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About This Book

What Does This Book Cover?

SAS and R are both important tools for data analysis. SAS is a programming language as well as a suite of
software solutions that can be used for data access, data management, data analytics, statistical analysis, and
data presentation. SAS can handle large amounts of data and perform almost any data analysis task that is
required by researchers and companies of any size. On the other hand, R is a free, open-source tool that is
mostly used by the research community for statistical analysis, graphing, and reporting.

By some accounts, R is a more difficult programming language to learn than SAS. If you have learned how to
perform analytical tasks in R and want to know how to perform the same tasks in SAS, then this is the book for
you. This book covers a wide range of topics including the basics of the SAS programming language, how to
import data, how to create new variables, random number generation, linear modeling, Interactive Matrix
Language (IML), and many other SAS procedures. This book also covers how to write R code directly in the SAS
code editor for seamless integration between the two tools.

This book is based on the free video course “SAS® Programming for R Users” offered by SAS Education and
also available on Lynda.com. You may prefer to follow along with the videos, which offer more practice
exercises and example scenarios than are contained in this book. At the end of each chapter, you will find
guestions and exercises to test your knowledge.

Is This Book for You?

This book is designed for experienced R users who want to transfer their programming skills to SAS. Emphasis
is on programming and not statistical theory or interpretation. You will learn how to write programs in SAS
that replicate familiar functions and capabilities in R. You will also learn how to call R from SAS using IML.

What Are the Prerequisites for This Book?

Readers should have knowledge of plotting, manipulating data, iterative processing, creating functions,
applying functions, linear models, generalized linear models, mixed models, stepwise model selection, matrix
algebra, and statistical simulations.

What Should You Know about the Examples?

This book includes tutorials for you to follow to gain hands-on experience with SAS.

Software Used to Develop the Book's Content
The software used to develop this book’s content includes SAS 9.4 and SAS® Enterprise Miner™.

Example Code and Data

You can access the example code and data for this book by linking to its author page at
support.sas.com/bakerman.




Vi

SAS University Edition

Many of the advanced techniques for working with R in this book are not compatible with SAS University
Edition. If you are using SAS University Edition to access data and run your programs, then please check the
SAS University Edition page to ensure that the software contains the product or products that you need to run
the code: www.sas.com/universityedition.

Where Are the Exercise Solutions?

The exercise solutions can be found immediately following the exercises in the same chapter.

We Want to Hear from You

SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their development
and your feedback on SAS Press books that you are using. Please visit sas.com/books to do the following:

®  Sign up to review a book
® Recommend a topic
® Request information on how to become a SAS Press author

® Provide feedback on a book

Do you have questions about a SAS Press book that you are reading? Contact the author through
saspress@sas.com or https://support.sas.com/author feedback.

SAS has many resources to help you find answers and expand your knowledge. If you need additional help,
see our list of resources: sas.com/books.

Learn more about this author by visiting his author page at support.sas.com/bakerman. There you can
download free book excerpts, access example code and data, read the latest reviews, get updates, and more.
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Introduction

If you are reading this book, you most likely have never used SAS or have limited experience with SAS. So,
what is SAS? SAS is a suite of business solutions and technologies to help organizations solve business
problems. That is the official slogan, but it's much broader than that. SAS is for anyone who needs to manage
data or create advanced analytics models. SAS is powered by high-performance analytics, which are
thoroughly tested before coming to market. SAS enables you to access and manage data across multiple
sources as well as perform analyses and deliver information across your organization.

The functionality of SAS is built around four data-driven tasks that are common to virtually any application:

® data access
® data management
® data analysis, including creating inferential models

® data presentation

In SAS, all of our data sets are going to be on disk, which means they are on the hard drive. This is a little bit
different coming from R. Data sets in SAS will need to be read into memory as needed, which will be seamless
behind-the-scenes.

SAS Versus R

R is an object-oriented programming language. Results of a function are stored in an object and desired
results are pulled from the object as needed. SAS revolves around the data table and uses procedures to
create and print output. Results can be saved to a new data table.
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In this section, we will briefly compare SAS and R in a general way to help you learn additional SAS
programming skills independently. Look at Table 1.1, which outlines some of the major differences between
SAS and R.

Table 1.1: SAS Versus R

Script compiler Command line interpreter

Primarily driven by the data table Object-oriented
and procedures

Not case-sensitive Case-sensitive

Here are a few other things about SAS to note:

® SAS has the flexibility to interact with objects. However, this book focuses on procedural methods.

® SAS does not have a command line. Code must be run in order to return results.

SAS Programs

A SAS program is a sequence of one or more steps. A step is a sequence of SAS statements. There are only two
types of steps in SAS: DATA and PROC steps.

® DATA steps read from an input source and create a SAS data set.

® PROC steps read and process a SAS data set, often generating an output report. Procedures can be
called an umbrella term. They are what carry out the global analysis. Think of a PROC step as a
function in R.

Every step has a beginning and ending boundary. SAS steps begin with either of the following statements:

® 3 DATA statement
® 3 PROC statement

After a DATA or PROC statement, there can be additional SAS statements that contain keywords that requests
SAS to perform an operation or give information to the system. Think of them as additional arguments to a
procedure. Statements always end with a semicolon!

SAS options are additional arguments and they are specific to SAS statements. Unfortunately, there is no rule
to say what is a statement versus what is an option. Understanding the difference comes with a little bit of
experience. Options can be used to do the following:

® generate additional output like results and plots
® save output to a SAS data table

® alter the analytical method

SAS detects the end of a step when it encounters one of the following statements:
® 3 RUN statement (for most steps)
® 3 QUIT statement (for some procedures)

Most SAS steps end with a RUN statement. Think of the RUN statement as the right parentheses of an R
function. Table 1.2 shows an example of a SAS program that has a DATA step and a PROC step. You can see
that both SAS statements end with RUN statements, while the R functions begin and end with parentheses.
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Table 1.2: SAS Program Versus R Program

SAS Program R Program

data work.newemps; work.newemps = read.csv
infile "&path\newemps.csv" dlm=',"'; (“C:/Users/username/
input First $ Last $ Title $ Salary; Desktop/work.newemps.csv”)
run; print (work.newemps)

proc print data=work.newemps;
run;

SAS Syntax Rules

SAS statements usually begin with a keyword, and always end with a semicolon. Keywords identify the type of
statement, and semicolons end the statement.

A syntax error is an error in the spelling or grammar of a SAS statement. SAS finds syntax errors as it compiles
each SAS statement, before execution begins. Common examples of syntax errors include:

® misspelled keywords
® unmatched quotation marks
® invalid options

®  missing semicolons

The Enhanced Editor in some SAS interfaces uses the color red to indicate a potential error in your SAS code.
Notice in Figure 1.1 that the misspelled word D-A-A-T is displayed in red. This misspelling affects other
statements following it because those statements are only permitted in a DATA step, and this is not
recognized as such.

Figure 1.1: SAS Code with Errors
caat work.newsalasemps;
lzngth First_MName 512
Last_Mame $ 18 Job_Title § 25;
infile "&pathinewemps csv” dim="";
input First_Mame % Last_Mame §
Job_Tite § Salary;
run;

Jprac print data=work.newsalesemps
Fun;

‘proc means data=work newsalesemps average min;
var Salary;
run;

The RUN statement in the PROC PRINT step is not the correct font or color in Figure 1.1. Code can contain
incorrect keywords for options. The word “average” in the PROC MEANS statement is also the wrong font and
color, because “average” is not recognized by the PROC MEANS statement. (MEAN is the correct word.) Error
messages are written to the SAS log to describe syntax errors.

Tip: Bookmark the SAS Documentation page at support.sas.com/documentation. You can look up
procedures, statements, options, analytical methods, and any type of SAS syntax.
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Comments

R comments do not have an end and simply comment out everything to the right of the # symbol. SAS
comments are more functional. Program 1.1 contains four comments.

Program 1.1: Comment Types

| This program creates and uses the | 0
| data set called work.newsalesemps. |

data work.newsalesemps;
length First Name $ 12 Last Name $ 18Job Title $ 25;
infile "gpath\newemps.csv" dlm=',"';
input First Name $ Last Name $ Job Title $ Salary /*numeric*/; @
run;
/*
proc print data=work.newsalesemps; ©
run;
*/
proc means data=work.newsalesemps;
*var Salary; O
run;

O The first comment describes the program.

® The second comment is within a statement.

© The third comment is commenting out a step.

O The fourth comment is commenting out a statement.

To comment multiple lines simultaneously in SAS, highlight the lines. Hold down the Ctrl key and press /. To
uncomment, highlight the lines. Hold down the Ctrl and Shift keys and press /.

SAS Interfaces

Since its inception over 40 years ago, SAS software has evolved significantly with changes in computer
technology. This evolution resulted in three unique SAS interfaces:

1. SAS windowing environment
2. SAS Enterprise Guide
3. SAS Studio

The SAS windowing environment is the original interface that is used to access, manage, analyze, and report
data. For experienced programmers, the windowing environment might feel the most natural because it is the
most basic interface of SAS. It provides an Editor window in which you can write and submit code without the
use of any point-and-click features.

SAS Enterprise Guide is configured to access SAS on a local or remote server. SAS Enterprise Guide has point-
and-click wizards and tasks for SAS procedures and a robust programming interface.

SAS Studio is the newest interface. It is a web-based interface to SAS that you can use on any computer. It
combines functionality from both the windowing environment and Enterprise Guide. SAS Studio is consistent,
available, and assistive. You learn one interface that you can use throughout your career, as a student, an
individual SAS user or consultant, a departmental user, and an enterprise user. You can use the same interface
wherever you need it (a Mac in a dorm, a Windows desktop at work, a laptop at home, and an iPad on the
road). For programmers, the code is front and center, but you can use point-and-click functions such as code-
generating tasks or process flows to help, if you need them.
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No matter which SAS interface you use, the SAS programming is the same. In addition, they all offer these
same basic programming tools:

® an Editor window where you write and submit SAS code

® alog where you view messages from SAS

® 3 page to view your results
However, in this book, we will focus on using SAS Studio because of its accessibility and features. SAS Studio
can be accessed from any browser. After you access the interface from the browser, you can run a program

and SAS Studio automatically connects to SAS on your machine. The analysis is run on the machine, and then
the results are brought back to the browsers for you to see.

SAS University Edition is free SAS software that can be used for teaching and learning statistics and
quantitative methods. It is designed for those who want easy access to statistical software. SAS University
Edition uses the SAS Studio interface and gives you access to the following products:

® Base SAS: The foundation for all SAS software. It provides a highly flexible, highly extensible, fourth-
generation programming language and a rich library of programming procedures.

® SAS/ACCESS: Seamlessly connect with your data no matter where it resides or how it is saved.
SAS/ACCESS provides tools to easily access external data.

® SAS/STAT: Provides a wide variety of statistical methods and techniques.
®  SAS/IML: A matrix programming language for more specialized analyses.

® SAS/ETS: A suite of time series forecasting procedures. SAS University Edition offers only the
TIMEDATA, TIMESERIES, ARIMA, ESM, UCM, and TIMEID procedures.

Note: To run R with SAS, R must be installed on the same machine as SAS. Because SAS University Edition
installs on a virtual machine where R cannot be installed, R cannot be used with SAS University Edition.
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SAS Studio Interface

Let’s look at the SAS Studio interface. Open your SAS Studio session. It should look similar to Figure 1.2.

Figure 1.2: SAS Studio Interface

SAS® Studio : ) | 4 sAS Programmer

4 Files and Folders [£4 Program 1 x

- o CODE 06 RESULTS

B Folder Sharteuts HE& B2 [ 3 [CE
I Woom E M

-0 liEnter y

>

-

Navigation Pane

‘Work Area

p Tasks
» Snippets

p Libraries

p File Shortcuts

The SAS Studio interface is separated into the Navigation pane on the left and the Work area on the right, also
called the Code Editor. The Work area displays your programs with tabs for Code, Log, and Results. The
Navigation pane provides easy access to your folders and libraries that contain your permanent and
temporary data sets. The Files and Folders tab is displayed by default. It automatically maps to the drives on
your computer to give you quick access to load data sets and SAS programs.

Click the Libraries tab in the Navigation pane and select My Libraries, as shown in Figure 1.3.

Figure 1.3: My Libraries

4 Libraries

& )

4 &0 My Libraries
b &R MAPS
&R MAPSGFK
bR MAPS5AS
b & SASHELP
P &R SASUSER
b & WEBWORK
& WORH

The Libraries are where you will store all of your data. Notice that they are separated by category. The
libraries MAPS through WEBWORK are permanent libraries. The data displayed in each library is a permanent
data set, which users can use at their convenience. Whatever data you save in these libraries will be saved
after you close your SAS session. The Work library is a temporary library. Any data saved to the Work library
by the user is deleted when the user closes the SAS session. In a later demonstration, you see how to save a
new data set to the Work library and create a new permanent library. A new permanent library enables the
user to load external data a single time and update or use the data table each new session. This heavily
reduces the load time and cleaning time of your data because it is done only once.

Open the Sashelp library and navigate to the cars data set. Double-click the data set to open it in the Table
Viewer in the Work area. The cars data set contains 428 total rows of data and 15 columns or variables. It is a
sample of cars from the 1993 Consumer Reports magazine. You can use the arrows in the upper right to
navigate between pages or the scroll bar at the bottom of the data table to change your view of the data. In
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the Columns area of the Table Viewer in Figure 1.4, notice that all columns are selected by default. Simply
clear the check box from a column to remove the column from the viewer.

Figure 1.4: Cars Data Set

3

SAS Studio y=) SAS Programmer
» Files and Folders (8 Program 1 * | B SASHELP.CARS *
» Tasks view: |Columnnames - | @3 & ¢y B | 2 T Filter: (none)
i et Columns @ Total rows: 422 Total columns: LS Rows 1-100 = mpl
4 Libraries @ selactall ke Model
& B o @ L Make L Awra MDX
» B BMIMEN - “ A Model 2 Acura RSX Type 5 2dr
b BMT @ 4 Type 3 Acura TSX 4dr
b [ BURROWS F & onzin 4 Acura TL ddr
b 3 BUY ¥ J\ Dnverrain 5 Arurz 3.5 RL 4dr
] Acura 3.5 RL w/Navigation 4dr
DEI: HEIHT, - @MSRP Acura MSX coupe 2drmanual 5
ph B | yimvoka 8 Audi A4 18T 4dr
b [F2 CENTLOOKUR ¥ @ enginesize 9 Audl A41,8T convertible 2dr
b [ CITiDay ¥ @olinders g Ad.3.0 adr
t [ crmimon 2 @ Horsepow 1 i Ad 3.0 Quattre 4dr manual
I+ EFE CITIQTR Property  Value 12 Audi Ad 3.0 Quattro 4dr auto
I R CITIWK Labal 13 Audi AB 7.0 4dr
(=Rt Hame 14 Audi A 3.0 Quattro 4dr
b [ cLass Length 15 Audi A 3.0 convertible 2dr
b B CLASSEIT i Type 16 Audi A4 3.0 Quattro corvertible 2dr
i Format 17 Audi AR 2.7 Turbo Quattro 4dr
Informat s PR AR AT Pui b Ade ik
» File Shortcuts k

Clear the Select all check box and then select Make, Model, Type, Origin, MSRP, and Invoice.

To customize the view of the data table, select the arrow next to Columns to hide the columns area and then
select the Maximize View icon. Your screen should now show only the selected columns, as shown in Figure
1.5.

Figure 1.5: Maximize View
SAS® Studio v or | SAS Pragrammer

Birrogram1 = | EQSASHELP.CARS =
View: | Columnnames ~ || B} B g-; H | =x ¥ Filter: (none)
@ rows: 428 Total columns: 15 Rows L-100 = =
Maks= Model Type Origin MSRP Invoice
al Acura MDX Sy Asia 536,045 533,337
2 ArCura RSX Type 5 2dr Sadan EHE] 521,761
3 ACura TSX ddr Sadan EHE] 524,647
4 ACura Sedan Asia 530,209
5 ACura Sedan Asia 530,014
B ACura 3.5 AL w/Navigation 4dr Sedan Asla 541,100
T ACura NSX coupe 2dr manual S Sports Asia 579,978
2 AL A4 1BT 4dr Sedan Europe 523,508
9 Audi A4 LET convertible 2dr Sedan Europe 535, 532,506
1|10 Audi Ad 3.04dr Sedan Eurppe $3L.8. 528,346
F 11 Audi Ad 3,0 Quattro 4dr manual Sedan Eurepe $33.4320 530,266
12 Audi A4 3.0 Quattro 4dr auto Sedan Europe 534,480 531,388
13 Audi A 3.0 4dr Sedan Eurppe 536,640 533,129
14 Audi AB 3.0 Quattro 4dr sedan Eurppe 539,640 535,992
15 Aud A4 3.0 convertible 2dr Sedan Eurppe 542,490 538,325
16 Auh A4 3.0 Quattro convertible 2dr Sedan Europe 540,075
17 AL AB 2.7 Turbo Quattro 4dr Sedan Europe 538,240
18 AL AR 4.2 Quattro 4dr Sedan Europe 544936
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You can right-click a column heading to filter and sort the data table by that column. Right-click the Invoice
column and select Add Filter. Notice that the other options are Sort Ascending, Sort Descending, and Sort by
Data Order.

