where location="&&loc&i";
run;
%end;
%mend CourseLoc; /* 3 */

%Courseloc /* 4 */

Scenario 5 393

1 The %MACRO statement defines the macro CourseLoc. The macro itself executes a
PROC SQL query where a series of macro variables are created. The macro variables
store distinct values of the Location column from the Certadv.Schedule data set.

2 The %DO loop executes a PROC PRINT step for different Location values. The
PROC PRINT step filters the data based on the value of Location. It also adds a
TITLE statement where "Courses Offered in" is constant text while the value of the
location changes.

3 The %MEND statement ends the macro definition of CourseLoc.

4 The CourseLoc macro is called to execute the macro program.

Output 17.6 PROC PRINT Output of Work.Sch1 (Boston)

Output 17.7 PROC PRINT Output of Work.Sch1 (Dallas)

394 Chapter 17 • Programming Scenario Solutions

Output 17.8 PROC PRINT Output of Work.Sch1 (Seattle)

Test Your Code Solution
1. Correct Answer: Dallas

2. Correct Answer: 13

Scenario 6

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

%let job=Analyst; /* 1 */
data work.staff; /* 2 */
 keep employeeID jobtitle salary;
 set certadv.staff;
 where jobtitle contains "&job"; /* 3 */
 total+salary;
 count+1;
 call symputx('avg',put(total/count,dollar9.)); /* 4 */
run;
title "&job Staff"; /* 5 */
footnote "Average Salary: &avg"; /* 6 */
proc print data=work.staff;
 sum salary;
run;

1 The %LET statement creates the macro variable Job and assigns the value of
Analyst.

2 The DATA step creates a temporary SAS data set Work.Staff. Work.Staff that
contains only the variables that are defined in the KEEP statement and reads in
Certadv.Staff with only those variables.

3 The WHERE statement subsets the Work.Staff data set by the including those rows
where the value of JobTitle equals the value of the macro variable Job.

Scenario 6 395

4 The CALL SYMPUTX routine creates a new macro variable named Avg. The macro
variable’s value is the value of Total divided by the value of Count. It also formats
the value of Avg to DOLLAR9.

5 The TITLE statement references the Job macro variable where the value is included
in the title of the report.

6 The FOOTNOTE statement references the Avg macro variable where the value is
included in the footnote of the report.

Output 17.9 PROC PRINT of Work.Staff

Test Your Code Solution
1. Correct Answer: $47,469

2. Correct Answer: 7

Scenario 7

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

proc sql; /* 1 */
 create table work.bonus as /* 2 */
 select EmpId, Jobcode, Salary, /* 3 */
 Salary*.10 as Bonus /* 4 */
 from certadv.empdata /* 5 */
 order by JobCode, Salary; /* 6 */
quit;

1 The SQL procedure retrieves data from tables or views to generate a report.

396 Chapter 17 • Programming Scenario Solutions

2 The CREATE TABLE statement creates the temporary table Work.Bonus from the
query result of the current PROC SQL query.

3 The SELECT statement retrieves the EmpId, Jobcode, and Salary columns and
displays the column values in the query result.

4 The SELECT statement also creates a column alias by using the AS keyword
followed by the column name of Bonus. The value of Bonus is 10% multiplied by
the value of Salary.

5 The FROM clause specifies Certadv.Empdata as the source table to be queried.

6 The ORDER BY clause specifies to sort the rows by the values of the JobCode
variable first and then Salary.

Output 17.10 SQL Query Result (partial output)

Test Your Code Solution
1. Correct Answer: 1700

2. Correct Answer: 2100

Scenario 7 397

Scenario 8

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

proc sql number; /* 1 */
 select empdata.empID, /* 2 */
 empdata.LastName,
 empdata.Salary,
 newsals.NewSalary,
 (newsals.NewSalary-empdata.Salary) /* 3 */
 as Raise format=dollar10.2
 from certadv.empdata inner join /* 4 */
 certadv.newsals
 on empdata.EmpID= newsals.EmpID /* 5 */
 where calculated Raise>3000 /* 6 */
 order by EmpID; /* 7 */
quit;

1 The SQL procedure retrieves data from tables or views to generate a report. The
PROC SQL option NUMBER prints the row numbers in the query output.

2 The SELECT statement retrieves the columns EmpID, LastName, and Salary from
Certadv.Empdata and NewSalary from Certadv.Newsals and displays the column
values in the query result.

3 The SELECT statement also creates a column alias by using the AS keyword
followed by the column name of Raise. The value of Raise is the difference between
the column NewSalary from Certadv.Newsals and Salary from Certadv.Empdata.
The DOLLAR 10.2 format is applied to the new column, Raise.

4 The FROM clause uses an INNER JOIN keyword to join Certadv.Empdata and
Certadv.Newsals.

5 The ON clause specifies the column, EmpID, to be used when joining
Certadv.Empdata and Certadv.Newsals.

6 The calculated keyword tells PROC SQL that the value is calculated within the
query. The WHERE clause subsets the data to include only the observations where
the value of Raise is greater than 3000.

7 The ORDER BY clause sorts the rows by EmpID.

398 Chapter 17 • Programming Scenario Solutions

Output 17.11 PROC SQL Query Result

Test Your Code Solution
1. Correct Answer: Poole

2. Correct Answer: $7,588.61

Scenario 9

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

proc sql; /* 1 */
 select catx(" ",'Total Paid to All',JobTitle,'Staff'), /* 2 */
 sum(Salary) format=dollar14., /* 3 */
 count(*) as TotalCount format=comma16. /* 4 *
 from certadv.salesstaff /* 5 */
 group by JobTitle; /* 6 */
quit;

1 The SQL procedure retrieves data from tables or views to generate a report.

2 The SELECT statement uses the CATX function to return a character string that
combines 'Total Paid to All', the value of JobTitle, and 'Staff'. For
example, for rows where JobTitle is Sales Rep. I, the concatenated string is 'Total
Paid to All Sales Rep. I Staff'.