Add a filter to select only the rows with Invoice values greater than or equal to $30,000. Use the drop-down
menu to change the filter in the Add Filter window shown in Figure 1.6. Add the filter value in the text box.
Then click Filter.

Figure 1.6: Add Filter Window

Add Filter x
Specify the criteria for "Invoice'

z |~ | | 30000 +

m (a-:e

At the top of the table, you see that the number of filtered rows is 160.

As you select options and customize the table, SAS Studio generates SAS code that you can use. To view the
query code, click the Display Query button on the toolbar.

A new Program tab is created with the code that is used to create the view of the table. This code first creates
a new data table in the Work library and then prints the data table. You can save this code for use later with
the Save button on the toolbar. Close the Query code. Exit the maximized view and expand the Columns pane
to get back to the default table view. You can clear the table filter by selecting Clear Filter on the Tools table.

Accessing Data in SAS Libraries

SAS tables are stored in SAS libraries. A SAS library is a collection of SAS files that are referenced and stored as
a unit. Each file is a member of the library. Work is a temporary library where you can store and access SAS
tables for the duration of the SAS session. It is the default library.

Note: SAS deletes the Work library and its contents when the SAS session ends.

Sashelp is a permanent library that contains sample SAS tables that you can access during your SAS session.
Sasuser is a permanent library that you can use to store and access SAS tables in any SAS session.

Users can create their own SAS libraries.

® A user-defined library is permanent. Tables are stored until the user deletes them.
® A user-defined library is implemented within the operating environment’s file system.

® |t is not automatically available in a SAS session.

Accessing a Permanent Library with the LIBNAME Statement

First, identify the location of the library. For example, a Microsoft Windows folder could be used as a SAS
library. You can use an existing folder or create a new one. After a folder is identified or created, the Windows
operating system knows about the folder, but SAS does not. To use this folder as a SAS library, you must tell
SAS about it. Sometimes this is referred to as making a connection between SAS and the folder.

To connect the folder to SAS, use a SAS LIBNAME statement to associate the libref with the physical location
of the folder. The concept of a SAS library is the same regardless of the operating environment, but libraries
have different physical implementations depending on the environment. In UNIX and Windows, a library is a
directory or folder. On a mainframe, it is an operating system file.
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The path must be written in a style appropriate for the environment and should include a full path. Examples
are shown below.

®  Windows: libname perm 'S:\workshop';

®  UNIX: libname perm '~/workshop';

® 7/0S: libname perm 'userid.workshop.sasfiles';
The SAS LIBNAME statement is a global SAS statement. It is not required to be in a DATA step or PROC step. It

does not require a RUN statement. It executes immediately and remains in effect until changed, canceled, or
until the session ends. It uses the following syntax:

LIBNAME libref "SAS-library" <options>;

The libref must be eight characters or less and begin with a letter or underscore followed by letters,
underscores, and digits.

Tip: In the Microsoft Windows environment, an existing folder is used as a SAS library. The LIBNAME
statement cannot create a new folder.

In the UNIX environment, an existing directory is used as a SAS library. The LIBNAME statement cannot
create a new directory.

In the following example, we are associating the libref SP4R with the folder s:\workshop.

libname SP4R "s:\workshop";

Check the log after submitting a LIBNAME statement to see that it executed successfully and assigned the
libref to the physical folder.

Data Set Names

As a best practice, refer to both the library and the data set in DATA steps and PROC steps by using the
convention library.data-set-name. To access data in a permanent library, you must use the library.data-set-
name convention. However, to access the temporary library Work, you do not need to use the library name.
As a best practice, it is always encouraged to use the library name when you refer to a data set. For example,
all of the following data set names are correct:

® SP4R.FROG

® work.cars

L4 cars

Writing a Program in SAS Studio

In this section, you will learn how to write a SAS program that enables you to see the cars data in the form of
areport. To start a new program, go up to the top bar and click on the circle with seven dots inside and
choose New SAS Program. You can also press F4 on your keyboard.

In R, we generally pass a data frame matrix or vector to analyze it. In SAS, we are actually going to apply a
procedure to a data table.

Code Editor

In the Program 1 workspace, type the word PROC. As you begin to type, notice the context-sensitive Help,
which is useful when you are learning SAS programming, as shown in Figure 1.7.
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Figure 1.7: Context-sensitive Help
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=

Search: Product Documentation  Samples ar
»

Keep typing and enter the word print. Notice how the context-sensitive Help changes. Scroll through the
Context Help window. It gives you a little more syntax — BY statements, ID statements, SUM statements, VAR
statements. Statements are additional arguments to a procedure. Look at the following syntax for PROC
PRINT:

PROC PRINT <option(s)>;
BY <DESCENDING> variable-1 <...<DESCENDING> variable-n><NOTSORTED>;
PAGEBY BY-variable;
SUMBY BY-variable;
ID variable(s) <option>;
SUM variable(s) <option>;
VAR variable(s) <option>;

The PRINT procedure prints the observations in a SAS data set, using all or some of the variables. You can
create a variety of reports ranging from a simple listing to a highly customized report that groups the data and
calculates totals and subtotals for numeric variables. Beginning in SAS 9.3, the PRINT procedure is now
completely integrated with the Output Delivery System.

The context-sensitive Help also provides links to SAS documentation and samples. To turn off the context
Help, in the top bar select More Application Options » Preferences » Editor. Clear the Enable autocomplete
check box. Select Save. To view the Context Help without the Autocomplete option, right-click a keyword and
select Syntax Help.

Finish the program by entering the following code:

proc print data=sashelp.cars;
run;

This program tells SAS to print the data table cars in the Sashelp library. The DATA= option tells SAS which
data set to use for the specified procedure. Notice that the library name is followed by a period and then the
data set name. Notice also that each statement ends with a semicolon.

Results

By now, you will have noticed that we do not have a command line interpreter. Instead, we are going to
compile our code, and the results will be returned.

Print the cars data table by clicking Run on the toolbar or pressing F3. The results are displayed on the
RESULTS tab as shown in Figure 1.8.
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Figure 1.8: Program Results
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Scroll to view different parts of the table. You can open the results in another window, by clicking the Open in
New Browser tab. In addition, the toolbar on the Results page provides several ways to save the results. You
can download and save the results in a Word, PDF, or HTML document by selecting the appropriate icon.

Log

As a best practice, always click the Log tab to view any errors, warnings, and notes. (See Figure 1.9.)

Figure 1.9: SAS Log

[£ *Program 1 % || [Bd SASHELP.CARS X

CODE LOG RESULTS
B & 44
4 Errors, Warnings, Notes
b () Errors
b Warnings

b @ Notes (11)

Click the Notes arrow to view the notes that were created. Notice that the log reports that there were 428
observations read from the sashelp.cars data set.

Tip: When the log reports errors, it is much easier to click the Errors arrow rather than searching for the
error throughout the log.

Adding Variables

Let’s create a new program by selecting New Options at the top of the page and then selecting New SAS
Program (or simply press F4).
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Add the following code to the Program 2 workspace. Use the VAR statement to print only the desired column
variables: Make, Model, MPG_City, and MPG_Highway.

proc print data=sashelp.cars;
var
run;

In the Libraries pane, select the arrow next to the cars data set to view the variables in the data set. Drag and
drop the four variables into the program after the word var to complete the program. Don’t forget to put a
semicolon at the end of the statement!

You can see that the names of the variables are capitalized. SAS is not case-sensitive. The variable names
could be all-caps, all-lowercase, or any combination of capitalization. This applies to the procedure name and
any other part of the syntax.

proc print data=sashelp.cars;
var Make Model MPG City MPG_ Highway;
run;

Tip: You can also manually enter the name of each variable.

Run the program and view the results, as shown in Figure 1.10. Notice that only the four variables specified in
the VAR statement are printed on the Results page.

Figure 1.10: Program Results

E‘} *Program1l X || liig SASHELP.CARS X E(.' *Program2 X
CODE LOG RESULTS
6 [ [w = 4 A
Obs | Make Model MPG_City | MPG_Highway
1 | Acura MDX 17 23
2 | Acura RSX Type S 2dr 24 31
3 | Acura TSX 4dr £2 28
4 | Acurs TL 4dr 20 28
5  Acura 3.5 RL 4dr 18 24
B | Acuta 3.5 RL wNavigation 4dr 18 24
7 | Acura NSX coupe 2drmanual S 17 24
8 | Audi A4 18T 4dr 22 31
9 | Audi A41 BT convertible 2dr 23 30
10  Audi A4 3.0 4dr 20 28
11 | Audi A4 3.0 Qusttro 4dr manual 17 26
12 | Audi A4 3.0 Qusttro 4dr suto 18 25
13 | Audi AS 3.0 4dr 20 27
14 | Audi A8 3.0 Quattro 4dr 18 25
15 | Audi A4 3.0 converible 2dr 20 27
16 | Audi A4 3.0 Quattro convertible 2dr 18 25
17 | Audi AB 2.7 Turbo Quattro d4dr 18 25
18 | Audi A8 4.2 Quattro &dr i7 24
19 | Audi AS L Quattro 4dr 17 24
20 | Audi 5S4 Quattro 4dr 14 20
21 | Audi RS G 4dr 15 22
22 | Audi TT 1.8 convertible 2dr (coupe) 20 28 L
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Using Tasks

In addition to features that make writing SAS code easier, SAS Studio also includes powerful point-and-click
tasks that quickly generate reports and graphs. Let’s learn how to use tasks to generate summary statistics
and plots.

To see all available tasks, select Tasks in the Navigation pane and then expand Tasks (Figure 1.11).

Figure 1.11: Tasks
p Files and Folders
4 Tasks
- L%
B My Tasks
4 8 Tasks
I Data
I i Graph
I il Combinatarics and Probability
I 8 statisrics
I i@ High-Performance statstics
b {8 Econometrics
¢ @8 Forecasting
b @8 Data Mining
4 &g Utilities
ﬂ Import Data
) Query

i -
[£1 545 Program

» Snippets
p Libraries
p File Shortcuts

Notice that the tasks are separated into the following categories based on the analysis:

® Data

® Graph

® Combinatorics and Probability

®  Statistics

® High-Performance Statistics

® Econometrics

® Forecasting

® Data Mining
You can expand each node to view the possible tasks. Expand the Statistics task and double-click the
Summary Statistics task. Notice that a new tab with some initialized code opens with the title Summary

Statistics, as shown in Figure 1.12. All of the text in green (just like in R) is comment code. Everything between
the /* and the */ is going to be commented out.
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Figure 1.12: Summary Statistics Task
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In the Data section, click the Select a Table button and navigate to the cars data set in the Sashelp library.
Click the plus symbol next to Analysis variables and select Weight as the analysis variable. Notice that SAS
Studio automatically generates the code for the MEANS procedure, as shown in Figure 1.13.

Figure 1.13: Summary Statistics Task—Data Section

Settings | Code/Results | Split 2 H B I [Elog [Bdcode
DATA OPTIONS OUTPU ¥ - CODE LDG RESULTS
P, E & ® 8 e
1if*
SASHELP.CARS T B 2w
3w
4 ROLES 4 ®
. oiow
* analysisvariables: i+ g *
& weight 7i >
g -
§! * Generat=d on
10 * Generated on
11: * Generated on
Classification variables: + 1z *
N EIRY
s
15 ods noproctitle;
16ods graphics / imagemap=on;
17
¥ ADDITIONAL ROLES 18 proc means data=SASHELP.CARS chartype mean std min
19 var Weight;
20 run;

Click the OPTIONS tab to specify which options you want to use. Ignore the Basic Statistics options. In the
Plots section, select the Histogram and Add normal density curve check boxes to create statistical graphics.
Again, notice that SAS Studio automatically generates the code for the additional options, as shown in Figure
1.14.
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Figure 1.14: Summary Statistics Task—Options Section
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run;
4PLOTS
22 proc univariate dats=SASEELP.CARS vardef=df nopr
[#] Histogram 23 var Weigl
histogram Weight / nommal (nopzint);

[l Add normal density curve | 25 run;

[C] Add kernel density estimat= '

Line £, Column 1
Run the generated code and view the results. The analysis is shown in a summary table and the plot is also
printed on the Results page (Figure 1.15).

Figure 1.15: Summary Statistics Task—Results
CODE LoG RESULTS
R A

Analysis Variable : Weight Weight (LBS)
Mean Std Dev = Minimum = Maximum N
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Tip: You can save the program by clicking the Save button on the toolbar or by copying and pasting the
code into an existing program.

Using Snippets

Code snippets enable you to quickly insert saved SAS code in your program and customize the code to meet
your needs. Think of snippets as starter code. If there is code that you run often that you don’t want to have
to type in every time from scratch, save it as a snippet. Let’s use snippets to create a scatterplot matrix.
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Preloaded Snippets

Open a new program tab by pressing F4. In the Navigation pane, select Snippets and then expand the
Snippets arrow. In Figure 1.16 you can see the preloaded snippet categories.

Figure 1.16: Snippets
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Expand Graph. Drag and drop the Scatter Plot Matrix snippet into the program workspace. The following
code is generated:

/*--Scatter Plot Matrix—--*/
title 'Vehicle Profile';
proc sgscatter data=sashelp.cars (where=(type in ('Sedan' 'Sports'))):;
label mpg city='City';
label mpg highway='Highway';
matrix mpg city mpg highway horsepower weight /
transparency=0.8 markerattrs=graphdata3 (symbol=circlefilled);
run;

This code will open up every time you click this snippet. It will not change. Notice that we are working with
the sashelp.cars data. This is a complete coincidence! Click Run and view the results. (See Figure 1.17.)
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Figure 1.17: Snippet Code Results
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Tip: Generally, snippets are used as a starter program. Thus, the generated code can be altered to fit
your needs.

Let’s go back to the code because, remember, snippets are just started code. Delete the WHERE option and
change the Weight variable to the Length variable to create the following code:

/*--Scatter Plot Matrix—--*/
title 'Vehicle Profile';
proc sgscatter data=sashelp.cars;
label mpg city='City';
label mpg highway='Highway';
matrix mpg city mpg highway horsepower length /
transparency=0.8 markerattrs=graphdata3 (symbol=circlefilled);
run;

Click Run and view the results from the modified snippet (Figure 1.18).
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Figure 1.18: Modified Snippet Code Results
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Custom Snippets

Create your own snippet by clicking the New Snippet button in the Snippets pane. Copy and paste the SAS
code that you want to use onto the Snippet 1 tab. Click Save on the Snippet 1 tab. In the Add to My Snippets
window, type a name for your Snippet and click Save.

Notice that the My Snippets section now has your custom snippet, which you can drag and drop onto any SAS
Studio Program tab at your convenience.

Calling R from SAS

In this section, you will see how easy it is to work with R from SAS/IML. We can export our data to R and write
R code directly in IML. This section includes advanced programs and techniques that show you what you will
be able to do by the end of this book. We will not talk through the details of the code, but rather this will just
show you what we are working toward at the end of this book.

For this example, we will use the randomForest package in R. We will send the birth data set to R, use the
randomForest() function to create a predictive model, and return the results to SAS.

Program 1.2 invokes SAS/IML and sends the birth data set in the Work library to R and names the data frame
birth as well. Write your R code between the SUBMIT and ENDSUBMIT statements. Use the randomForest
package in R and the randomForest() function to estimate a model with BWT as the dependent variable and
Smoke, HT, LWT, and PTL as independent variables. Use the SUMMARY statement to print the details of the
analysis to the console. Finally, create a data frame with the actual and predicted values, given the model, and
name the variables Actual and Predicted.

Program 1.2: RandomForest Function

proc iml;
call ExportDataSetToR("work.birth","birth");

submit / r;
library(randomForest)
rf = randomForest (BWT ~ SMOKE + HT + LWT + PTL,
data=birth,ntree=200, importance=TRUE)
summary (rf)



actual = birth$BWT

pred = predict (rf,data=birth)
= cbind(actual,pred)

actual.pred

colnames (actual.pred)

endsubmit;

call ImportDataSetFromR ("Rdata","actual.pred");

quit;

<- c("Actual", "Predicted")
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Remember that we returned our data set, which opens in a new tab in OUTPUT DATA. Return the data frame
to a SAS data set with the name Rdata.