3 The SELECT statement uses the SUM function to calculate the total amount of
salaries paid to each unique value for JobTitle. The FORMAT statement formats the
value of the SUM function as DOLLAR14.

4 The SELECT statement uses the COUNT function to count the total number of sales
representatives in each unique value for JobTitle. The COUNT function counts the
number of rows and creates a column named TotalCount using the AS keyword.

5 The FROM clause specifies Certadv.Salesstaff as the source table to be queried.

Scenario 9 399

6 The GROUP BY clause groups rows that have the same values into summary rows.
The GROUP BY clause groups all unique values for JobTitle into one row. For
example, Sales Rep. I is one row, Sales Rep. II is another, and so on.

Output 17.12 PROC SQL Query Result

Test Your Code Solution
1. Correct Answer: 34

2. Correct Answer: $1,377,442

Scenario 10

Code Solution
Note: On the live exam, you will be evaluated both on the results of your code and the
code itself. Your code should be similar to the following example code, but does not
need to match exactly:

proc sql;
 create view work.phonelist as /* 1 */
 select Department format=$25., /* 2 */
 EmployeeName as Name format=$25.,
 PhoneNumber 'Home Phone' format=$16.
 from certadv.empadd as a /* 3 */
 inner join
 certadv.empph as p
 on a.EmployeeID = p.EmployeeID
 inner join
 certadv.emporg as o
 on o.EmployeeID = p.EmployeeID
 where PhoneType='Home'; /* 4 */
quit;

proc sql number; /* 5 */
title 'Sales Management Department Home Phone Numbers';
 select Name, PhoneNumber
 from work.phonelist /* 6 */
 where Department='Sales Management' /* 7 */
 order by Name; /* 8 */
quit;

400 Chapter 17 • Programming Scenario Solutions

1 The CREATE VIEW statement creates the view that contains information about the
employees’ names, departments, and phone numbers. The view Work.PhoneList
creates a virtual table from the accompanying SELECT statement. Although the
underlying tables, Certadv.Empadd, Certadv.Empph, and Certadv.Org, can change,
the instructions that comprise the view stay constant.

2 The SELECT statement selects three variables:

• Department with a format of $25.

• EmployeeName with a column alias of Name and a format of $25.

• PhoneNumber with a label of Home Phone and a format of $16.

3 The FROM clause specifies Certadv.Empadd as the first source table with as alias of
A. The INNER JOIN keyword is used to specify the type of join. Certadv.Empph is
specified as the secondary source table with an alias of P. The ON keyword specifies
the column on which the join occurs. The ON keyword specifies that from source
table A, the values of EmployeeID must match the values of EmployeeID from
source table P. Another INNER JOIN keyword is used to specify the type of join.
Certadv.Emporg is specified as the third source table with an alias of O. The ON
keyword specifies that from source table O, the value of EmployeeID must match the
values of EmployeeID from source table P.

4 The WHERE clause subsets the data to include only those observations where the
PhoneType is Home.

5 The SQL procedure retrieves data from tables or views to generate a report. The SQL
option NUMBER prints the row numbers in the query output. The SQL procedure
prints the title 'Sales Management Department Home Phone Numbers'. The SELECT
statement includes Name and PhoneNumber in the result.

6 The FROM clause specifies Work.PhoneList as the view to be queried.

7 The WHERE clause specifies to subset the data based on the condition that only
those in the Sales Management department are in the query result.

8 The ORDER BY clause orders the rows by EmployeeName.

Scenario 10 401

Output 17.13 PROC SQL Query Result

Test Your Code Solution
1. Correct Answer: 11

2. Correct Answer: Lu, Patrick

402 Chapter 17 • Programming Scenario Solutions

Recommended Reading

• The Little SAS Book: A Primer, Sixth Edition

• Practical and Efficient SAS Programming: The Insider's Guide

• PROC SQL: Beyond the Basics Using SAS, Third Edition

• SAS Certified Specialist Prep Guide: Base Programming Using SAS 9.4

• SAS Macro Programming Made Easy, Third Edition

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

403

http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

404 Recommended Reading

Index

Special Characters
; (semicolon) 234
? conditional operator 13, 15
% (percent sign)

macro programs and 234
specifying directives 320
tokens and 209

%a directive 320
%A directive 320
%b directive 320
%B directive 320
%CMPRES statement 263
%d directive 320
%DATATYP statement 263
%DO-%END statement 248, 252, 254
%EVAL function 204, 205
%GLOBAL statement 242
%H directive 320
%I directive 320
%IF-%THEN/%ELSE macro statement

247, 248
%INCLUDE statement 259
%INDEX function 201
%j directive 320
%LEFT statement 263
%LENGTH function 201
%LET statement

macro parameter support 237
user-defined macro variables and 188

%LOCAL statement 243, 244
%LOWCASE statement 263
%m directive 320
%M directive 320
%MACRO statement

macro parameter support 237, 238, 239
syntax 232

%MEND statement 232
%NRSTR function 209
%p directive 320
%PUT statement 191
%QLOWCASE statement 263
%S directive 320
%SCAN function 202
%STR function 208

%SUBSTR function 200
%SYMDEL statement 192, 193
%SYSEVALF function 206, 207
%SYSFUNC function 203, 204
%TRIM statement 263
%U directive 320
%UPCASE function 198, 199, 200
%w directive 320
%y directive 320
%Y directive 320
=* conditional operator

description 13
syntax 18

A
ADD method 304, 305
adding key and data values

ADD method 304, 305
aliases

column 8, 12, 71
table 72

ALL conditional operator 13, 137
ALL keyword

EXCEPT set operator and 106, 107
INTERSECT set operator and 110, 112
set operations and 102
UNION set operator and 115, 117

ANY conditional operator
comparison operator and 135
description 13

arguments, summary functions and 21,
23, 24

array processing
compilation phase 279
execution phase 279

ARRAY statement
syntax 274

arrays
assigning initial values 284
column lists 276
creating character columns 283
defining elements 275
DIM function 278

405

one-dimensional 273, 274, 275, 276,
277, 278, 279, 283, 284, 285, 286

processing 279
referencing one-dimensional array 277
rotating data 286
specifying elements 275
specifying lower and upper bounds 284
table lookup 290
temporary elements 285
two-dimensional 288, 290
unknown number of array elements 278

AS keyword, CREATE TABLE statement
(SQL) 49

autocall libraries
accessing macros 264
creating 262
default 263
defined 262

automatic macro variables
functionality 188
global symbol table and 240

AVG function 26

B
BETWEEN-AND conditional operator

description 13
syntax 14

BY variable
joining tables 84, 85, 86

C
CALCULATED keyword 12
CALL MISSING routine 306
CALL SYMPUTX routine

syntax 217
Cartesian product 66
character data types

column widths and 47
defined 46

character strings
%INDEX function 201
%LENGTH function 201
%SCAN function 202
%SUBSTR function 200
macro character functions 198

CHART procedure 193
CMPLIB= option

syntax 329
COALESCE function 86, 87
column alias

CALCULATED keyword and 12
defined 8
renaming columns with 71

column modifiers 48

column widths 47
columns

as multiple arguments for summary
functions 24

combining 101
counting nonmissing values 28
counting unique values 28
creating new 8
creating tables by defining 44, 45
eliminating duplicate 70
ordering by multiple 34
ordering by position 34
outside summary functions 24
overlaying 101
processing calculated 11
renaming with column aliases 71
rows numbers in output 38
selecting 6
summary functions and 23, 24
viewing all 7

comments in macro programs 246, 247
comparison operators

ALL conditional operator and 137
ANY conditional operator and 135
subqueries and 134

compiling macro programs 233
conditional operators 13
conditional processing

for macro programs 247, 248
constants 207
CONTAINS conditional operator

description 13
syntax 15

controlling output
OUTPUT method 305

conventional join 68
CORR keyword

EXCEPT set operator and 106, 107
INTERSECT operator and 111, 112
OUTER UNION set operator and 122
set operations and 102
UNION set operator and 116, 117

correlated subqueries
defined 132
EXISTS conditional operator 139
NOT EXISTS conditional operator 139
subsetting data 138

COUNT function 26
COUNT/COUNTC/COUNTW function

340, 341
counting words 341
syntax 340

CREATE TABLE statement, SQL
procedure 44, 45

AS keyword 49
creating empty tables 44, 45

406 Index

creating like other tables 48
creating tables from query results 49
defining column structures 45
displaying table structure 59
FORMAT= option 48
INFORMAT= option 48
LABEL= option 48
LIKE clause 48
specifying column modifiers 48
specifying column widths 47
specifying data types 46
specifying empty tables like other tables

48
syntax with LIKE clause 48
syntax with query clauses 49

CREATE VIEW statement, SQL
procedure

FROM clause 144
syntax 141
USING clause 145

D
data

grouping 20, 29
DATA step

CALL SYMPUTX routine and 217,
220

comparing joins and 84, 85, 86
IF-THEN/ELSE statement 247
match-merges 84, 85, 86
PUT function 204, 225
SYMPUT routine and 219
SYMPUTX routine and 217, 218

data types
character 46, 47
creating tables by defining columns 46
numeric 46, 47

data-driven macro calls 266
DOSUBL function 266

DATALINES statement 234
DATATYPE= option, PICTURE statement

(FORMAT) 319
debugging

FEEDBACK option, SQL procedure 7
macro programs 245, 246, 247, 251

DECLARE statement 301
DEFINEDATA method 301
DEFINEKEY method 301
defining a hash object

DEFINEDATA 301
DEFINEDONE 301
DEFINEKEY 301

DELETE statement, SQL procedure
updating views 146

deleting

views 148
delimiters

in macro programs 234
in macro variable names 193

DESCRIBE TABLE statement, SQL
procedure

displaying Dictionary table definitions
61

displaying table structure 59
syntax 59

DESCRIBE VIEW statement, SQL
procedure 143

Dictionary tables
functionality 60
querying 61

DIM function 278
syntax 278

directives, specifying pictures 319
DISTINCT keyword 9
DO statement

processing repetitive code 277
DOSUBL function 266
DROP VIEW statement, SQL procedure

148
duplicate columns, eliminating 70
duplicate rows

eliminating from output 9
processing unique vs. 101

E
empty tables 48
EXCEPT set operator

ALL keyword and 106, 107
CORR keyword and 106, 107
functionality 96, 103

EXISTS conditional operator
correlated queries and 139
description 13

external files
storing macro definitions in 259

F
FCMP procedure

CMPLIB= option 329
syntax 328

FedSQL procedure
LIBNAME statement 167
LIMIT clause 168
PUT function 169
syntax 166
system options 170

FEEDBACK option, SQL procedure 7
FIND method 302, 303
FIND/FINDC/FINDW function 342, 343

Index 407

finding the word number 343
syntax 342

finding key values
FIND method 302

FORMAT procedure
PICTURE statement 318, 319, 320,

322, 323, 324, 325
VALUE statement 317

FORMAT= option
CREATE TABLE statement (SQL) 48

formats
creating with PICTURE statement 320

FROM clause
CREATE VIEW statement (SQL) 144
INSERT statement (SQL) 57
SELECT statement (SQL) 9, 66

full outer join 78, 81
functions

%EVAL function 204, 205
%SYSEVALF function 206, 207
%SYSFUNC function 203, 204
macro variable support 203, 204, 205,

206, 207

G
GCHART procedure 193
global symbol table

%GLOBAL statement 242
macro variables and 240

GPLOT procedure 193
GROUP BY clause, SELECT statement

(SQL)
grouping 20
selecting groups 30
summarizing groups of data 19, 22
summary functions and 25

groups, selecting 30

H
hash iterator object 311, 312

DECLARE statement 312
DEFINEDATA method 312
DEFINEDONE method 312
DEFINEKEY method 312
FIRST method 312
LAST method 312
NEXT method 312
PREV method 312

hash object processing 306
ADD method 306
CALL missing routine 306
DECLARE statement 306
DEFINEDATA method 306
DEFINEDONE method 306