Tip: The output from the Summary function generated in the R console was printed in the SAS Results
page as shown in Output 1.2. By default, SAS returns all the R console output directly to the SAS Results
page, keeping it in R format.

Output 1.2: Results from Program 1.2

call

type
predicted

mse

rsq
oob.times
importance
importanceSD
locallmportance
proximity
ntree

mtry

forest

coefs

y

test

inbag

terms

Length
5

1

189
200
200
189

Class

-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-
-none-

terms

Mode
call
character
numeric
numeric
numeric
numeric
numeric
numeric
NULL
NULL
numeric
numeric
list
NULL
numeric
NULL
NULL

call

Tip: If you are running SAS Studio in client/server mode, you do not have access to the Work library on a

point-and-click basis. You must use the PRINT procedure to view the results.
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Exercises

Multiple Choice
1. Choose the correct statement.
a. SAS has a command line interpreter.
b. SASis case sensitive.
c. SAS Studio and SAS University Edition are synonymous.
d. SAS applies procedures to the data table for analysis.

2. Which statement is a SAS syntax requirement?
a. Begin each statement in column one.
b. Put only one statement on each line.
c. Separate each step with a line space.
d. End each statement with a semicolon.

Short Answer

1. How many statements are contained this DATA step?

data work.newsalesemps;
length First Name $ 12 Last Name $ 18 Job Title $ 25;
infile "gpath\newemps.csv" dlm=',"';
input First Name $ Last Name $
Job Title $ Salary;
run;



Solutions

Multiple Choice

1.d
2.d

Short Answer

1. This DATA step has five statements.
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Introduction

Now that you are comfortable navigating SAS Studio and have a feel for SAS syntax, in this chapter we will
learn how to import data into SAS. We will start by creating a few data sets manually with the DATA step and
then we will import some delimited raw data files. After we create new SAS data sets, you will learn how to
report different features of the data, including how to change the appearance of SAS column headings and
values with SAS labels and formats.

For the rest of this book, you will generally see a “Duplicate the R Script” step. We will look at how to do
something in R and then show how to do it in SAS.

Manual Data Entry with the DATA Step

In this section, we want to create a data set by hand. For example, suppose we want to create a data set with
4 variables: first name, last name, age, and height. These variables are a mix of character and numeric values.

Create a New Data Set

To create a new SAS data set, we are going to use a DATA step. Recall from Chapter 1 that DATA steps are
used to read in data or alter existing data sets. In SAS, the syntax of the DATA step is:

DATA new-data-set-name;
LENGTH variable-a <$> # variable-a <$># ...;
INPUT variable-a<$> variable-b ...;
DATALINES;
alb1..z1
a2b2..z2
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anbn ... zn

run;
Tip: The < > symbols denote optional SAS syntax.

We start with the DATA statement and specify a new data set name, and then we use the input statement to
specify the variables to be in the data set. If the variables are character values, we need to specify a dollar sign
after the variable name.

Next, we specify a data line statement. It is a statement, so we use a semicolon. Then, we start writing our
data in columns. So, column 1 is variable a, column 2 is variable b, and so on. After we enter all the data, add a
semicolon. Then use a RUN statement to finish up the DATA step.

By default, SAS only gives you 8 bytes in a single variable. Numeric values are stored in floating point notation
storing up to 17 significant digits in 8 bytes. In a character variable, each character takes one byte. So by
default, they can hold a maximum of 8 characters.

If your data values are longer than 8 characters (for example, names), or shorter than 8 characters (for
example, gender or state code), then you can use an optional LENGTH statement to specify a length for the
variable. In the LENGTH statement, you can say variable a, then a dollar sign since it’s a character variable and
then specify a number. How many characters do you want to be able to hold in a single variable? In general,
you just need an upper bound. You don’t have to go into the data set and identify the largest variable. Maybe
you just want to go up to 100 characters. But keep in mind, it’s going to save space to have fewer characters.
So don’t specify a number of bytes that is extremely large because you don’t want to save unnecessary space.

Tip: Character variables specified in the LENGTH and INPUT statements must be followed by the $
symbol. However, the INPUT statement does not require the $ symbol if the LENGTH statement is used.

Example

In R, to create a new data set, we might create 4 vectors (first name, last name, age, and height), and then
combine them to create a data frame, as shown in Figure 2.1.

Figure 2.1: R Script

= Source on Save A L =% Run | ®% | P Source ~
First_Name = c("Jordan"”,"Bruce"”,"walter"”,"Henry","JeanClaude")
Last_Name = c("Bakerman”,"wayne”,"white”,"Hil11", "vanDamme")

age = c(27,35,51,65,55)
height = c(68,70,70,66,69]

#Create Data Frame

example_data = data.frame(First_Name,Last_Name,age,height

= W B U e

Now let’s duplicate the R script in SAS.

Program 2.1a: Duplicate the R Script in SAS

data spédr.example data;
length First Name $ 25 Last Name $ 25;
input First Name $ Last Name $ age height;
datalines;
Jordan Bakerman 27 68
Bruce Wayne 35 70
Walter White 51 70
Henry Hill 65 66
JeanClaude VanDamme 55 69

run;
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In Program 2.1a, we are creating a data set called EXAMPLE_DATA and saving it in the SP4R library. In the
INPUT statement, there are 4 variables. FIRST_NAME and LAST_NAME are character-valued, so they require
dollar signs. AGE and HEIGHT are numeric variables.

Next, we specify the data lines and type in all the data on separate lines. Remember the final semicolon after
the data, and don’t forget the RUN statement to finish up the DATA statement.

You will notice that the last observation, JeanClaude, has more than 8 bytes. It has 10 characters. So we
needed to use a LENGTH statement to change the number of bytes for the variable. In the LENGTH statement,
we can specify lengths for FIRST_NAME and LAST_NAME. Here we used 25 characters as a length, but we
don’t need to know the value with the maximum number of characters if you just specify an upper bound.

Click Run to run Program 2.1a to make sure you have created your data set correctly.

In Program 2.1b, we will create another data set. The only difference here is that you will notice we are
reading in more than one observation per line.

Program 2.1b: Duplicate the R Script in SAS Another Way

data spdr.example dataZ2;
length First Name $ 25 Last Name $ 25;
input First Name $ Last Name $ age height @@;
datalines;
Jordan Bakerman 27 68 Bruce Wayne 35 70 Walter White 51 70
Henry Hill 65 66 JeanClaude VanDamme 55 69

’

run;

In Program 2.1b, we have our first observation and then immediately following it, we have the second and
third observations. To read in this data we need to use the trailing @@ symbol in the INPUT statement. That
symbol tells SAS to hold the line and continue reading in data as new observations. If we didn’t use the trailing
@@ symbol, we would only have 2 observations in this data set: Jordan Bakerman and Henry Hill.

Tip: The @@ option at the end of the INPUT statement enables the DATA step to read in more than one
observation per line.

Create a New Data Set with Delimited Data

Let’s look at another method for reading in data that uses some of the syntax we just learned, plus some
options that will be discussed more in the next section. Perhaps you have a text file and you don’t want to
import the file, you just want to read in the text values by copying and pasting the data into DATA step. But
maybe that text file has delimited data. How can we read that in?

Take a look at Program 2.2 where we create a new data set called EXAMPLE_DATA3.

Program 2.2: Manually Creating a SAS Data Set from Delimited Data

data spédr.example data3;
length First Name $ 25;
infile datalines dlm='*";
input First Name $ Last Name $ age height;
datalines;
Jordan*Bakerman*27*68
Bruce*Wayne*35*70
Walter*White*51*70
Henry*Hil1l*65*%66
Jean Claude*Van Damme*55*69

run;

In Program 2.2, we use a LENGTH statement to change the first name variable to 25 characters maximum.
Notice in this case that we are not setting a length for last name. Our INPUT statement has the same 4
variables: first name, last name, age, and height.
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In the DATALINES statement notice that the data is delimited with stars. In order to read in this data, we add
an INFILE statement and use the keyword DATALINES. That tells SAS to read in the data under the DATALINES
statement, as opposed to a delimited raw data file. We also use the DLM= option, which specifies the
delimiter, which in this case is a star.

When you run Program 2.2, the data table created should look exactly like the one created in the previous
section. But remember, we only specified a length for the first name field. So the last name field defaults to 8
bytes and some of the data will be truncated.

Importing Data

In this section, we will learn how to import a saved raw data file using either a DATA step or a PROC step to
get back a new SAS data set.

In R, we might use the read.csv function and create new data files from our CSV files. Once we read in the
data, then we can use functions like COLNAMES to actually change the data frame column names.

Import with a DATA Step

To read in a delimited raw data file in SAS, we can use a DATA step. The syntax is very similar to the manual
data entry syntax, but you will replace the DATALINES statement with the INFILE statement to read a raw data
file as shown below:

DATA output-data-set;
LENGTH variable <$> # variable <$> #...;
INFILE “data-file-path” DLM="'delimiter’
INPUT variable <$> variable <$>...;

RUN;

Start with the DATA statement, then specify a new SAS data set name. We will use the INPUT statement
exactly as before and specify variable names. If the variable is a character data value, use the dollar sign. If we
need to change the number of characters to something larger than 8, we will use a LENGTH statement.

This time, however, instead of using the DATALINES statement, we will use the INFILE statement. In quotation
marks, specify the path to the file. For example, an INFILE statement might look like the following:

infile “&path/example.csv”;

The INFILE statement identifies the raw data file to be read and requires the delimiter option, DLM, if the raw
data file is separated by something other than a space. For example, if your data is comma-delimited, your
INFILE statement might look like the following:

infile "&path\allnames.csv" dlm="',"';

The INFILE statement must come before the INPUT statement. Some common delimiters are DLM=',' for .csv
and DLM='09'x for tab-delimited files.

Import with PROC IMPORT

An alternative method to reading in delimited raw data files is the IMPORT procedure. The DATA step requires
a bit more syntax, but gives you more control over how exactly to read in delimited raw data files. PROC
IMPORT is a helpful method for use with files with more structure like CSV files or Excel workbooks. For
example, if the first row in the data file has the variable names that you want to use in the SAS data set, PROC
IMPORT makes it very easy to use those as the SAS variable names.

For the PROC IMPORT procedure, the syntax to import a file with column names is below:

PROC IMPORT OUT=data-set-name
DATAFILE= “data-file-path”
DBMS-=identifier <REPLACE>;
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GETNAMES=<yes,no>;
SHEET=<"sheet.name">
DATAROW=<{#>;

RUN;

Start with a PROC IMPORT statement. In the OUT= option, you will specify the new SAS data set name. The
next option, the DATAFILE= option lets you specify the full path to the data file (similar to the INFILE
statement before). The DBMS= option is simply the identifier of the file. For example, if you are reading a CSV
file, you simply specify CSV. If you are working with an Excel workbook, you would specify xIsx.

If the first row of your data contains the variable names that you want to use as SAS variable names, then use
the GETNAMES=yes option to read in those variable names and use them as the SAS data set variable names.

SHEET is a great statement to be aware of. If you are reading in data sets from multiple sheets of an Excel
workbook, you can specify the name of the sheet explicitly and read in only that specific data set. You can also
specify a data row to start reading in the data. For example, if the first row has column names and the second
row is blank, use DATAROW=3.

Tip: The REPLACE option is used to write over existing SAS data tables with the same name.

If you read in a delimited raw data file with PROC IMPORT and you don’t have variable names that you are
going to use as SAS data set variable names, the variable names will default to varl, var2, var3, and so on. To
change those after the data has been read in, you'll need to use the DATA step. Simply specify the name of
the data set we are working with and the SET statement tells SAS where to pull the data from. If the data set
names and the data in the set statements are the same, it simply writes over that data set with our changes.

You can change as many variable names in a single RENAME statement as you want. To rename the variables,
use the RENAME statement as shown below:

DATA data-table-name-new;

SET data-table-name-old,
RENAME old-var-1= new-var-1
old-var-2= new-var-2

old-var-n= new-var-n;
RUN;

Examples

Figure 2.2 shows an instance of reading in a CSV file in R. In this example, we will read in a delimited raw data
file with a DATA step to duplicate the results from the R script in Figure 2.2.

Figure 2.2: R Script

(5 [7] Source on Save Q ¥ i dl |- = Run b Source -
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allnames = read.csv("path/allnames.csv”, header=FALSE)

#FChanae ariable nan es

colnames(allnames) =<- c("First_Name","Last_Name","age","height”

In Program 2.3 we are printing a new data set called ALL_NAMES in the SP4R library. The allnames.csv file has
the original five names that were used in the previous example as well as 195 other names. Of course, we
would not want to type those out by hand! It’s much easier to save them in a CSV file and read them in with a
DATA step.

Program 2.3: Duplicate the R Script with a DATA Step

data sp4dr.all names;
length First Name $ 25 Last Name $ 25;
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infile "gpath\allnames.csv" dlm=',"';
input First Name $ Last Name $ age height;
run;

The variable names are going to be the same names as in the example in the previous section: First_Name,
Last_Name, age, and height. In the LENGTH statement in Program 2.3, we change the length of the first name
and last name variables. In the INFILE statement, we specify the path to the data file. With the DLM= option,
we specify the comma as the delimiter for the CSV file type. If you run this program, you should see a table
with 200 observations in 4 columns.

Figure 2.3 shows an instance of reading in a CSV file in R. In this example, we will read in a delimited raw data
file with a PROC step to duplicate the results from the R script in Figure 2.3.

Figure 2.3: R Script

mport data with variable names

béséba11 :_Fe;d.csv:"path’baﬁeba11.csm“

#Change ariable names

colnames (baseball) <- c("Name","Team",K "At_Bats",6 "Hits", "Home_Runs",
"Runs”,"RBIs", "League”,"Division”,
"position”,"Errors”

To duplicate this R script in SAS, let’s import a data set with the IMPORT procedure as shown in Program 2.4.

Program 2.4: Duplicate the R Script with PROC IMPORT

proc import out=spdr.baseball
datafile= "g&path\baseball.csv" DBMS=CSV REPLACE;
getnames=yes;
datarow=2;

run;

data spé4r.baseball;
set spdr.baseball;
rename nAtBat = At Bats
nHits = Hits
nHome = Home Runs
nRuns = Runs
nRBI = RBIs
nError = Errors;
run;

In the PROC IMPORT statement, we use the OUT= option to specify the data set name. In the DATAFILE=
option, we specify the path to the baseball.csv data file. The file type is, of course, CSV. We use the REPLACE
option to overwrite any existing data sets in the SP4R library with the same name.

Now this CSV has the first row with the variable names that we want to use as SAS data set variable names, so
we use the GETNAMES=yes option. Then we tell SAS to start reading in the data on row 2.

Run just the IMPORT procedure portion of Program 2.4 by highlighting only that portion of the code. In the
OUTPUT DATA tab, we can see the data set, which is from the 1986 MLB season. It includes the names of
players, the team that they played for, and several other variables indicating player performance. You will
notice that the performance measure variable names start with n: nAtBat, nHits, nHome, and so on. Maybe
we don’t the n character in front of all those variable names.

To change the variable names, we use the RENAME statement in a DATA step, as shown in the second part of
the code in Program 2.4. In the DATA statement and the SET statement, we specify the same name, baseball.
This overwrites the existing data set. In the RENAME statement, we change nAtBat to At_Bats, nHits to Hits,
and so on. Once you run the second part of the code in Program 2.4, your data set will display with the new
variable names.
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Reporting Data

Now that we know how to get our data into SAS, we want to report the data and bring some features into a
report. To do this, we will use a few different PROC steps and return some results.

In R, when we read in a data set, we can use several different functions including:

® head() to print the first 6 rows to make sure we read it in correctly
® names() to see the variable names
® dim() to see the dimension of the data set

® |evels() to identify the unique levels of the classification variables

In R, we can also print variables conditionally. We can do all this in SAS with a few different procedures.

PROC CONTENTS

The first reporting procedure that we will learn about is the CONTENTS procedure. It provides the same
information as the R functions dim() and names(). It provides us the number of observations, the number of
variables, as well as the variable names in the data set. Program 2.5 shows a simple CONTENTS procedures
and Output 2.5 shows the results of running the program.