DEFINEKEY method 306
FIND method 306

hash objects
ADD method 304, 305
CALL MISSING routine 306
declaring 299
defining 300
FIND method 302
multiple data variables 301
OUTPUT method 305
retrieving matching data 303
structure 297, 298, 299

HAVING clause, SELECT statement
(SQL) 30

grouping 29

I
IF-THEN/ELSE statement

%IF-%THEN comparison 247
IN conditional operator

description 13
syntax 16

INFORMAT= option, CREATE TABLE
statement (SQL) 48

inner joins
defined 68

INOBS= option, SQL procedure 36
INPUT function 204
INPUTC function 204
INPUTN function 204
INSERT statement, SQL procedure

FROM clause 57
inserting rows from query results 57
inserting rows of data in tables 51, 52,

54, 55
SELECT clause 57
SET clause 52
syntax 52, 54, 55, 57
updating views 146
VALUES clause 54, 55

INTERSECT set operator
ALL keyword and 110, 112
CORR keyword and 111, 112
functionality 96, 109

INTO clause, SELECT statement (SQL)
214

IS MISSING conditional operator 13, 16
IS NULL conditional operator 13, 16

J
joining data sets

defined 66
joining tables

advantages 88

408 Index

COALESCE function 86, 87
comparing with DATA step match-

merges 84, 85, 86
defined 66
EXCEPT set operator 103
for rows with matching values 72
inner joins 68
INTERSECT set operator 109
outer joins 78
OUTER UNION set operator 120
processes defined 69
set operations 97
UNION set operator 114

K
keyword parameters 238, 239
keywords, modifying set operations 102

L
LABEL= option

CREATE TABLE statement (SQL) 48
LAG function 337, 338, 339

calculating a moving average 339
retrieving previous values 338
syntax 337, 338

LEFT function 213
left outer join 78, 79
LIBNAME statement 145

FedSQL procedure 167
librefs, views and 144
LIKE clause, CREATE TABLE statement

(SQL) 48
LIKE conditional operator

description 13
specifying patterns 17
syntax 17

LIMIT clause
FedSQL procedure 168

local symbol table 243
%LOCAL statement 244

M
macro character functions

%INDEX function 201
%LENGTH function 201
%SCAN function 202
%SUBSTR function 200
%UPCASE function 198, 199, 200
manipulating character strings 198

macro definitions 259
macro programs

%DO-%END statement 248
%GLOBAL statement 242

%IF-%THEN/%ELSE macro statement
247, 248

%LOCAL statement 243, 244
calling 234
comments in 246, 247
compiling 233
conditionally processing statements

247, 248
debugging 245, 246, 247, 251
defined 232
developing 245, 246, 247, 251
executing 235
iterative processing for 252, 254
log control 245, 246, 251
monitoring execution 245, 246, 247,

251
parameters and 237, 238, 239
storing in autocall libraries 262, 263,

264
storing macro in external files 259
storing session compiled macros 261
symbol tables 240, 242, 243, 244, 245,

246, 251
macro quoting functions

%NRSTR function 209
%STR function 208
masking special characters 207

macro variable in PROC SQL
displaying values in SAS log 157

macro variables
%PUT statement 191
automatic 188, 240
CALL SYMPUTX routine 217, 220
combining references with text 193
creating during PROC SQL execution

214
delimiters in names 193
displaying values in SAS log 190, 191
in symbol tables 240, 242, 243, 244,

245, 246, 251
macro parameters and 237, 238, 239
PUT function 204, 225
referencing 193
referencing macro variables indirectly

226
SAS function support 203, 204, 205,

206, 207
SAS statement support 192, 193
SYMBOLGEN system option 190
SYMPUT routine 219
SYMPUTX routine 217, 218
user-defined 188, 240

masking special characters
%NRSTR function 209
%STR function 208
macro function support 207

Index 409

MAUTOSOURCE system option 264
MCOMPILENOTE= system option 233
metadata 60
MLOGIC system option 251
MPRINT system option 245, 246

N
natural joins

syntax 77
NMISS function 27
NOEXEC option, SQL procedure 38
noncorrelated subqueries

defined 132
multiple-value 133
single-value 132
subsetting data 132

NONUMBER option, SQL procedure 38
NOPRINT option

SELECT statement (SQL) 214
NOT EXISTS conditional operator 139
NUMBER option, SQL procedure 38
numeric data types 46, 47

O
OPTIONS statement, SQL procedure

MAUTOSOURCE option 264
MCOMPILENOTE= option 233
MLOGIC option 251
MLOGIC system option 251
SASAUTOS= option 264, 265
SYMBOLGEN option 190

ORDER BY clause, SELECT statement
(SQL)

ordering by multiple columns 34
ordering by position 34
ordering rows 32, 33

outer joins
functionality 78
syntax 79

OUTER UNION set operator
CORR keyword and 122
functionality 96, 120, 121

OUTOBS= option, SQL procedure
restricting row processing 36
syntax 37

output
controlling 38, 305
eliminating duplicate rows from 9
including row numbers 38

OUTPUT method 305

P
parameters

in macro programs 237, 238, 239
keyword 238, 239
positional 237, 239

patterns 17
percent sign (%)

macro programs and 234
specifying directives 320
tokens and 209

performing pattern matching
metacharacters 345, 346

Perl regular expressions
metacharacters 345, 346
pattern matching 344, 345, 346
PRXCHANGE function 351, 353, 354
PRXMATCH function 347, 348
PRXPARSE function 349, 350

PICTURE statement
DATATYPE= option 319
digit selectors 318, 322, 323, 324, 325
directives 319
MULTIPLIER= option 322, 323
PREFIX= option 322, 324
ROUND option 322, 325
syntax 318