Program 2.5: CONTENTS Procedure

proc contents data=spdr.cars varnum;
run;

Output 2.5: Results of Program 2.5

Data Set Name WORK CARS Observations 428
Member Type DATA Variables 23

Variables in Creation Order

# Variable Type Len  Format Label
1 mpg_quality Char 6
2 | Make Char 13
3 | Model Char 40

As a best practice, use the VARNUM option in the CONTENTS statement so that SAS will print the variables to
the results page in the order in which they appear in the data set. Of course, in SAS Studio, if you wanted to,
you could simply open up your data set and view that information in the appropriate data table tab.

PROC PRINT

FIRSTOBS= and OBS= Options

To reproduce the head() function in R, we simply use the FIRSTOBS= and the OBS= option in the PROC PRINT
statement. As shown in Program 2.6, in parentheses, we will say FIRSTOBS=1 and OBS=6, which will print just
observations 1 through 6, as shown in Output 2.6.

Program 2.6: FIRSTOBS= and OBS= Options in Print Procedure

proc print data=sp4r.cars (firstobs=1 obs=6);
run;
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Output 2.6: Results of Program 2.6

Obs mpg_quality Make Model Type | Origin DriveTrain  MSRP  Invoice
1 Medium Acura MODX SUV  Asia Al $36.945 | 533337
2  Medum Acura RSX Type S5 Sedan  Asia | From $23.8920 s21.1e1

2dr
3 Medwm Acura TSX 4dr Sedan | Asia Frant 526,930 | 524 647
4  Medium Acura TL 4dr Sedan | Asia Fromt 333,195 | 530,299
5  Medium Acura 35RL4dr | Sedan | Asia Fromt 543,755 539,014
6 Medium Acura 3.5RL Sedan | Asia Frant S46.100 | 541100

willaagation

ddr

Of course, you can change the numbers in the FIRSTOBS= and OBS= options. If you wanted to print
observations 10 through 20, you could simply change those options as you see fit. By default, PROC PRINT
displays all observations and all variables if you do not use the OBS= option.

Tip: If you start from observation 1, you do not need FIRSTOBS=1.

WHERE Statement

We saw in Chapter 1 that to print only specified variable, we simply list them in the VAR statement. But what
if we wanted to print observations conditionally? We can use a WHERE statement and provide it a conditional
expression, as shown in the syntax below:

PROC PRINT DATA=data-table <options>;
VAR variable1 variable?2 ...;
WHERE conditional-expression;

RUN;

The WHERE statement is very powerful and consistent. It can be used in other procedures as well. Here are
some examples of WHERE expressions:

® where salary > 5000
® where gender="Male’;

® where upcase(gender)="MALE’;

The last two examples show one of the few instances where SAS is case-sensitive. Notice that we are quoting
the word ‘Male’. In that case, you need to specify the observations exactly as it appears in the SAS data table.
If it appears as Male, you need to specify it exactly that way. It will not find observations for ‘male’. To avoid
case sensitivity, you can use the UPCASE function to capitalize all observations.

PROC SQL

To reproduce the levels() function in R to actually find the unique levels of a classification variable, we will use
PROC SQL (pronounced “sequel”). PROC SQL is a very large, very powerful procedure that can do lots of
different tasks. For example, it can subset data, call data, and combine data. Any type of querying of data can
be done using PROC SQL. If you are familiar with the open-source SQL, you can use all the same functionality
directly in SAS. The only difference is that you have to use the PROC SQL step.
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To print the unique levels of a classification variable, the PROC SQL syntax is shown below.

PROC SQL;
SELECT UNIQUE variable-name FROM data-table-name;
QUIT;

Use the SELECT UNIQUE statement and then specify the variable name for which you want to print unique
levels. Use the keyword FROM and specify the data table to be queried.

In Program 2.7, we query the CARS database to select the unique levels of the variable ORIGIN.

Program 2.7: PROC SQL

proc sqgl;
select unique origin from spér.cars;
quit;

Output 2.7: Results of Program 2.7

Origin
Asia
Europe
USA

In Output 2.7, you can see that it prints Asia, Europe, and USA.

Comparison Operators

Most of the comparison operators in SAS are exactly the same as in R. Greater than, less than, greater than or
equal to, and less than or equal to are exactly the same. The ones that are different are the equal to and not
equal to operators. In SAS, we do not use the exclamation point to denote not equal to something, but we do
have three other options as shown in Table 2.1. Also, we do not use the double equal sign in SAS. If you are
using multiple equal signs in SAS, the first equal sign is actually the assignment and the second equal sign acts
as the binary operator.

Table 2.1: Comparison Operators

R operator SAS operator Mnemonic Definition
— = EQ Equal to
1= A= o=~= NE Not equal to
> > GT Greater than
< < LT Less than
>= >= GE Greater than or equal to
<= <= LE Less than or equal to

OR IN Equal to one of a list
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You can also use the mnemonic terms listed in Table 2.1 if you don’t want to write out the symbols or cannot
remember the symbols in SAS.

Another really powerful operator is the IN operator. This asks the question, “Is it equal to one of a list?” It’s
very similar to the OR operator in R.

As an example, suppose we want to print observations where country is in the following list:

where country in (‘'US’, ‘CA');

We use parentheses and specify the list: US, Canada. Again, if it’s quoted, it’s case-sensitive. So in a PROC
PRINT statement, this WHERE statement is only going to print observations where the country is either US or
Canada.

The logical operators AND and OR have the symbols in SAS as they do in R, as shown in Table 2.2. Again, the
exclamation point is not used in SAS, so you have to use one of the three symbols that are acceptable.

Table 2.2: Logical Operators

! A~ NOT
& & AND [
| | OR I

You can also just use the mnemonic terms NOT, AND, or OR.

As another example, suppose we want to print observations where the country is not either the US or Canada.
We would use the following operators in the WHERE statement:

where country not in (‘US’, ‘CA’);

Enhanced Reporting

In this section we will apply labels and formats to our data sets and results to alter the presentation of the
data table or report. We will learn how to change the display of column and variable names, apply formats
such as dollar signs to numeric variables, and change date formats.

LABEL Statement

The LABEL statement is used to change the display of the column variables. The syntax is as follows:
LABEL variable-1=‘label-1’ ... variable-n=‘label-n’;

In the LABEL statement, we specify the variable name then set it equal to a new variable name. Program 2.8
shows an example of how to change the column names from FN and LN to First Name and Last Name.

Program 2.8: LABEL Statement

proc print data=sp4r.business label;
label FN='First Name' LN='Last Name'
run;
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In the LABEL statement, we specify the variable name FN and set it equal to a new display — “First Name”. We
do the same thing for LN and set it equal to “Last Name”. This only changes the display of the columns. The
variable names remain FN and LN.

When you are using a LABEL statement with a PRINT procedure, you have to use the LABEL option. But in
other procedures, you can just use the LABEL statement.

Format Statement

Next, let’s learn how to apply formats. Formats change the appearance of the observations in a report. They
do not change the actual value.

Here are few examples of using formats to change the appearance of observations:

® 10866 (SAS Date) > 01/10/1989
® 5950.35 - $5,950.35

All SAS formats have the following syntax:

<$>format<w>.<d>

S Optional. Indicates a character format.
format Names the SAS format.

w Optional. Specifies the total format width, including decimal places and special
characters.

Required syntax. Formats always contain a period (.) as part of the name.

d Optional. Specifies the number of decimal places to display in numeric formats.

Formats begin with a S if it is a character format, followed by the name of the format, an optional width, and a
required dot delimiter. The format also contains an optional number of decimal places for numeric formats.

SAS has many built-in character, numeric, data and time, and ISO 8601 formats. An extensive list of these
formats can be found on the following page:
http://support.sas.com/documentation/cdl/en/leforinforref/64790/HTML/default/viewer.htm#p0z62k899n6
a7wnl1r5in6g5253vl.htm

So how do we actually apply a format? Program 2.9 shows an example of using a format statement in a PRINT
procedure.

Program 2.9: FORMAT Statement

proc print data=spdr.business;
format salary dollar8. hire date mmddyylO.;
run;

In the PRINT procedure, we specify the variable in the data set in the FORMAT statement. Then, immediately
following the variable name (SALARY), we specify the format to be applied to the variable (DOLLARS). Then we
apply the format MMDDYY10 to the variable HIRE_DATE.

As you can see in Output 2.9, Salary now has a dollar sign and a comma and Hire_Date is in a readable date
format.
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Output 2.9: Results of Program 2.9

Salary Hire Date
$51,500 06/01/1993
83,975 01/0111978

594,545  04/07M1975

Tip: As a best practice, use LABEL and FORMAT statements directly in the DATA step when you are
reading in your data. When you do this, it automatically applies these labels and formats going forward.
If you open up your data set, you will actually see the labels and formats already applied.

If you create a report, it will apply those labels and formats also. That way, you don’t have to explicitly
specify LABEL and FORMAT statements going forward.

Formats
Let’s look at an example of some common formats. The middle column of Table 2.3 is the stored value in the
SAS data set.

Table 2.3: SAS Format Examples

DOLLARI12.2 27134.5864 $27,134.59
DOLLARY.2 27134.5864 $27134.59
DOLLARS.2 27134.5864 27134.59
DOLLARS.2 27134.5864 27135
DOLLAR4.2 27134.5864 27E3

In the first row of Table 2.3, if we apply the DOLLAR12.2 format, it’s going to apply the DOLLAR format with a
width of up to 12 characters and maximum of 2 decimal places. The width is for all characters and includes the
dollar sign, comma, and period. So the displayed value includes 10 characters for this format.

If the format width is not large enough to accommodate a numeric value, the displayed value is automatically
adjusted to fit the width. In the second row of the table, we change the width of the format to 9. Notice in the
displayed value that the comma is removed. In the third row, when we reduce the width to 8, notice the
dollar sign is also removed. When we get to the last value in the table with a width of 4, it is displayed in
scientific notation.

SAS Date Formats

When working with SAS date formats, the value in the data table represents the number of days since January
1, 1960. Thus, a value of zero represents that date. Going forward in time, for example, 366 days forward will
represent January 1, 1961. Going even further, 88,399 days represents January 11, 2022. To go back in time
prior to January 1, 1960, we will simply use the dash. So -365 represents January 1, 1959, and so on, as shown
in Figure 2.4.
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Figure 2.4: SAS Date Format Timeline

Calendar Date

Jul 4 1776 lan 11959 lan 1 1960 lan 1 1961 lan 11 2202

—— ——e— S

67019 165 0 166 #8399

SAS Date Value

Let’s look at an example of how to use SAS date formats. The middle column of Table 2.3 is the stored value in
the SAS data set.

Table 2.4: SAS Date Format Examples

MMDDYY10. 0 01/01/1960
MMDDYYS8. O 01/01/60
MMDDYY6. O 010160
DDMMYY10. 365 31/12/1960
DDMMYYS8. 365 31/12/60
DDMMYY6. 365 311260

If we apply the MMDDYY10 format to a value of zero, it’s going to display 01/01/1960. When we reduce the
format to the width of 8 to the same value, it simply removes the 19 in the year. When we reduce the width
to 6, it removes the slashes. You can see that the width is extremely important when you are displaying a SAS
date value.

There are many different formats that you can apply to dates. Table 2.4 shows MMDDYY and DDMMYY
formats, which display the order of the day and month differently.

You might be asking yourself, Do | really need to know the number of days since January 1, 1960 to actually
work with SAS date formats? The answer, of course, is no. That would be too much of a pain! We use what are
called informats, meaning that your data is already in the appropriate format. These will be discussed in the
example at the end of this section.

FORMAT Procedure

As mentioned earlier, SAS comes with many built-in formats. However, if SAS does not offer the exact format
that you need, you can create your own format.

PROC FORMAT enables you to create your own user-defined formats. To do so, we will use individual value
statements and then name the format. The syntax for PROC FORMAT is as follows:

PROC FORMAT;
VALUE <$> format-name range1 = ‘label?’ ...;
RUN;
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A format name can be a maximum of 32 characters in length. Character formats must begin with a dollar sign
followed by a letter or underscore. Numeric formats must begin with a letter or underscore, cannot end in a
number, cannot be given the name of a SAS format, and cannot include a period in the VALUE statement.

Labels can be a maximum of 32,767 characters in length and are enclosed in quotation marks.

Let’s look at an example of how to use PROC FORMAT to create and apply user-defined format in Program
2.10.

Program 2.10: PROC FORMAT

proc format;
value $jobformat 'SR'='Sales Rep'
'SM'='Sales Manager';
value bonusformat 0='No' 1='Yes';
run;

proc print data=sp4r.business;
format job $jobformat. bonus bonusformat.;
run;

In Program 2.10, we create 2 formats in the FORMAT procedure. Recall that if we are working with character
data, we start with the dollar sign. We name the first format jobformat. Then we change the display of SR to
Sales Rep and SM to Sales Manager.

You can have as many value statements as you want to create as many user-defined formats as you want in a
single FORMAT procedure. Next, we create bonusformat, which changes the display of the value 0 to no and 1
to yes. This format can be helpful when working with logistic regression so that you don’t have a meaningful
response as a value, rather than just a binary O or 1.

In the PRINT Procedure, we apply the formats that we have just created to the variables that we want to
format. You can see the results of the formats in Output 2.10. Remember that the name of the format must
end with a period in the FORMAT statement. After the period is added, the format name becomes green.

Output 2.10: Results of Program 2.10

Job Bonus
Sales Rep Yes
Sales Rep Yes
Sales Manager MNo

Tip: LOW, HIGH, and OTHER are built-in SAS keywords that can be helpful when you format numeric
data.

Example with Informats

In this example, we are creating a data set called EMPLOYEES, as shown in Program 2.11. We have only 2
variables in this data set: Name, a character variable, and Birthday. Notice that for Birthday, we are applying
an informat in the first DATA step. To do this, we use the colon to tell SAS that the data we are reading in is
already in the specified format. It’s already in MMDDYY8.

Program 2.11: Reporting Example with Informats

data employees;
input name $ bday :mmddyy8. Q@;
datalines;
Jill 01011960 Jack 05111988 Joe 08221975

run;
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proc print data=employees;
run;

If you go to the DATALINES statement, you will see that we have a name and then a date in an MMDDYY
format. By using the informat, we don’t have to actually calculate the number of days from January 1, 1960.
Remember that if you are reading in more than one observation per line, you want to use the trailing @@
symbol.

Run this code to see the results in Output 2.11. Notice that it actually converts the dates to a SAS date value.
The bday column is showing the number of days since January 1, 1960.

Output 2.11: Results of Program 2.11

Obs  name @ bday
1 Jil 0
2  Jack 10358
3  Joe 5712

To actually keep the display of labels and formats, let’s try this a different way by using the LABEL and
FORMAT statements in the DATA step, as shown in Program 2.12. This code is the exact same DATA step as in
Program 2.11. The only difference is that now we have a LABEL and FORMAT statements.

Program 2.12: Reporting Example with Informats, Formats, and Labels

data employees;
input name $ bday :mmddyy8. Q@;
format bday mmddyyl0.;
label name="First Name" bday="Birthday";
datalines;
Jill 01011960 Jack 05111988 Joe 08221975

’

run;

proc print data=employees label;
run;

In the first DATA step of Program 2.12, we are reading in the bday variable with the MMDDYY8. format, and
then immediately applying a different format, the MMDDYY10. format. We use the LABEL statement to
change the display of the column headings. Most SAS procedures apply the stored labels automatically, but
remember that PROC PRINT is a little bit different. It only applies labels if you specify the LABEL option in the
PROC PRINT statement.

Run this code to see the results in Output 2.12. You will notice the appropriate displays of labels and formats.

Output 2.12: Results of Program 2.12

Obs | First Name Birthday
1 Jill 01/01/1960
2  Jack 05/11/1988
3  Joe 08/22/1975
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Exercises

Multiple Choice

1.

Which DATA step options and statements are missing to correctly read in the Class data? (Select all
that apply.)
a. the @@ option to read in more than one observation per line
b. the $ option to read in character data
c. the semicolon after the data
d. The data set name is case sensitive and should be CLASS.
data class;
input grades
datalines;

B- A A+ C+ F- A- A B+ B+ B
run;

Which SAS procedures are used to reproduce the R functions levels(), dim(), head(), and names()?
a. PRINT, PRINT, PRINT, CONTENTS

b. SQL, CONTENTS, PRINT, CONTENTS

c. CONTENTS, PRINT, PRINT, SQL

d. SQL, SQL, CONTENTS, PRINT

The PROC step below prints the variables grades, student, and year from the class data set for all
students with grades D or higher. (Assume that the data is clean and there are no + or —grades.)

proc print data=class;
var grades student year;
where upcase (grades)*="'F"';

run;
a. True
b. False

Programming Exercise

1. Labeling, Formatting, and Conditional Printing

Modify the DATA step, shown below, to complete the exercises. This DATA step generates the CLASS data
table with 20 observations and four variables.

data spé4r.class;

input student $ country $ grade bd Q@;

datalines;

John Spain 95 12000 Mary Spain 82 12121 Alison France 98 12026
Nadine Spain 77 12222 Josh Italy 61 12095 James France 45 12301
William France 92 12284 Susan Italy 95 12079

Charlie France 88 12234 Alice Italy 89 12014 Robert Italy 92 12025
Emily Spain 87 12148 Arthur Italy 99 12052 Nancy France 70 12238
Kristin France 65 12084 Sara Italy 49 12322 Ashley Spain 96 12299
Aaron France 95 12052 Sean France 87 12254 Phil Italy 86 12036

’

run;

a.

Use PROC FORMAT to create a format for the GRADE variable.

Grade Grade Format

0-59 F
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60-69 D
70-79 C
80-89 B
90-100 A

Use the DATA step above to read in the Class data set. In the DATA step, label the variable bd as
“Birthday” and apply the GradeFormat created in part a. In addition, use the SAS format WORDDATE
for the bd variable.

Print the Class data table. (Remember to use the LABEL option in the PRINT statement.)
Use PROC SQL to print the unique levels of the country variable.

Conditionally print the variable student, country, and grade for people with a grade above 79 and
from France only.
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Solutions

Multiple Choice

1. a,b,andc
2. b
3. a

Programming Exercise

1
a.

proc format;

value gradesformat 0-59='F' 60-69='D' 70-79='C' 80-89='B'
90-100="A";

run;

b.

data spédr.class;
input student $ country $ grade bd Q@;
label bd='Birthday';
format grade gradesformat. bd worddate.;
datalines;
John Spain 95 12000 Mary Spain 82 12121 Alison France 98 12026
Nadine Spain 77 12222 Josh Italy 61 12095 James France 45 12301
William France 92 12284 Susan Italy 95 12079
Charlie France 88 12234 Alice Italy 89 12014 Robert Italy 92 12025
Emily Spain 87 12148 Arthur Italy 99 12052 Nancy France 70 12238
Kristin France 65 12084 Sara Italy 49 12322 Ashley Spain 96 12299
Aaron France 95 12052 Sean France 87 12254 Phil Italy 86 12036

run;

C.
proc print data= spér.class label;
run;
d.
proc sqgl;
select unique country from spédr.class;
quit;
e

proc print data= spédr.class;

var student country grade;

where grade>79 and country='France';
run;
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Introduction

The DATA step is the key to reading your data and altering existing SAS data sets to meet your specifications.
In this chapter, we will discuss some additional DATA step techniques for managing day-to-day SAS
programming requirements. We will learn how to create and add new variables to an existing SAS data set,
use built-in SAS functions to transform data, create new functions, and subset and concatenate SAS data sets.

Creating New Variables

In this section, you will learn how to create and add new variables to the data set using a DATA step. In R, we
typically use the dollar sign syntax to add a variable to our data frame, as seen in Figure 3.1. We will learn how
to do the same thing with a DATA step. And by the end of this section, you will learn how to conditionally
create a variable using syntax like IF ELSE, IF, and ELSE functions.
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Figure 3.1: R Script

=[] Source an Save Q. FAREE = —Run beb | | Source -
#orearte and add new variable to the daca frame
carsiwheelbase_plus_length = carsiwheelbase + carsflength

carsicars

#create and add new variable conditionally

mpg_City_bonus = rep(NA,Tength{carsiName))

for{i in 1:Tengthimpo_city_bonus)){
if(carstimpg_city[i]=-30) {mpg_city_bonus[i]-2000]
else if (carsimpg_city[i]>=20){mpg_city_bonus [i]=1000%
else {mpg_city_bonus[1]1=07

carsimpg_city_bonus = mpg_city_borus

To add a variable to a data set in SAS, we are going to start with our DATA step, specify the name of the data
set we're working with, and the same name in the SET statement. Again, this overrides the existing data set
with your changes. Recall from Chapter 2 that the syntax of the DATA step is as follows:

DATA new-data-set-name;
LENGTH variable-a <$> # variable-a <$> # ...;
INPUT variable-a<$> variable-b ...;

DATALINES;

alb1..z1

a2b2..z2

an bn ... zn
ru;1;

In Program 3.1, we are creating a new variable called wheelbase_plus_length by adding together two
variables in the cars data set. You can add in as many variables as you want in a single DATA step.

Program 3.1: Duplicate the R Script

data spdr.cars;

set spér.cars;

wheelbase plus length = wheelbase+length;
run;

Creating Conditional Numeric Variables

Moving on, let's go ahead and create variables conditionally now. Let’s tie this to an example. Suppose car
manufacturers receive an economic incentive for manufacturing cars with high highway miles per gallon.

Therefore, we want to create a variable called Bonus. We want Bonus to be 2,000 if MPG Highway is greater
than or equal to 30 and 1,000 if MPG is between 20 and 29. Otherwise, we want Bonus to be 0.

>=30 2,000

20-29 1,000

<20 0
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IF THEN Statements
So how can we accomplish this? We can use IF THEN statements.

IF expression THEN statement;

We will use the cars data set for this example shown in Program 3.2. Using the DATA step, first initialize the
new variable, Bonus and set it equal to 2000. This means we are setting every element in the column equal to
2000. Next, use IF statements to change the values conditionally. In the IF statement, we give it an expression.
IF mpg_highway is less than 20 THEN set bonus equal to 0. We will use a second IF statement for the last
category. IF mpg_highway is greater than or equal to 20, AND (the operator that we learned in Chapter 2)
mpg_highway is less than 30, THEN set bonus equal to 1000.

Program 3.2: Creating a Conditional Variable with the IF THEN Statement

data spé4r.cars;
set spér.cars;
bonus=2000;
if mpg highway<20 then bonus=0;
if mpg highway>=20 and mpg highway<30
then bonus=1000;
run;

Tip: The bonus = 2000 statement initializes the bonus variable.

Using multiple IF statements is not the most efficient way to accomplish this task. Why? Well, because these
are mutually exclusive categories. If we test that mpg_highway is less than 20 and we set bonus to 0, we then
test another category, which, of course, cannot be possible.

ELSE IF and ELSE Statements

It would be much more efficient if we could fall out of the loop if we tested that the category was true. To do
this, we will use the ELSE IF and ELSE statements, just like the ELSE IF and ELSE function in R. The syntax for
ELSE IF statements is as follows:

IF expression THEN statement;
<ELSE IF expression THEN statement;>
<...>

<ELSE statement;>

In the DATA step in Program 3.3, the first thing you will notice is that the bonus variable has not been
initialized. We do not need to do that in SAS. The first IF statement, IF mpg_highway is less than 20, THEN, the
first instance of the bonus variable is set equal to 0. This is the first place we see the bonus variable in this
DATA step. Again, we are assuming that Bonus is not in the cars data set in this example.

Next, if the first IF statement is not true, we will go to the next ELSE IF statement. So IF it is greater than 20
AND mpg_highway is less than 30, THEN bonus equals 1000. As a catch-all, the ELSE statement sets Bonus
equal to 2000. This is much more efficient conditional processing. Again, if we test that the category less than
20 is true, we set bonus equal to 0, fall out of the loop, and don't test any more conditions.

Program 3.3: Creating a Conditional Variable with ELSE IF and ELSE Statements

data spdr.cars;
set spédr.cars;
if mpg highway<20 then bonus=0;
else if mpg highway<30 then bonus=1000;
else bonus=2000;
run;

proc print data=spédr.cars (firstobs=76 obs=81);
var mpg highway bonus;
run;
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Tip: The bonus = 1000 statement was removed in favor of the ELSE statement.

Run Program 3.3 and view the results of the PROC PRINT statement to make sure it worked correctly as
shown in Output 3.3. If mpg_highway is greater than or equal to 30, we have a bonus of 2000. If it is between
20 and 30, it's a $1,000 bonus. And otherwise, here, mpg_highway at 17 is a bonus of 0.

Output 3.3: Partial Results of Program 3.3

MPG_
Obs Highway bonus
76 32 2000
77 30 2000
78 28 1000
79 32 2000
80 28 1000
81 17 0

Creating Conditional Character Variables

The bonus variable we just created in the previous section was a numeric variable. Now let's create character
variables conditionally by looking at another example using the cars data set. Suppose in addition to the Type
variable, a variable that indicates whether the vehicle is associated with being a family vehicle should also be
in the cars data set.

Let’s create a new variable to account for this information in Program 3.4 and call that new variable Type2. If
the car type is Hybrid, SUV, Sedan, or Wagon, we will set the Type2 variable to Family Vehicle. Otherwise, we
will set the variable to Truck or Sports Vehicle.

Hybrid Family Vehicle
SUvV Family Vehicle
Sedan Family Vehicle
Wagon Family Vehicle
Others Truck or Sports Vehicle

Program 3.4: Creating a Conditional Character Variable
data spé4r.cars;
set spér.cars;
length type2 $ 25; ©
if type in ('Hybrid', 'SUV', 'Sedan', 'Wagon') @
then type2='Family Vehicle';
else type2='Truck or Sports Vehicle'; ©
runy

proc print data=spéd4r.cars (firstobs=61 obs=64);
var type type2;
run;

O Remember that any time we are creating new character data, as a best practice, you should use the
LENGTH statement. Here we are changing the length of the new character variable type2 (hence, we use
the dollar sign), to a maximum of 25 characters.
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® To create the type2 variable conditionally, first start with the IF statement. IF type is Hybrid, SUV, Sedan,
or Wagon, THEN type2 is set to Family Vehicle.

© The catch-all ELSE statement will set type2 equal to Truck or Sports Vehicle.

Looking at the data set in Output 3.4 to make sure it was processed correctly, we can see that the type2
variable is Family Vehicle for Sedan and SUV and Truck or Sports Vehicle for the other two.

Output 3.4: Results of Program 3.4

Obs Type type2

61 Sedan Family Vehicle

62 Sports Truck or Sports Vehicle
63 Truck Truck or Sports Vehicle
G4 SV Family Vehicle

Creating Conditional Variables with a DO Group

In the previous sections when we used IF, ELSE IF, and ELSE statements, we only executed a single statement
after the key word THEN. What if we want to create multiple variables? You will have to execute multiple
statements. The way to do this is in SAS is to use a DO group.

The DO group will be used often in the subsequent chapters. We will see it in Chapter 7 when we do matrix
simulation and we want to execute something conditionally. It's a great piece of syntax to keep in your back
pocket. The general form of conditional DO Group syntax is:

So how do we use the DO group? Well, we begin the same way as an IF THEN statement. IF, specify our
expression, THEN we use the keyword DO, followed by a semi-colon. And then we execute whatever
statements we want to create as many variables as we want, as shown in the following syntax:

IF expression THEN DO;
executable statements

END;

ELSE IF expression THEN DO;
executable statements

END;

ELSE DO;
executable statements

END;

Remember to always end your DO groups with the END statement. The same goes for the ELSE IF and ELSE
statements as well!

To practice using the DO group, let's return to our cars data set. Now suppose again that car manufacturers
receive an economic incentive for manufacturing cars with high highway miles per gallon. This time, we are
going to say that the bonus comes in either one, two, or, if they don't get a bonus, no payments.

If Miles Per Gallon Highway is greater than or equal to 30, we want to create a new variable called Bonus,
which is 1,000. And we want to create a new variable called Frequency specifying that they get the bonus in
Two Payments. If Miles Per Gallon Highway is between 20 and 29, we will set bonus to 1,000 and say that the
frequency comes in only One Payment. And, of course, if they do not receive a bonus, we will just say No
Payment for the Frequency variable.

>=3() 1,000 Two Payments

20-29 1,000 One Payment
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<20 0

No Payment

To create these two variables conditionally, we will again use a DATA step as shown in Program 3.5.

Program 3.5: Creating Variables with DO Groups

data spé4r.cars;

set spér.cars;
length frequency $ 12;

if mpg highway<20 then do; @

bonus=0;

frequency="'No Payment';

end;

else do; ©
bonus=1000;
frequency="'Two Payments';

end;

run;

proc print data=cars

run;

(1]
(2]

(3]

(4]

) then do; ©

(firstobs=65 obs=68);
var mpg highway frequency;

Always remember the LENGTH statement when you are creating character data.

In the first DO group, if miles per gallon highway is less than 20, then we want to do the following: we
want to create two variables. Set bonus equal to zero and frequency equal to No Payment. Be sure to use
an END statement to end the DO group.

Next, ELSE IF miles per gallon highway is less than 30 and greater than 20, then do the following: set
bonus equal to 1,000 and frequency equal to One Payment.

Finally, ELSE do the following: bonus equals 1,000 and frequency equals Two Payments.

When we execute the DATA step and print the data set as shown in Output 3.5, for the first observation we
have no bonus and No Payment. The second observation is a bonus of $1,000 and One Payment. And the last
observation is a bonus of $1000 and Two Payments.

Output 3.5: Results of Program 3.5

63
66
67
68

WPG_

Obs Highway

18
21
22
34

bonus

0
1000
1000
1000

frequency

No Payment
One Payment
One Payment
Two Payments

Creating and Using Functions

In this section, you will learn how to use some built-in SAS functions to assist in creating new variables—
functions like SUM, ABSOLUTE, EXPONENTIATE, ROUND, and so on. We will use all these in a DATA step to
create our new variables. By the end of this section, you will have learned how to create your own user-
defined function to be used inside a DATA step.
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Creating a Numeric Variable

Figure 3.2 shows a function called mydivision in R with two arguments, numerator and denominator. It
returns a value of 0 if the denominator is 0. Otherwise, it returns the value of the numerator divided by
denominator.

Figure 3.2: R Function

B Csource | Q A+ i B | [~
#Create new functior

mydivision = function(num,den){

val = rep(na,Tength(den))

for(i in 1:length{den)){
if(den[i]==0) {val[i]=0}
else {val[i]=round( num[i] /den[i]

return{val)

To create a new variable using a built-in SAS function, we will do it the exact same way as in R. In SAS, we will
use it in our DATA step using the following syntax:

new-variable = FUNCTION(arguments);

In Program 3.6, we have our DATA statement, our SET statement, and then we are creating a variable called
log_price, which is equal to the log of msrp, meaning we are just taking the log of every element in that
variable.

Program 3.6: SAS Function Example
data spé4r.cars;
set spér.cars;

log price = log(msrp);
run;

Most functions in SAS operate the exact same way as you would expect coming from R. For example,
EXPONENTIATE, LOG, SQUARE ROOT, ROUND, CEILING, FLOOR—they all operate the exact same way,
meaning that they apply that operation to every element in the variable.

However, a few of the built-in functions do not operate the way that you would expect coming from R,
particularly the first row of Table 3.1—SUM, MEAN, VAR, MEDIAN, MIN, and MAX.

Table 3.1: Built-in SAS Functions

SUM, MEAN, VAR, MEDIAN, MIN, MAX
EXP, LOG, SQRT, SIN, COS, TAN
ROUND, CEIL, FLOOR, ABS

* sk
+7 ) 7/:

Note: SAS does not use the » symbol for exponentiation. It uses the double star (**).

When we are using built-in SAS functions in a DATA step, these functions only operate on rows. For example,
in R, if we use the SUM function on a vector, it would sum every element of that vector. In SAS, it is only going
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to apply that operation to each individual row. Applying functions to columns is done using a SAS procedure,
which is discussed in Chapter 5.

Let’s look at an example to illustrate this in Program 3.7. Here we are creating mean_ miles per gallon, and,
using the MEAN function, setting that equal to the mean of miles per gallon highway and miles per gallon city.

Program 3.7: MEAN Function Example

data spé4r.cars;

set spédr.cars;

mean mpg = mean (mpg highway,mpg city);
run;

The function in Program 3.7 is going to the first observation in the cars data set. It's simply taking the mean of
those two variables—miles per gallon highway and miles per gallon city—returning the mean, and placing that
value in the first row of the new variable, mean miles per gallon. Then it goes to the second row and does the
exact same thing. So again, functions only operate on rows in your data set when they are used in a DATA
step.

This isn't the best or most efficient way to find some quick summary statistics. A better way is to use a DATA
NULL step. Using the key word _NULL _ allows us to avoid creating or altering any SAS data to do some type of
operation as shown in Program 3.8.

Program 3.8: DATA NULL Step

data NULL ;
a=mean(l,2,3,4,5);
b=exp (3);
c=var (10,20,30);
d=poisson(1l,2);
put a b ¢ d;

run;

In Program 3.8, we are creating the variable a and setting that equal to the mean of the list. b is just equal to e
to the third power. c is the variance of 10, 20, and 30. d is the cumulative Poisson distribution with a
parameter of 1 and a value of 2.