PICTURE statement, FORMAT procedure
DATATYPE= option 319
specifying directives 320

positional parameters 237, 239
procedures

FCMP 328, 329
FedSQL 165, 166, 167, 168, 169, 170
FORMAT 317, 318, 319, 322, 323,

324, 325
SQL 4, 166

process management
CALL SYMPUTX routine 217, 220
conditional processing for macro

programs 247, 248
controlling execution 36
controlling output 38
creating macro variables in PROC SQL

214
Dictionary tables 60
for macro programs 245, 246, 247, 251
iterative processing for macro programs

252, 254
PUT function 204, 225
referencing macro variables indirectly

226
specifying SQL options 35
SYMPUT routine 219
SYMPUTX routine 217, 218

PRXCHANGE function 351, 353, 354
capture buffers 354
changing order 353
standardize data 351

410 Index

syntax 351
PRXMATCH function 347, 348

referring to columns 348
syntax 347, 349, 350
validating data 347

PRXPARSE function 349, 350
PUT function 204, 225

FedSQL procedure 169
PUTC function 204
PUTN function 204

Q
queries

creating tables from 49
Dictionary tables and 61
displaying all columns 7
eliminating duplicate rows from output

9
grouping 20, 29
inserting rows from 57
limiting number of rows displayed 37
ordering rows 32, 33
selecting columns 6
specifying subsetting criteria 10
specifying tables 9
subqueries for subsetting data 131
subsetting data using correlated

subqueries 138
subsetting data using noncorrelated

subqueries 132
subsetting rows using calculated values

11
subsetting rows with conditional

operators 13
summarizing groups of data 19
validating syntax 38
viewing all columns 7
views in 141

quotation marks
macro quoting functions and 207

R
referencing macro variables indirectly

226
right outer join 78, 81
rows

counting all 27
counting number of 26
duplicate 9, 101
eliminating duplicates from output 9
inserting in tables 51, 52, 54, 55
joining tables with matching values 72
limiting number displayed 37
ordering 32, 33

ordering by multiple columns 34
ordering by position 34
processing unique vs. duplicate 101
restricting processing 36
row numbers in output 38

S
SAS log

%PUT statement 191
displaying macro variable values 190,

191
MCOMPILENOTE= option 233
SYMBOLGEN system option 190

SASAUTOS= system option 264
security, table views 146
SELECT clause

INSERT statement (SQL) 57
SELECT statement (SQL) 6, 7, 9, 23

SELECT statement, SQL procedure
creating new columns 8
DISTINCT keyword 9
FEEDBACK option 7
FROM clause 9, 66
functionality 5
GROUP BY clause 19, 20, 22, 25, 30
grouping data 20, 29
HAVING clause 29, 30
INTO clause 214
NOPRINT option 214
ORDER BY clause 32, 33, 34
ordering by multiple columns 34
ordering by position 34
ordering rows 32, 33
SELECT clause 6, 7, 9, 23
selecting columns 6
specifying subset criteria 10
specifying tables 9
summarizing groups of data 23
syntax for inner join 68
syntax for natural join 77
syntax for outer join 79
syntax for set operations 97
VALIDATE keyword 39
viewing all columns 7
WHERE clause 10, 11, 12, 13

semicolon (;) in macro programs 234
session compiled macros 261
SET clause

INSERT statement (SQL) 52, 53
set operations

combining and overlaying columns 101
defined 97
EXCEPT set operator 96, 103, 106, 107
INTERSECT set operator 96, 109, 110,

111, 112

Index 411

modifying results via keywords 102
OUTER UNION set operator 96, 120
processing multiple operations 98, 100
processing single operations 98
processing unique vs. duplicate rows

101
UNION set operator 96, 114, 115, 116,

117
sorting

ordering by multiple columns 34
ordering by position 34
ordering rows 32, 33

sounds-like conditional operator
description 13
syntax 18

special characters, masking
%NRSTR function 209
%STR function 208
macro function support 207

spelling variations 18
SQL procedure

accessing metadata 60
creating macro variables 214
FEEDBACK option 7
functionality 4
INOBS= option 36
NOEXEC option 38
NONUMBER option 38
NUMBER option 38
OUTOBS= option 36, 37
selecting patterns 17
specifying options 35
syntax 86

statements
%GLOBAL 242
%IF-%THEN 247
%LOCAL 243
%MACRO 232
%MEND 232
%SYMDEL 192, 193
ARRAY 274
DO 277
macro variable support 192, 193

storage
in autocall libraries 262, 263, 264
macro definitions in external files 259
session compiled macros 261

subqueries
comparison operator in 134
correlated 132
noncorrelated 132
subsetting data 131

subsetting data
correlated subqueries and 138
noncorrelated subqueries and 132
subqueries and 131

subsetting rows
specifying criteria 10
using calculated values 11
using conditional operators 13

summarizing data
GROUP BY clause, SELECT statement

(SQL) 19, 22
SELECT clause and 23

summary functions
functionality 19
GROUP BY clause and 25
number of arguments 21
on groups of data 22
SELECT clause and 23
with columns outside function 24
with multiple arguments 24
with single arguments 23

symbol tables
%GLOBAL statement 242
%LOCAL statement 243, 244
global 240
local 243

SYMBOLGEN system option 190
SYMPUTX routine

DATA step variables and 219
syntax 217

SYSDATE automatic macro variable 188
SYSDATE9 automatic macro variable

188, 200, 203, 204
SYSDAY automatic macro variable 188
SYSENV automatic macro variable 188
SYSERR automatic macro variable 189
SYSJOBID automatic macro variable 188
SYSLAST automatic macro variable 189
SYSPARM automatic macro variable 189
SYSSCP automatic macro variable 188
SYSTIME automatic macro variable 188,

203, 204
SYSVER automatic macro variable 188

T
table aliases, specifying 72
tables

creating from query results 49
creating like others 48
displaying structure 59
empty 48
generating Cartesian products 66
methods of creating 43
specifying 9
specifying data types 46
views and 141, 146
virtual 141

text, macro variable references and 193
tokens

412 Index

percent sign and 209

U
UNION set operator

ALL keyword and 115, 117
CORR keyword and 116, 117
functionality 96, 114

update process
for views 146

UPDATE statement, SQL procedure
updating views 146
WHERE clause 146

user-defined macro variables
%LET statement and 188
global symbol table and 240

USING clause, CREATE VIEW statement
(SQL) 145

V
VALIDATE keyword 39
VALUES clause, INSERT statement

(SQL)

functionality 54, 55
variables

hash objects and 301
views

benefits 141
creating 141
deleting 148
displaying definitions 143
dropping 148
enhancing table security 146
functionality 143
in queries 141
librefs and 144
managing 144
tables and 141, 146
updating 146

virtual tables 141

W
WHERE clause

SELECT statement (SQL) 10, 12, 13
UPDATE statement (SQL) 146

Index 413

414 Index

	Contents
	How to Prepare for the Exam
	Requirements and Details
	Requirements
	Exam Objectives and Updates to This Book
	Take a Practice Exam
	Registering for the Exam
	Additional Resources for Learning SAS Programming

	Syntax Conventions

	Using Sample Data
	Setting
Up Practice Data for SAS OnDemand for Academics
	Setting Up Practice Data in Other SAS Environments

	Accessibility Features of the Prep Guide
	Overview
	Accessibility Documentation Help
	Documentation Format

	SQL Processing with SAS
	PROC SQL Fundamentals
	PROC SQL Basics
	What Is PROC SQL?
	PROC SQL Syntax

	The PROC SQL SELECT Statement
	A Brief Overview
	SELECT Statement Syntax
	Example: Selecting Columns
	Example: Displaying All Columns Using SELECT *
	Example: Using the FEEDBACK Option
	Example: Creating a New Column
	Example: Eliminating Duplicate Rows from Output

	The FROM Clause
	FROM Clause Syntax
	Example: Querying a Single Table Using the FROM Clause

	The WHERE Clause
	A Brief Overview
	WHERE Clause Syntax
	Example: Using the WHERE Clause
	Subsetting Rows by Using Calculated Values
	Example: Using Calculated Values in a SELECT Clause
	Subsetting Rows Using Conditional Operators

	The GROUP BY Clause
	A Brief Overview
	GROUP BY Clause Syntax
	Example: Determine Total Number of Miles Using the SUM Function
	Number of Argument and Summary Function Processing
	Groups and Summary Function Processing
	SELECT Clause Columns and Summary Function Processing
	Example: Using a Summary Function with a Single Argument (Column)
	Example: Using a Summary Function with Multiple Arguments (Columns)
	Example: Using a Summary Function with Columns outside the
Function
	Example: Using a Summary Function with a GROUP BY Clause
	Counting Values by Using the COUNT Summary Function
	Example: Counting All Rows in a Table
	Example: Counting Rows within Groups of Data
	Counting All Nonmissing Values in a Column
	Example: Counting All Unique Values in a Column
	Example: Listing All Unique Values in a Column

	The HAVING Clause
	A Brief Overview
	HAVING Clause Syntax
	Subsetting Grouped Data
	Example: Selecting Groups by Using the HAVING Clause
	Understanding Data Remerging

	The ORDER BY Clause
	A Brief Overview
	ORDER BY Clause Syntax
	Example: Ordering Rows by the Values of a Single Column
	Example: Ordering by Multiple Columns
	Example: Ordering Columns by Position

	PROC SQL Options
	A Brief Overview
	PROC SQL Statement Syntax
	Using Invocation Options

	Validating Query Syntax
	A Brief Overview
	Example: Using the NOEXEC Option
	Example: Using the VALIDATE Keyword

	Quiz

	Creating and Managing Tables
	The CREATE TABLE Statement
	A Brief Overview
	CREATE TABLE Statement Syntax
	Example: Creating an Empty Table by Defining Column Structure
	Specifying Data Types for Columns
	Specifying Column Widths
	Specifying Column Modifiers
	Example: Using Column Modifiers

	Using the LIKE Clause
	LIKE Clause Syntax
	Example: Creating an Empty Table That Is like Another

	Using the AS Keyword
	AS Keyword Syntax
	Example: Creating a Table from a Query Result

	The INSERT Statement
	A Brief Overview
	The SET Clause
	The VALUES Clause
	The INSERT Statement with SELECT and FROM Clauses

	The DESCRIBE TABLE Statement
	A Brief Overview
	DESCRIBE TABLE Statement
Syntax
	Example: Displaying the Structure of a Table

	Using Dictionary Tables
	A Brief Overview
	Example: Exploring and Using Dictionary Tables

	Chapter Quiz

	Joining Tables Using PROC SQL
	Understanding Joins
	Generating a Cartesian Product
	Using Inner Joins
	A Brief Overview
	Inner Join Syntax
	Understanding How Joins Are Processed
	Example: Using a FROM Clause with the INNER JOIN Keyword
	Example: Eliminating Duplicate Columns
	Example: Renaming a Column by Using a Column Alias
	Example: Joining Tables That Have Rows with Matching Values
	Specifying a Table Alias
	Example: Complex PROC SQL Inner Join
	Example: PROC SQL Inner Join with Summary Functions

	Using Natural Joins
	A Brief Overview
	Natural Join Syntax
	Example: Using a Natural Join

	Using Outer Joins
	A Brief Overview
	Outer Join Syntax
	Example: Using a Left Outer Join
	Example: Eliminating Duplicate Columns in a Left Outer Join
	Example: Using a Right Outer Join
	Example: Using a Full Outer Join
	Example: Complex Outer Join

	Comparing SQL Joins and DATA Step Match-Merges
	A Brief Overview
	When All of the Values Match
	When Only Some of the Values Match
	COALESCE Function Syntax
	Example: Using the COALESCE Function
	Understanding the Advantages of PROC SQL Joins