Because we are not creating a DATA set, if we want to actually see these variables, we have to use the PUT
statement. And that just tells SAS to put these to the log so that we can view them, as shown in Output 3.8.

Output 3.8: Log of Program 3.8
3 20.085536923 100 0.9196986029

As you can see in Output 3.8, the mean of those five numbers is 3. e to the third power is about 20.08. The
variance of 10, 20, and 30 is 100. And the cumulative distribution function is 0.919.

There are much more efficient ways to actually apply a function to a variable. In Chapter 5, we will talk about
some more descriptive procedures to actually find summary statistics that will operate on the entire column
or variable. And in Chapter 7, when we get into the interactive matrix language, the functions that we use in
there will operate the exact same way coming from R. In IML, when we use the MEAN function, we will
actually take the mean of the entire variable.

Manipulating Character Variables

In the previous section, we were just creating and manipulating numeric data. Let's move on now to
manipulating some character values by using built-in functions like SUBSTR, LENGTH, PROPCASE, SCAN, and so
on. These will all be used in a DATA step.

Table 3.2 lists just a few of the available built-in functions in SAS and what they can be used to do. There are
other functions available, and these can be found in the SAS documentation at
support.sas.com/documentation. Click on Programmer’s Bookshelf, then under Base SAS, expand the
Functions and CALL Routines section to learn more about built-in functions.
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Table 3.2: Selected SAS Functions for Character Variables

SAS Function Description

SUBSTR Extracts a substring from an argument

PROPCASE, UPCASE, LOWCASE  Converts word casing

SCAN Returns the nth word from a character string

Removes leading and trailing blanks and concatenates
CATX character strings

Searches for the location of a specific substring within a

FIND character string
TRANWRD Replaces all occurrences of a substring in a character string
PUT Returns a value using a specified format

SUBSTR Function
The SUBSTR function allows us to extract a certain part of a string using the following syntax:

NewVar = SUBSTR (string, start <,length>);

If NewVar is a new variable, it is created with the same length as the string. To set a different length for
NewVar, use a LENGTH statement before the assignment statement in the DATA step.

®  String can be a character constant, variable, or expression.

®  Start specifies the starting position.

® |[ength specifies the number of characters to extract. If it is omitted, the substring consists of the
remainder of string.

Imagine you are working with a data set and one of the variables is Acct_Code, as shown below.

ACCT_Code Org_Code

AQI2 2

We want to create a new variable called Org_Code and just pull out the last character of the Acct_Code
variable. we can use the SUBSTR function to do this as shown in the following code:

Org Code = substr(Acct Code,4,1);
Here you can see we are setting Org_Code equal to a SUBSTR function. We pass in the variable, or string—in

this case Acct_Code—and then tell SAS to read in characters at the fourth position. We only want to read in
one character.

Tip: The SUBSTR function on the left side of an assighment statement is used to replace characters.
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LENGTH Function

Now imagine we have multiple observations in the Acct_Code variable. In this case, as shown below, we have
three observations, and you will notice they are all different lengths.

AQI2 2
ES3 3
V2 2

So how can we still pull out that last character? Well, let's just pass the second argument of the SUBSTR
function, the LENGTH function, which is the exact same coming from R, as shown in the following syntax:

NewVar = LENGTH (argument);

We pass in the length of the Acct_Code variable, and again just read one character from each string, as shown
in the following function:

Org Code=substr (Acct Code, length (Acct Code),1);

So now our organization code is 2, 3, and 2.

SCAN Function
The SCAN function lets us extract a certain part of a string according to some delimiter using the following
syntax:

NewVar = SCAN (string, n <,charlist>);

The SCAN function is used to extract words from a character value when the relative order of words is known,
but their starting positions are not. The default delimiter is a blank. When using the SCAN function, the
following conditions exist:

® A missing value is returned if there are fewer than n words in the string.

® |f nis negative, the SCAN function selects the word in the character string starting from the end of
the string.

® The length of the created variable is the length of the first argument starting in SAS 9.4.
® The length of the created variable is 200 bytes in SAS 9.3 or earlier.

® Delimiters before the first words have no effect.

® Any character or set of characters can serve as a delimiter.

® Two or more contiguous delimiters are treated as a single delimiter.

Suppose we have a data set called Name, which contains the names of employees in a database. The first
name in the data set is Farr, Sue, and we want to create a new variable called FName for first name by just
pulling out the second word in the name variable.

Farr,Sue Sue
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We will do this with the SCAN function as follows:

FName = scan (Name,2,',");

The function passes the Name variable, or string, specifies what word we are going to be extracting—in this
case, the second word—and then the last argument is just the delimiter. The delimiter in this example is a
comma. When we execute this statement inside a DATA step, FName is going to be Sue.

CATX Function

Suppose we want to combine character variables. The CATX function removes leading and trailing blanks,
inserts delimiters, and returns a concatenated character string using the following syntax:

NewVar = CATX(separator, string-1, ... ,string-n)

Imagine we have a data set with two separate variables—the first name and last name, Sue Farr—and we
want to go ahead and concat these two names together and create a new variable called FullName.

Sue Farr Sue Farr

We will use the CATX function as shown below. This also removes leading and trailing blanks so that you don't
save any unnecessary space.

FullName = catx (' ', FMName, LName) ;

The first argument of the CATX function is just the delimiter. Here we are just giving it a single space. The rest
of the arguments in the CATX function are just the strings, or variables, you are going to concatenate
together. So here we pass it the variables FMName and LName. The new FullName variable will be Sue space
Farr.

TRANWRD Function

Finally, assume you want to change a certain part of a string or variable and replace it with another string or
word. In this case, assume we want to change all instances of the word Luci in the data set below to Lucky in
the product variable of our data set.

Product_ID Product Order_ID

21 02 002 00003 Sunfit Trunks, Blue 1231986335

21 02 005 00003 Luci Knit Mittens, Red 1232003930

21 02 005 00004 Luei Knit mittens, blue 1232007693
Product_ID Product Order_ID
21 02 002 00002 Sunfit Trunks, Blue 1231986335
21 02 005 00003 Lucky Knit Mittens, Red 1232003930
21 02 005 00004 Lucky Knit mittens, blue 1232007693

To do this easily, we can use the TRANWRD function with the following syntax:

NewVar = TRANWRD (source, target, replacement);
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The TRANWRD function replaces or removes all occurrences of a given word (or pattern of characters) within
a character string.

® The TRANWRD function does not removed trailing blanks from target or replacement.
® |f NewVar is not previously defined, it is given a length of 200.

® |f the target string is not found in the source, then no replacement occurs.

Let’s use the TRANWRD function as follows:

Product = Tranwrd (Product, 'Luci ', 'Lucky '):;

First, we pass the variable to the function, in this case Product, and then tell it the target value that we want
to change, which is Lucy, and finally what we are going to be replacing it with—Lucky. The function searches
all observations of the product variable, looks for the term Lucy, and replaces them with Lucky.

Creating Functions for the DATA Step

A function definition begins with the FUNCTION statement and ends with an ENDSUB statement. A SAS
function is a routine that accepts arguments, performs a computation or other operation, and returns either a
character or numeric value. The syntax is highly similar to the R function. The FUNCTION statement is
followed by the function name and the arguments in parentheses. In addition, each function uses the RETURN
statement to identify the function output.

As we learned previously, SAS has a ton of built-in functions that you can use in your DATA step. Of course, it
probably doesn't have all functions that you want to use. Maybe you want to customize your own function. To
do so, you will use the FUNCTION COMPILER procedure (PROC FCMP). All the functions we create here will be
used inside a DATA step.

The guts of PROC FCMP are very similar to the FUNCTION function in R, as shown in Figure 3.3.

Figure 3.3: R FUNCTION Function

= Source q + | 9% |+ Source
function. name function(argl,arg2,...

programming. statements

returniarguments

In SAS, we start with the FUNCTION statement and then specify the function name that we are going to
create. Then in parentheses, we give it a list of arguments—argument 1, followed by all the other
arguments—as shown in the following syntax:

PROC FCMP OUTLIB=libref.data-set.package;
FUNCTION function-name(argument-1 <$>,...,
argument-n <$>) <$>; <length ;>
programming-statements;
RETURN(expression);
ENDSUB;
QUIT;

If the input argument is a character value, it needs a dollar sign operator. Directly after the parentheses when
you have specified your input arguments, if the output value that we are creating is also a character value, we
need to use the dollar sign operator again. If you are creating character data, always remember your LENGTH
statement.

Then you create whatever SAS programming statements you want to offer to the function. Furthermore,
PROC FCMP requires the RETURN statement, and you need to pass it the value you actually want to return.
Here we can only return a single value. In later chapters, we will talk about macro programming for complete
customization of SAS code where you can return as many values as you would like. And in Chapter 7 when we
get into the interactive matrix language, you will learn how to create functions to return multiple matrices.
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But for now, with PROC FCMP, we can only return a single value. To conclude your function, use the ENDSUB
statement.

To save the functions that we create in PROC FCMP, we will use the OUTLIB option in the PROC FCMP
statement. This is a three-level name that starts with the library, followed by the DATA set. We will be saving
our functions in DATA sets. The third name is the actual package. We can save our functions in different
packages all in a DATA set. A package is a collection of routines that have unique names. You can call the
second and third argument of the OUTLIB option any name that you choose.

For example, maybe you have time series functions. You can save them in a specific package. Maybe you have
data mining functions. You can save those in another package. And you can save all those inside a single DATA
step in your library so that you can use them later in the days to come.

Let’s look at an example of a PROC FCMP statement in Program 3.9. Imagine we want to switch the order of a
string in a DATA set. We want to go from last, first name, to first space last name.

Program 3.9: PROC FCMP

proc fcmp outlib=work.functions.newfuncs; ©
function ReverseName (name $) $; @
length newname $ 40; ©

newname=catx (' ',scan(name,2,',"'),scan(name,1,"',')); O
return (newname); ©
endsub; O

quit;

©® We are saving this function in the sp4r library in the functions DATA set in the newfuncs package. The
newfuncs package is a collection of routines that have unique names and are stored in the work.functions
data set.

® Next, we have the FUNCTION statement, and we are going to call this function ReverseName. We only
have one input argument, which is name, and it is a character value. The value that we are returning will
also be character, so a dollar sign is needed after the parentheses.

© As a best practice, remember your LENGTH statement. The new value that we are creating, newname,
can have up to 40 characters.

@ Here in the function we are creating a newname variable, which is equal to the CATX function. The first
argument is the delimiter, which is just a space. And then we are scanning the input argument for the
second word and assuming that these words are delimited with a comma. Then we are concatenating
that with the first word.

© Finally, you need to use a RETURN statement. We are returning the newname value.

O Don't forget your ENDSUB statement!

Accessing Newly Defined Functions

Imagine you created the ReverseName function in Program 3.9, and now you want to use it, perhaps several
days or weeks later. To do so, we will use the OPTIONS statement and the CMPLIB option, as shown in the
following syntax:

CMPLIB=libref.data-set | (libref.data-set-1 ... libref.data-set-n)

This is basically the same as the library function in R. The CMPLIB option is telling SAS to unpack the functions
in the library in the function's DATA set. Once you unpack the functions with the OPTIONS statement, then
you can use all the functions in that package.

The CMPLIB= SAS system option specifies one or more data sets that SAS searches for user-defined function
entries. The default is work.functions as shown in the example function below:

options cmplib=work.functions;
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The OPTIONS statement specifies or changes the value of one or more SAS system options. For example, to
suppress the data that is normally written to SAS output and set a line size of 72, execute the following
statement:

options nodate linesize=72

Tip: Options are not saved. They must be run in each session.

Using User-Defined Functions

Suppose that we have a data set called school and we want to add a new variable called FLName for first last
name. Let’s use the ReverseName function from Program 3.9 and pass it the variable name.

Name FLName

Bakerman, Jordan Jordan Bakerman

As you can see, the variable name is “Bakerman, Jordan”. Program 3.10 executes the DATA step to create the
new value “Jordan Bakerman” based on the ReverseName function that we created with PROC FCMP.

Program 3.10: Using ReverseName Function
options cmplib=work.functions;

data spé4r.school;
set spér.school;
FLName=ReverseName (name) ;
run;

Subsetting Data

In this section, you will learn how to use a DATA step to subset columns, rows, and observations conditionally
to a new SAS data set.

In the previous chapter, you learned how to print the unique levels of specific variables. In this section you will
learn how to create a data set of those unique levels. Then in the next section, you will learn how to
concatenate them together to create a data set, which is equivalent to a list in R, as shown in Figure 3.4.

Figure 3.4: R Script

[ FlsourceonsSave | Q /# ~| £ ~#Run 9% | “Source -~
#Identify the unique levels of the character valued variables
make = levels(carsimake)

Type = levels(carsiType)
origin = levels(carsSorigin)

#Create a list of the character valued variables
my_list = list(make,Type,origin)

#Create a data frame for cars from Asia
Asia = cars[carsSorigin=="Asia",]
Asia = data.frame(Asiainame, asiaiTeam,Asia‘Home_Runs)

#Create a data frame for cars from Europe
Europe = cars[carsiorigin=="Europe”,]
Europe = data.frame(EuropeiName,EuropeiTeam,EuropeiHome_Runs)

#Concatenate the Boston and Montreal data frames
bos_mon = rbind(Asia,Europe)
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Subsetting by Column: KEEP= Option

Let’s look at an example to learn how to subset variables in SAS. Imagine we want to pull out all the
observations in the cars data set where the origin is equal to Asia, and also perhaps Europe, and then bind
those rows together to create a new SAS data set.

Thus far in this book, we have specified the data set in the DATA statement and the SET statement as the
same, which overwrites the existing data set with the changes. To subset a new data set, we must specify the
data set we want to pull from in the SET statement and the new data set we are creating in the DATA
statement, as shown in the following syntax:

DATA new-data-table-name (KEEP=variablel variable2 ...);
SET old-data-table-name;
RUN;

In this case, we are creating a new data set called cars2 pulling observations from cars. And as an option, we
are using the KEEP= option to tell SAS that we only want to keep the variables make, msrp, and invoice. Only
those three specific columns will be in the cars2 data set, as shown in Program 3.11.

Program 3.11: Creating a New Data Set by Keeping Columns

data spé4r.cars2 (keep=make msrp invoice);
set spédr.cars;
run;

Subsetting by Column: DROP= Option

Likewise, we could also create a new data set by dropping variables. In that case, we can use the DROP option,
which is pretty much the same as setting the variable equal to a NULL value in your R data frame. In Program
3.12 we are creating a data set called cars2, dropping model and drive train, and keeping all other variables.
The syntax is nearly identical to the KEEP= option. We just substitute DROP=.

Program 3.12: Creating a New Data Set by Dropping Columns

data spdr.cars2 (drop=model drivetrain);
set spédr.cars;
run;

Subsetting by Row: FIRSTOBS and OBS= Options

To subset by row, we can use the FIRSTOBS= and OBS= options in the SET statement as shown in the following
syntax:

DATA new-data-table-name;
SET old-data-table-name (FIRSTOBS=# OBS=#);
RUN;

We have seen these options previously in the PRINT procedure. In Program 3.13 we are pulling the
observations 25 through 50 from the cars data set and putting them into the new cars2 data set.

Program 3.13: Creating a New Data Set by Subsetting a Group of Observations

data spédr.cars?2;
set spédr.cars (firstobs=25 obs=50);
run;
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Subsetting Conditionally: WHERE Statement

We have talked about the WHERE statement during our discussion of the PRINT procedure. In that context, it
was used to print observations conditionally. We can use the exact same WHERE statement and conditional
expression to subset observations conditionally as shown in the following syntax:

DATA new-data-table-name;
SET old-data-table-name;
WHERE conditional-expression;
RUN;

In Program 3.14 we are creating a new data set called cars2, which is pulling all the observations from cars
where mpg_city is greater than 35.

Program 3.14: Creating a New Data Set by Subsetting Conditionally

data spédr.cars2;

set spédr.cars;

where mpg city > 35;
run;

The KEEP=, DROP=, FIRSTOBS=, and OBS= options can be combined with the WHERE statement to subset the
data conditionally as well as according to column and row.

Subsetting by Query: PROC SQL

In the first example of PROC SQL, you learned how to print the unique levels of a specific variable. Now we
will actually create a table from those unique levels. Previously we started with the SELECT UNIQUE
statement, but now we will also tack on the CREATE TABLE statement as shown in the following syntax:

PROC SQL;

CREATE TABLE new-data-table-name AS

SELECT UNIQUE variable-name FROM old-data-table-name;
QUIT;

In Program 3.15 we are creating a new table in our sp4r library called origin, and then using the keyword AS.
We can use the exact same syntax that we saw before to create a new table called origin and select the
unique observations from origin from the cars data set. You can use as many CREATE TABLE statements as you
want here to create as many new data sets as you would like as well.

Program 3.15: Creating a New Data Set by Subsetting by Query

proc sqgl;

create table spé4r.origin as

select unique origin from spédr.cars;
quit;

Tip: Multiple CREATE TABLE statements can be specified to create multiple data sets in a single SQL
procedure.

Tip: SELECT DISTINCT is identical to SELECT UNIQUE.

Concatenating Data Sets

Now that we know how to subset data, what if we want to go ahead and row bind or column bind our data
back together again? The following sections will explain how to reproduce the rbind() and cbind() functions in
R.
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Row Bind Data Sets

To reproduce the rbind() function in R, we will use a DATA step. In the SET statement, we will specify all the
data sets we want to row bind, as shown in the following syntax:

DATA new-data-table-name;
SET data-table-1 data-table-2 ... ;
RUN;

Let’s look at an example of two data sets—employees Denmark (empsdk) and employees France (empsfr). We
want to stack them on top of each other and create a new data set called employees all, as shown in Figure
3.5.

Figure 3.5: Row Bind Data Sets

empsdk
First | Gender | Country empsall
Larg o Leliei First | Gender| Country
Kari F Denmark Lars M Denmark
Jonas |M Denmark Kari = Denmark
o
empsfr Jonas |M Denmark
First | Gender| Country fee | France
Piere |[M France Sophie |F France
Sophie [F France

To do this, we will pass the employees Denmark data set and the employees France data set to a single SET
statement, and it will simply stack them on top of each other as shown in Program 3.16. The important thing
to remember here is the data sets have to have the exact same column names. Otherwise, you will get a block
diagonal data set for empsall.

Program 3.16: Row Bind Data Sets

data empsall;
set empsdk empsfr;
run;

Column Bind Data Sets

On the other hand, if we have two separate data sets—for example, names and home—and we want to
column bind them together, we will use multiple SET statements. You can think of this as creating a column of
SET statements. Each SET statement should have its own data set, as shown in the following syntax:

DATA new-data-table-name;
SET data-table-1;
SET data-table-2;

SET data-table-n;
RUN;

In this case, we can set names and set home. That will column bind them to create a new SAS data set, which
has the three observations, and in this case, two columns, as shown in Program 3.17 and Figure 3.6.

Program 3.17: Column Bind Data Sets with Same Dimensions

data cbind;
set names;
set homes;
run;
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Figure 3.6: Column Bind Data Sets with Same Dimensions

names home cbind

First Country First Country
Lars Denmark ”. Lars Denmark
Kari Denmark Kari Denmark
Pierre France Pierre France

Using a SET statement to concatenate data sets of different dimensions removes observations without
warning. The data set length is fixed at the length of the first data set provided in the SET statement.

To concatenate data sets of different dimensions, it is important to use the MERGE statement. For example, if
we want to column bind the vehicle and origin data sets, notice that the unique levels of those two variables
from the car's data set in Figure 3.6. If we use the previous syntax with multiple SET statements, SAS would
actually reduce the number of observations in the final data set to only three observations as shown in Figure
3.7. SAS limits the number of observations to the smallest data set that you are merging together.

Figure 3.7: Incorrectly Column Bind Data Sets with Different Dimensions

vehicle mylist
Type o Type Origin
. origin - -

Hybrid Hybrid Asia
Country
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By using the MERGE statement, we are creating a list, and saving it as a SAS data set, as shown in the
following syntax:

DATA new-data-table-name;
MERGE data-table-1 data-table-2 ...data-table-n;
RUN;

Therefore, by using the MERGE statement, we can merge the vehicle and origin data sets together and not
lose any observations as shown in Program 3.18 and Figure 3.8.

Program 3.18: Correctly Column Bind Data Sets with Different Dimensions

data mylist;
merge vehicle origin;
run;

Figure 3.8: Correctly Column Bind Data Sets with Different Dimensions

vehicle mylist
Type . T Origin
w_] origin yFe - =
Hybrid Hybrid Asia
Country
SUv - Suv Europe
Asia
Sedan Sedan USA
Soort Europe =
orts orts
p USA p
Truck Truck
Wagon Wagon

Hopefully you can see why it’s important that you use the MERGE statement for data sets with different
dimensions. You could also simply use a MERGE statement every time you want to cbind if you would like.
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Match-Merging Data Sets

The MERGE statement is much more powerful than the way we used it in the previous section. Instead of just
doing a straight cbind, we can actually merge according to a common variable in each data set. In the next few
section, you will learn you how to do a One-to-One, One-to-Many, and Nonmatch merge, as illustrated in
Figure 3.9.

Figure 3.9: Types of Match-Merges
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related to more than one observation in
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To actually do match merging, you have to first sort your data by the common variable using PROC SORT.
PROC SORT is an easy procedure, which you can explore in the online documentation if you want to learn
more. For now, just know that after you use the SORT procedure, you can then use your DATA step and the
MERGE statement. You will list all the data sets you want to merge according to some common variable. To
tell SAS what that common variable is, you will list it in the BY statement.

One-to-One Merge

Imagine we have a data set called employees and a data set called phone, which hold the names of our
employees and their phone numbers respectively, as shown in Figure 3.10. Notice that each data set has a
common variable, Employee ID (EmpID). We want to merge them according to that common variable.

Figure 3.10: One-to-One Merge Data Sets

emps phone

First | Gender | EmpID EmpID Phone
Togar M 121150 121150 | +61(2)5555-1793
Kylie F 121151 121151 | +61(2)5555-1849
Birin M 121152 | = : 121152 [ +61(2)5555-1665

And if we did the SORT, and use the data set to do the MERGE and use the BY statement for the common
variable Employee ID as shown in Program 3.19, we would get the final result in Figure 3.11. Notice that we
have three observations and now only four variables.

Program 3.19: One-to-One Merge
proc sort data=emps;

by EmpID;
runy

proc sort data=phone;
by EmpID;
run;
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data mergedemps;
merge emps phone;
run;

Figure 3.11: One-to-One Merge Results

First | Gender | EmpID Phone
Togar M 121150 | +61(2)5555-1793
Kylie P 121151 | +61(2)5555-1849
Birin M 121152 | +61(2)5555-1665

One-to-Many Merge

If we do a one-to-many merge, notice in Figure 3.12 that the Employee ID and the employees' data set
matches to at least one Employee ID in the phone's data set.

Figure 3.12: One-to-Many Merge Data Sets

phone
emps EmplD | Type Phone
First | Gender | EmplID | 121150 |Home | +61(2)5555-1793
Togar |M 121150 | = | 121150 | Work | +61(2)5555-1794
kylie |F 121151 | «—— | 121151 |Home |+61(2)5555-1849
Birin M 121152 w 121152 | Work +61(2)5555-1850

4

N 121152 | Home +61(2)5555-1665
121152 | Cell +61(2)5555-1666

/

¥

If we do a MERGE here, the final data set would have multiple instances of the names and gender variables
where it was necessary. In this instance, there are two observations for Togar because that person had two
phone numbers, one for Kylie, and Birin, in this case, has three phone numbers, as shown in Figure 3.13. SAS
populates the data in the new data set where necessary.

Figure 3.13: One-to-Many Merge Results

First | Gender | EmpID | Type Phone
Togar M 121150 | Home +61(2)5555-1793
Togar M 121150 | Work +61(2)5555-1794
Kylie F 121151 | Home +61(2)5555-1849
Birin M 121152 | Work +61(2)5555-1850
Birin M 121152 | Home +61(2)5555-1665
Birin M 121152 | Cell +61(2)5555-1666

Nonmatch Merging

Finally, to do Nonmatch merging, notice in the employees' data set in Figure 3.14 that there is one ID that
does not match any ID in the phone data set. Likewise, the last observation in Employee ID does not match
any Employee ID in the employees' data set.

Figure 3.14: Nonmatch Merge Data Sets

emps phone

First | Gender | EmpID EmpID Phone
Togar M 121150 [ =—— | 121150 | +61(2)5555-1793
Kylie | F 121151 | 121152 | +61(2)5555-1665
Biin | M 121152 [« 121153 | +61(2)5555-1348
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When we merge these data sets, we get exactly what we would expect. SAS just fills the data set with NULL
values where necessary as shown in Figure 3.15. So Kiley does not have a phone number, and the last
observation in our resulting data set has no information for first name or gender for that phone number.

Figure 3.15: Nonmatch Merge Results

First | Gender | EmpID Phone
Togar M 121150 | +61(2)5555-1793
Kylie F 121151
Birin M 121152 | +61(2)5555-1665

121153 | +61(2)5555-1348
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Exercises

Multiple Choice

1. Choose the correct statements. (Select all that apply.)
a. The ELSE IF and ELSE statements provide more efficient conditional processing.
b. The DATA step uses a SET statement to add new variables to the SAS data set.
c. You do not need to initialize the new variable.

2. Suppose you are creating a new variable called origin2 from the existing variable origin. Here you want to
let origin2 be Asia if origin is 'Asia'. Otherwise, let origin2 be 'Foreign Country'. Does the DATA step below
accomplish this task?

data spdr.cars;
set spédr.cars;
length origin2 $ 25;
if origin='Asia' then origin2='Asia';
else origin2='Foreign Country';
run;

Yes
No

3. Choose the correct statements. (Select all that apply.)
a. DO groups enable the execution of multiple statements.
b. Each DO group ends with an END statement.
c. Itisa best practice to use a LENGTH statement when you create character variables.

4. Which task does the DATA step below accomplish? (Choose the correct statement.)

data spé4r.cars;
set spédr.cars;
mpgvar=min (mpg city);
run;

a. Return the minimum value of MPG_City.
b. Create a new variable that is an exact duplicate of MPG_City.

5. What would the variable location be after you use the SUBSTR function?

Location="'Columbus, GA 43227';
substr (Location,11,2)="OH';

a. us
b. GA
c. OH
d. 27

6. What is the value of the variable location after you use the SUBSTR function?

data spédr.test;
Location="'Columbus, GA 43227';
substr (Location,11,2)="OH"';
run;

a. Columbus, GA 43227
b. Columbus, OH 43227
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c. Columbus,OH 43227
d. anerror will occur

What is the value of the newname variable in the second observation of the cars data set if you run the
DATA step below?

data spdr.cars;
set spédr.cars;

newname = upcase (catx(' ',make,scan(model,l)));
run;
a. Acura RSX
b. ACURA RSX
c. Acura RSX Type S 2dr
d. ACURA RSX Type S 2dr
e. ACURARSXTYPES2DR

Choose the correct statements. (Select all that apply.)

a. All built-in SAS functions operate the same as built-in R functions.

b. PROC FCMP is the counterpart to the R function function().

c. The CMPLIB= option in the OPTIONS statement unpacks the user-defined function.

You want to use PROC FCMP to create a function that avoids division by zero. If the divisor is zero, simply
return a value of zero. What is wrong with the PROC step below? Select all that apply.

proc fcmp outlib=spdr.functions.newfuncs;
function mydiv (num,den) ;
if den = 0 then val = 0;
else val = round(num/den) ;
endsub;
quit;

a. It should have an ENDFUNC statement, instead of ENDSUB.
b. It should end with a RUN statement, instead of QUIT.
c. Itis missing a RETURN statement to return val.

Which statement and options are used to select column variables, rows, and conditional observations?
a. SET, DROP, KEEP

b. WHERE, FIRSTOBS= OBS=, SET

c. KEEP, FIRSTOBS= OBS=, WHERE

d. KEEP, WHERE, WHERE

Your colleague gave you three SAS data sets and wants you to combine them into one. The data sets are
unique. This means that they are of different dimensions and contain different variables. Which DATA
step statements should be used to combine these data sets?

a. setdtl dt2dt3;
b. merge dtl dt2 dt3;
c. setdtl; set dt2; set dt3;
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Short Answer

1. Navigate to the SAS PROC SORT online documentation. Locate the PROC SORT statement syntax and
investigate the OUT= option. What is this option used for, and what is the default behavior if it is
omitted?

Read about the caution listed in the documentation, and think of a situation in which you would need to
"use care when you use PROC SORT without OUT=. "

Programming Exercises
Use the Cars data set in the SP4R library to complete the exercises.

1. Creating a New Data Set Variable

a. Create a new variable called mpg_average in the Cars data set. This new variable should simply
be the average gas mileage between mpg_city and mpg_highway.

b. Print the first five observations for the variables mpg_city, mpg_highway, and mpg_average to
ensure that the new variable is created.

2. Creating a New Data Set Variable Conditionally

a. Use the new variable that you created in Exercise 1. Create a new variable in the Cars data set
called mpg_quality, which is a character variable. Set mpg_quality according to the following

table:
<20 Low
20-29 Medium
>30 High

b. Print observations 65 through 70 for the variables mpg_average and mpg_quality to ensure that
the variable is created.

3. Creating a New Data Set Variable Conditionally

a. Create a function called tier with a single numeric argument, which returns a character value.
The function should return values according to the following table:

<20 Low
20-29 Medium
>30 High

b. Use the function that you created to create a new variable in the Cars data set. Name the new
variable mpg_quality2 and name the argument of the function tier as mpg_average. As a result,
mpg_quality and mpg_quality2 are identical.

c. Print observations 65 through 70 for the variables mpg_average, mpg_quality, and
mpg_quality2 to ensure that the variable is created.
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Use PROC SQL to create three new data tables. Let values of make be the unique levels of the
make variable. Let the values of type be the unique levels of the type variable. Let the values of
origin be the unique levels of the origin variable.

Create a new data table called mylist, which combines the three data tables. Hint: This task
requires you to column-bind data tables of different dimensions.

Print mylist to ensure that the data table is created correctly.

Obs

0 o=l M N 4 M=

w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
29
25
26
27
28
29
30
3
32
33
34
35
36
37
38

Make Type

Acura Hybrid
Audi 5Uv
BMW Sedan
Buick Sports
Cadillac Truck
Chevrolet Wagon
Chrysler

Dodge

Ford

GMC

Honda

Hummer

Hyundail

Infiniti

Isuzu

Jaguar

Jeep

Kia

Land Rover

Lexus

Lincoln

MINI

Mazda

Mercedes-Benz

Mercury

Mitsubishi

Nissan

Oldsmobile

Pontiac

Porsche

Saab

Saturn

Scion

Subaru

Suzuki

Toyota

Volkswagen

Volvo

Origin

Asla
Europe
USA

5. Creating and Row-Binding Data Tables

a.

Create a new data table called sports, which has only three columns from the Cars data set:
make, type, and msrp. In addition, keep only those observations where type is equal to sports
and msrp is greater than $100,000.
Create another data table called suv, which has the same three columns. In addition, keep only
those observations where type is equal to suv and msrp is greater than S60,000.

Create a new data table called expensive by row-binding sports and suv. Then print expensive to
see the results.
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Obs

Make

Mercedes-Benz
Mercedes-Benz
Porsche

Land Rover
Lexus
Mercedes-Benz

Type

Sports
Sports
Sports
suv
suv
suv

MSRP

$121,770
$126,670
$192,465
$72,250
$64,800
$76,870
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Solutions

Multiple Choice

1. a,b,andc
2. a

3. a,b,andc
4. b

5 ¢

6. b

7. b

8. bandc

9. ¢

10. c

11. b

Short Answer

1. The OUT= option names the output data set in a PROC SORT step. Without the OUT= option, PROC
SORT replaces the original data set with the sorted observations. This could result in a loss of data if
the PROC SORT step includes a WHERE statement, or the FIRSTOBS or OBS option to select only a
subset of the observations in the data set.

Programming Exercises
Use the Cars data set in the SP4R library to complete the exercises.