	Quiz

	Joining Tables Using Set Operators
	Understanding Set Operators
	Introducing Set Operators
	Set Operator Syntax
	Example: The Basics of Using a Set Operator
	Using Multiple Set Operators
	Processing Unique versus Duplicate Rows
	Combining and Overlaying Columns
	Modifying Results Using Keywords

	Using the EXCEPT Set Operator
	A Brief Overview
	Example: Using the EXCEPT Operator Alone
	Example: Using the Keyword ALL with the EXCEPT Operator
	Example: Using the Keyword CORR with the EXCEPT Operator
	Example: Using the Keywords ALL and CORR with the EXCEPT Operator
	Example: EXCEPT Operator

	Using the INTERSECT Set Operator
	A Brief Overview
	Example: Using the INTERSECT Operator Alone
	Example: Using the Keyword ALL with the INTERSECT Set Operator
	Example: Using the Keyword CORR with the INTERSECT Set Operator
	Example: Using the Keywords ALL and CORR with the INTERSECT
Set Operator
	Complex Example Using the INTERSECT Operator

	Using the UNION Set Operator
	A Brief Overview
	Example: Using the UNION Operator Alone
	Example: Using the Keyword ALL with the UNION Operator
	Example: Using the Keyword CORR with the UNION Operator
	Example: Using the Keywords ALL and CORR with the UNION Operator
	Example: Using the UNION Set Operator
	Example: Using a UNION Operator and Summary Functions

	Using the OUTER UNION Set Operator
	A Brief Overview
	Example: Using the OUTER UNION Operator Alone
	Example: Using the Keyword CORR with One OUTER UNION Operator
	Example: Using Two OUTER UNION Operators with the Keyword CORR

	Quiz

	Using Subqueries
	Subsetting Data Using Subqueries
	Introducing Subqueries
	Subsetting Data by Using Noncorrelated Subqueries
	Subsetting Data by Using Correlated Subqueries

	Creating and Managing Views Using PROC SQL
	A Brief Overview
	The CREATE VIEW Statement
	The DESCRIBE VIEW Statement
	Managing PROC SQL Views
	Updating PROC SQL Views
	The DROP VIEW Statement

	Quiz

	Advanced SQL Techniques
	Creating
Data-Driven Macro Variables with PROC SQL
	Creating Data-Driven Macro Variables with the INTO Clause
	Displaying Macro Variable Values
	Removing Leading and Trailing Blanks
	Concatenating Values in Macro Variables
	Applying a Format to Character and Numeric Variables

	Accessing DBMS Data with SAS/ACCESS
	A Brief Overview
	SQL Pass-Through Facility
	SAS/ACCESS LIBNAME Engine

	The FedSQL Procedure
	A Brief Overview
	Comparing PROC FedSQL and PROC SQL
	PROC FEDSQL Syntax
	The LIBNAME Statement
	The LIMIT Clause
	The PUT Function
	System Options in FedSQL

	Quiz

	SAS Macro Language Processing
	Creating and Using Macro Variables
	Introducing Macro Variables
	A Brief Overview
	Example: Using Macro Variables

	The SAS Macro Facility
	SAS Processing of Macros
	Tokenization
	Macro Triggers

	Using Macro Variables
	Using User-Defined Macro Variables
	Using Automatic Macro Variables

	Troubleshooting Macro Variable References
	SYMBOLGEN Option Syntax
	Example: Using the SYMBOLGEN Option
	%PUT Statement Syntax
	Example: Using the %PUT Statement
	The %SYMDEL Statement

	Delimiting Macro Variable References
	A Brief Overview
	Example: Using a Delimiter to Reference Macro Variables

	Quiz

	Storing and Processing Text
	Processing Text with Macro Functions
	Using SAS Macro Functions to Manipulate Character Strings
	Macro Character Functions
	The %UPCASE Function
	The %SUBSTR Function
	The %INDEX Function
	The %SCAN Function

	Using SAS Functions with Macro Variables
	The %SYSFUNC Function
	The %EVAL Function
	The %SYSEVALF Function

	Using SAS Macro Functions to Mask Special Characters
	Macro Quoting Functions
	The %STR Function
	The %NRSTR Function
	The %SUPERQ Function
	The %BQUOTE Function
	Macro Q Functions

	Creating Macro Variables during PROC SQL Step Execution
	INTO Clause and the NOPRINT Option Syntax
	Example: Using the INTO Clause and the NOPRINT Option
	Example: Creating Variables with the INTO Clause
	Example: Creating a Delimited List of Values

	Creating Macro Variables during DATA Step Execution
	The CALL SYMPUTX Routine
	The PUT Function

	Referencing Macro Variables Indirectly
	Indirect References
	Example: Referencing Macro Variables Indirectly
	Example: Creating a Series of Macro Variables

	Quiz

	Working with Macro Programs
	Defining and Calling a Macro
	Defining a Macro
	Compiling a Macro
	Calling a Macro
	Macro Execution

	Passing Information into a Macro Using Parameters
	Macros That Include Positional Parameters
	Example: Using Positional Parameters to Create Macro Variables
	Macros That Include Keyword Parameters
	Example: Using Keyword Parameters to Create Macro Variables
	Macros That Include Mixed Parameter Lists
	Example: Using Mixed Parameters to Create Macro Variables

	Controlling Variable Scope
	Scope of Macro Variables
	The %GLOBAL Statement
	The %LOCAL Statement
	Nested Scope

	Debugging Macros
	The MPRINT System Option
	Comments in Macro Programs

	Conditional Processing
	The %IF-%THEN Statement and %ELSE Statement
	The %DO-%END Statement with the %IF-%THEN Statement
	Example: Using %IF-%THEN, %DO-%END with IF-THEN Statements
	Example: Controlling Text Copied to the Input Stack
	The MLOGIC System Option

	Iterative Processing
	The %DO Statement
	Example: Using the %DO Statement
	Example: Generating Complete Steps

	Quiz

	Advanced Macro Techniques
	Storing Macro Definitions in External Files
	The %INCLUDE Statement
	Example: Using the %INCLUDE Statement

	Understanding Session Compiled Macros
	Using the Autocall Facility
	A Brief Overview
	Creating an Autocall Library
	Example: Saving a Macro
	Default Autocall Library
	Example: Using the LOWCASE Macro
	Accessing Autocall Macros

	Data-Driven Macro Calls
	A Brief Overview
	The DOSUBL Function
	Example: Using the DOSUBL Function

	Quiz

	Advanced SAS Programming Techniques
	Defining and Processing Arrays
	Defining and Referencing One-Dimensional Arrays
	A Brief Overview
	ARRAY Statement Syntax
	Defining the Number of Elements
	Specifying the Array Elements
	Using Column Lists as Array Elements
	Referencing a One-Dimensional Array
	DO Statement Syntax
	Example: Processing Repetitive Code
	Handling an Unknown Number of Array Elements
	Using the DIM Function
	Compilation and Execution Phases for Array Processing

	Expanding Your Use of One-Dimensional Arrays
	Creating Character Columns with an Array
	Specifying Lower and Upper Bounds
	Assigning Initial Values to Arrays
	Example: Assigning Initial Values to Arrays
	Specifying Temporary Array Elements
	Example: Rotating Data

	Defining and Referencing Two-Dimensional Arrays
	A Brief Overview
	Example: Creating a Two-Dimensional Array with Initial Values
	Example: Creating a Two-Dimensional Array to Perform Table
Lookup

	Quiz

	Processing Data Using Hash Objects
	Declaring Hash Objects
	A Brief Overview
	Key Components
	Data Components
	Declaring a Hash Object
	Hash Object Process

	Defining Hash Objects
	Hash Object Methods
	Defining a Hash Object
	Example: Defining a Hash Object

	Finding Key Values in a Hash Object
	The FIND Method
	Retrieving Matching Data

	Writing a Hash Object to a Table
	The ADD Method
	Example: Adding Key and Data Values
	The OUTPUT Method
	Controlling Output with the OUTPUT Method
	Avoiding Messages in the SAS Log

	Hash Object Processing
	Using Hash Iterator Objects
	What Is a Hash Iterator Object?
	Declaring and Defining a Hash Object and a Hash Iterator Object
	Retrieving Hash Object Data with the Hash Iterator Object
	Example: Using the Hash Iterator Object

	Quiz

	Using SAS Utility Procedures
	Creating Picture Formats with the FORMAT Procedure
	A Brief Overview
	PICTURE Statement Syntax
	Example: Using the PICTURE Statement
	Creating Custom Date, Time, and Datetime Formats Using Directives
	Specifying Date and Time Directives
	Example: Using Directives
	Creating Custom Numeric Formats

	Creating Functions with PROC FCMP
	A Brief Overview
	PROC FCMP Syntax
	CMPLIB= Option Syntax
	Example: Creating a Custom Character Function with One Argument
	Example: Creating a Custom Numeric Function with One Argument
	Example: Creating a Custom Character Function with Multiple
Arguments

	Quiz

	Using Advanced Functions
	Using a Variety of Advanced Functions
	The LAG Function
	The COUNT/COUNTC/COUNTW Function
	The FIND/FINDC/FINDW Function

	Performing Pattern Matching with Perl Regular Expressions
	A Brief Overview
	Using Metacharacters
	Example: Using Metacharacters
	The PRXMATCH Function
	The PRXPARSE Function
	The PRXCHANGE Function

	Quiz

	Workbook
	Practice Programming Scenarios
	Differences
between the Workbook and Certification Exam
	Scenario 1
	Directions
	Test Your Code
	Exam Objective

	Scenario 2
	Directions
	Test Your Code
	Exam Objective

	Scenario 3
	Directions
	Test Your Code
	Exam Objective

	Scenario 4
	Directions
	Test Your Code
	Exam Objective

	Scenario 5
	Directions
	Test Your Code
	Exam Objective

	Scenario 6
	Directions
	Test Your Code
	Exam Objective

	Scenario 7
	Directions
	Test Your Code
	Exam Objective

	Scenario 8
	Directions
	Test Your Code
	Exam Objective

	Scenario 9
	Directions
	Test Your Code
	Exam Objective

	Scenario 10
	Directions
	Test Your Code
	Exam Objective

	Solutions
	Chapter Quiz Answer Keys
	Chapter 1: PROC SQL Fundamentals
	Chapter 2: Creating and Managing Tables
	Chapter 3: Joining Tables Using PROC SQL
	Chapter 4: Joining Tables Using Set Operators
	Chapter 5: Using Subqueries
	Chapter 6: Advanced SQL Techniques
	Chapter 7: Creating and Using Macro Variables
	Chapter 8: Storing and Processing Text
	Chapter 9: Working with Macro Programs
	Chapter 10: Advanced Macro Techniques
	Chapter 11: Defining and Processing Arrays
	Chapter 12: Processing Data Using Hash Objects
	Chapter 13: Using SAS Utility Procedures
	Chapter 14: Using Advanced Functions

	Programming Scenario Solutions
	Scenario 1
	Code Solution
	Test Your Code Solution

	Scenario 2
	Code Solution
	Test Your Code Solution

	Scenario 3
	Code Solution
	Test Your Code Solution

	Scenario 4
	Code Solution
	Test Your Code Solution

	Scenario 5
	Code Solution
	Test Your Code Solution

	Scenario 6
	Code Solution
	Test Your Code Solution

	Scenario 7
	Code Solution
	Test Your Code Solution

	Scenario 8
	Code Solution
	Test Your Code Solution

	Scenario 9
	Code Solution
	Test Your Code Solution

	Scenario 10
	Code Solution
	Test Your Code Solution

	Recommended Reading
	Index