1. Creating a New Data Set Variable

a. Create a new variable called mpg_average in the Cars data set. This new variable should simply
be the average gas mileage between mpg_city and mpg_highway.

data spé4r.cars;

set spér.cars;

mpg_average = mean(mpg city,mpg highway);
run;

b. Print the first five observations for the variables mpg_city, mpg_highway, and mpg_average to
ensure that the new variable is created.

proc print data=spédr.cars (obs=5);
var mpg city mpg highway mpg average;
run;

MPG_ mpg_
Obs MPG_City Highway average

1 17 23 20.0
2 24 31 27.5
3 22 29 25.5
4 20 28 24.0
5 18 24 21.0
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2. Creating a New Data Set Variable Conditionally

a. Use the new variable that you created in Exercise 1. Create a new variable in the Cars data set
called mpg_quality, which is a character variable. Set mpg_quality according to the following

table:
MPG_average MPG_quality
<20 Low
20-29 Medium
>30 High

data spédr.cars;
length mpg quality $ 6;
set spér.cars;
if mpg average < 20 then mpg quality='Low';
else if mpg average < 30 then mpg quality='Medium';
else mpg quality='High';
run;

b. Print observations 65 through 70 for the variables mpg_average and mpg_quality to ensure that
the variable is created.

proc print data=spédr.cars (firstobs=65 obs=70);
var mpg average mpg quality;

run;
mpg_ mpg_
Obs average quality
65 16.0 Low
66 18.5 Low
67 20.5 Medium
68 3.0 High
69 31.0 High
70 31.5 High

3. Creating a New Data Set Variable Conditionally
a. Create a function called tier with a single numeric argument, which returns a character value.
The function should return values according to the following table:

<20 Low

20-29 Medium

>30 High
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proc fcmp outlib=work.functions.newfuncs;
function tier(val) $;
length newval $ 6;
if val < 20 then newval = 'Low';
else if val <30 then newval='Medium';
else newval='High';
return (newval) ;
endsub;
quit;

b. Use the function that you created to create a new variable in the Cars data set. Name the new
variable mpg_quality2 and name the argument of the function tier as mpg_average. As a result,
mpg_quality and mpg_quality2 are identical.

options cmplib=work.functions;
data spé4r.cars;

set spér.cars;

mpg quality2=tier (mpg average);
run;

c. Print observations 65 through 70 for the variables mpg_average, mpg_quality, and
mpg_quality2 to ensure that the variable is created.

proc print data=spdr.cars (firstobs=65 obs=70);
var mpg average mpg quality mpg quality2;

run;
mpg_ mpg_ mpg_
Obs average quality quality2
65 16.0 Low Low
66 18.5 Low Low
67 20.5 Medium Medium
68 31.0 High High
69 31.0 High High
70 31.5 High High

4. Creating a List of Unique Values
a. Use PROC SQL to create three new data tables. Let values of make be the unique levels of the
make variable. Let the values of type be the unique levels of the type variable. Let the values of
origin be the unique levels of the origin variable.

proc sql;
create table make as select unique make from spédr.cars;
create table type as select unique type from spédr.cars;
create table origin as select unique origin from
sp4r.cars;
quit;

b. Create a new data table called mylist, which combines the three data tables. Hint: This task
requires you to column-bind data tables of different dimensions.

data spd4r.mylist;
merge make type origin;
run;

c. Print mylist to ensure that the data table is created correctly.

proc print data=spd4r.mylist;
runy;
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Obs Make Type Origin
1 Acura Hybrid Asia
2 Audi suv Europe
3 BMW Sedan USA
4 Buick Sports
5 Cadillac Truck
[ Chevrolet Wagon
7 Chrysler
8 Dodge
9 Ford

10 GMC

11 Honda

12 Hummer

13 Hyundai

14 Infiniti
15 Isuzu

16 Jaguar

17 Jeep

18 Kia

19 Land Rover
20 Lexus

21 Lincoln

22 MINI

23 Mazda

24 Mercedes-Benz
25 Mercury

26 Mitsubishi
27 Nissan

28 Oldsmobile
29 Pontiac

30 Porsche

kA Saab

a2 Saturn

33 Scion

34 Subaru

35 Suzuki

36 Toyota

a7 Volkswagen
38 Volvo

5. Creating and Row-Binding Data Tables

a. Create a new data table called sports, which has only three columns from the Cars data set:
make, type, and msrp. In addition, keep only those observations where type is equal to sports
and msrp is greater than $100,000.

data spédr.sports (keep= make type msrp);

set spédr.cars;

where type='Sports' and msrp>100000;
run;

b. Create another data table called suv, which has the same three columns. In addition, keep only
those observations where type is equal to suv and msrp is greater than S60,000.

data spé4r.suv (keep= make type msrp);
set spér.cars;
where type='SUV' and msrp>60000;
run;

C. Create a new data table called expensive by row-binding sports and suv. Then print expensive to
see the results.

data spdr.expensive;
set spdr.sports spér.suv;
run;

proc print data= spédr.expensive;

runy,

Obs Make Type MSRP
1 Mercedes-Benz Sports $121,770
2 Mercedes-Benz Sports $126,670
3 Porsche Sports $192, 465
4 Land Rover sSuv $72,250
5 Lexus sSuv $64,800
6 Mercedes-Benz suv $76,870
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Introduction

Creating statistical graphics is vital to understanding and presenting your data. In this chapter, you will learn
how to create a variety of both single-cell and multi-cell plots. We will create everything from histograms to
scatter plots inside a single procedure and enhance the presentation of the plot with an assortment of
statements and options. Before we create statistical graphics, we will first learn how to simulate new SAS data
sets from probability distributions so that we can generate data from a desired model. We will then create
and use these random data sets to practice building a variety of plots.

DO Loop and Random Number Generation

In this section, you will learn how to simulate observations from random distributions like the normal, chi-
square, gamma, and Weibull distributions and save those observations in a new SAS data table. We want to
be able to set a seed so that we can duplicate our results. We want to create random data sets from our R
functions in R, rnorm, rbinom, and so on. We also want to be able to add variables to an existing data frame
as shown in Figure 4.1. Maybe we also want to use the REP function to create a classification variable. And
finally, we want to use the other probability functions, like dnorm pnorm, and gnorm.
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Figure 4.1: R Script

| SOUTCE O Save B 5 =®Run | b8 | | = source

#=et a seed for random number generat1on

5er.5eed123

#Creaie a data set of random numbers
n=10
random - cbindirnormin,20,5),rbinomin,1,.253,runifin,0,100 ,rexpin,1,/51]

#add a2 random vector to the data set
random = chind(random, rgeom(n, . 1)}

#aroup random numbers

group = repil:5,each=3]

n—Tlengthlgroup)

random = chind{group,1l:n,rpois{n,23),rbetain,.5,.5)3

#Find Density, cOF, and quantile of distribution
q = seql-3,3,by=.5

d = dnorm{g,0,1}

p - pnorm{g.0,.1]}

random = cbind{g,d,p,qnormip,0,1})

DO Loop

To duplicate this script in SAS, we need to use the DO loop. The DO loop is the key to creating a new data
table. The number of loop iterations defines the table’s row dimension and the number of variables defines
the column dimension. The DO loop is used inside a DATA step to create new data tables or iterate through
rows of an existing data table.

We can create a sequence, maybe 1 to 10, 2 to 20 by 2. Or we can go in the reverse order. Maybe we want to
create repetitive values. For example, maybe we want to add a column of 1s to a data table, which will
represent an intercept if we are simulating a linear regression model. We want to be able to create groups
such as, for example, a classification variable if we are simulating ANOVA data. In particular, we are going to
focus on generating random numbers and creating a new SAS data set.

The DO loop is equivalent to the seq() function in R. You can also think of it as a FOR loop. In SAS, we start
with a DO statement and specify an index variable as shown in the following syntax:

DO index-variable=start TO stop <BY increment>;
END;

Let’s look at a simple example with an index variable, i, in the following DO loop:

do i=1 to 5;
end;

We will set i equal to a starting value of 1. Use the keyword TO to give it a stopping value—in this case, 5. So
we are going from i equals 1 to 5. It acts as a sequence. Always end your DO loop with the END statement.

Below are a two more examples of DO loops. In the first loop, we add in the BY increment option. In this loop,
we are going from i equals 2 to 10 by 2. We can also reverse direction, as shown in the second loop where i
equals 10 to 2 by negative 2.

do i=2 to 10 by 2;
end;

do i=10 to 2 by -2;
end;

You can create a new SAS data set using the DATA step and a DO loop, as shown in the following syntax:

DATA data-table-name-new;
DO index-variable=start TO stop <BY increment>;
iterated-SAS-statements;
OUTPUT;
END;
RUN;
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Tip: Omitting the BY statement causes the DO loop to iterate by 1.

The number of DO loop iterations determines the number of observations that are written to the data table
when you use the OUTPUT statement. In Program 4.1, we are going from i equals 2 to 10 and giving an
increment of 2. In order to actually output all iteration values to the data set loop, we need to use the
OUTPUT statement. Otherwise, SAS would only write the last value of the loop. There would only be one
observation if we forget the OUTPUT statement. You need to be explicit and tell SAS to write all iteration
values to the data set. And again, remember to end the DO loop with an END statement.

Program 4.1: Create New Data Set

data loop;
do i=2 to 10 by 2;
x = 1+1;
rep = 1;
output;
end;
run;

Inside the loop in Program 4.1, we have created a new variable, x. We are saying that x is equal to the index
variable, i, plus 1. We are also creating a new variable rep, which just equals 1 in every instance of the
iteration. In Output 4.1, which shows the PROC PRINT of the loop data set, the index variable, i, is 2 to 10, x is
3to 11, and rep is just 1, which would most likely represent an intercept in the linear model.

Output 4.1: Results of Program 4.1

Obs i X rep
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If you don't want to keep your index variable in your data set, you have two options. You can specify the
KEEP= or DROP= options in the DATA statement. In Program 4.2a, we use the KEEP= option in the DATA
statement to keep only the variables x and rep.

Program 4.2a: KEEP= Option

data loop (keep=x rep);
do i=2 to 10 by 2;
x = 1i+1;
rep = 1;
output;
end;
run;

Likewise, you can tell SAS to drop that index variable, i, using the DROP= option as shown in Program 4.2b.

Program 4.2b: DROP= Option

data loop (drop=i);
do i=2 to 10 by 2;
x = 1i+1;
rep = 1;
output;
end;
run;

Both DATA steps produce the same data table, as shown in Output 4.2. Use the KEEP or DROP statement
depending on the ease of variable specification.
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Output 4.2: Results of Program 4.2a or 4.2b

Obs X rep

L4 O
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Nested DO Loop

A nested DO loop is similar to the REP function in R show in Figure 4.2. It allows us to repeat values. It's also
similar to a nested FOR loop. A nested DO loop can be used to replicate the predecessor DO loop variables
and to create groups.

Figure 4.2: R REP Function

Il Source on Save Q S ~#Run %% |+ Source
rep(1:2,each=2
rep(1:2,2

Program 4.3 shows a nested DO loop going from i equals 1 to 2. Immediately following it, we have another DO
loop, j equals 1 to 2. Of course, remember your OUTPUT statement to write all your values to the data table.

Program 4.3: Nested DO Loop

do i=1 to 2;
do j=1 to 2;
output;
end;
end;

Notice that in Output 4.3, in iteration i, we start with a value of 1 and iterate through j, 1 and 2. And then
moving to a value of 2 for i, we iterate again through j, 1 and 2. This is exactly the same as the FOR loop in R.

Output 4.3: Results of Program 4.3

Obs i j
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There is an alternative way to accomplish the nested DO loop. Applying a DO loop to an existing data table has
the same effect as a nested DO loop. You can just use multiple DO loops in sequential DATA steps. In Program
4.4, we are creating the data set doloop. Here we are going from i equals 1 to 2, and writing both values to
the data table.

Program 4.4: Create Data Set

data doloop;

do i=1 to 2;
output;
end;
run;

In Program 4.5, we then apply another DO loop to an existing SAS data set-- in this case, the doloop data set
created in Program 4.4. The DO loop will iterate through all observations in that data set. It's going to iterate
through values of 1 and 2 for the index variable i.
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Program 4.5: Apply Do Loop to Existing Data Set

data doloop;
set doloop;
do j=1 to 2;
output;
end;
run;

Output 4.5 shows that we get the same data set as before in Output 4.3 when we used the nested DO loop.

Output 4.5: Results of Program 4.5
Obs i i
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Why is this important? Well, perhaps you want to go ahead and add a sequence to an existing data set but
you don't want to use another DO loop on that existing data set. For example, if you have a data set with
1,000 observations and you want to create a sequence from 1 to 1,000 and add it into that data set. You do
not want to use a DO loop. Why? It will simply create a data set with 1,000 by 1,000 observations, or simply
1,000,000 observations.

So how can we add in a sequence to an existing SAS data set? This will be important when plot data so that
we can give the plots an X-axis value. To add in a sequence, we will use a SUM statement, which is discussed
in the next section.

SUM Statement
The SUM statement creates a new variable. Use a SUM statement to add a sequence to

® an existing data table

® anested DO loop

The variable is automatically initialized to zero and its value is retained from one iteration of the DATA step to
the next. On each iteration, the new variable is incremented by the sequence value. The SUM statement can
be useful when you add a sequence to a data table. Use the following syntax to add a SUM statement:

new-variable-name + sequence-value;

In Program 4.6, we are calling our SUM statement seq. And that will be the variable name in the data set. We
give it the sequence value of 1. So seq plus 1. When we start the DATA step, it initializes to 0. And on the first
iteration, the value is going to be 0 plus 1. We use the OUTPUT statement so the value is written to the data
table. And on the next iteration, the seq value is 2, 3, and so on. Basically, we use a SUM statement to add a
sequence to an existing SAS data set.

Program 4.6: SUM Statement

data doloop;
do i=1 to 2;
do j=1 to 2;
seq + 1;
output;
end;
end;
run;
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Output 4.6: Results of Program 4.6

Obs i j seq
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Random Number Generation

Why is the DO loop so important? It specifies how many random numbers to generate. The DO loop is used to
simultaneously create a data table and generate random numbers to let us create new SAS data sets. Now we
can use the DO loop to assist in creating random number distribution data tables.

RAND Function

We will use the RAND function inside the DO loop—which is going to be used, of course, inside the DATA
step—to create new SAS data sets.

To sample from random probability distributions, we use the RAND function. The RAND function is very
similar to the R functions in R. Table 4.1 shows a sample list comparing the syntax between R and SAS.

Table 4.1: Comparing R and SAS

rbinom(n,size,p) RAND('Binomial',p,n)
rexp(n,rate) RAND('Exponential')
rnorm(n,mean,sd) RAND('Normal',mean,sd)
rpois(n,mean) RAND('Poisson',mean)
runif(n,min,max) RAND('Uniform")

The first argument in the RAND function is just the name of the distribution. And you do have to put it in
quotation marks. The next set of arguments is the parameters for that specific distribution, as shown in the
following syntax:

RAND('distribution',param-1,param-2,...);

Make sure you check the online documentation page for the RAND function so that you know what
probability distributions you can simulate. You also need to know the order of the parameters.

You may have noticed in Table 4.1 that not all probability distributions are the same in R as they are in SAS.
So, for example, the Exponential distribution actually does not have a mean or rate parameter. You have to
multiply the distribution by its mean to do the equivalent. The Uniform distribution in SAS only simulates
values between 0 and 1. So, for example, if you wanted a distribution between 0 and 10, you would simply
multiply all simulated values by 10.

In Program 4.7, we are going to create a new data set called random.

Program 4.7: RAND Function in DO Loop

data random (drop=i); ©
call streaminit (123); @
do i=1 to 3;
x = rand('Normal',10,2); ©
output; O
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end;
run;

© Here we drop the index variable, i.

® We use the STREAMINIT subroutine to set a seed to 123.

©® Then we use a DO loop where i equals 1 to 3, creating a new variable, x, which is equal to the RAND
function. It's going to be normally distributed data set with a mean of 10 and a standard deviation of 2.

O Of course, don’t forget the OUTPUT statement to write all values to the data table.

Notice in Program 4.7 that we don't have to specify a number of the values to simulate directly in the RAND
function. That is taken care of inside the DO loop. Because we are entering from 1 to 3—that is, entering three
total values—the RAND function is going to create three simulated values.

If you want to add a column of random numbers to an existing data set, do not use the DO loop. Simply use
your SET statement and create a new variable as shown in Program 4.8. In this case, we are creating the
variable x, which is equal to the RAND function again.

Program 4.8: RAND Function Without DO Loop

data spé4r.cars;
call streaminit (123);
set spér.cars;
x = rand('Normal',10,2);
run;

Again, in Program 4.8, you don't need to specify a number to simulate. It's going to simulate the total number
of observations in the existing data set. If the cars data set has 428 observations, the RAND function will
generate 428 observations as well.

Other Probability Functions

Let’s look at just a few other functions. When we generate random numbers, we can use the PDF, CDF, and
QUANTILE functions. They operate the exact same way in SAS as they do in R.

Let's look at an example of how to duplicate the dnorm, pnorm, and gnorm functions with the PDF, CDF, and
QUANTILE functions in Table 4.2.

Table 4.2: PDF, CDF, and QUANTILE Functions with R Counterparts

dnorm(g,mean, sd) PDF('Normal',q,mean,sd)
pnorm(q,mean,sd) CDF('Normal',g,mean,sd)
gnorm(p,mean,sd) QUANTILE('Normal',p,mean,sd)

As you can see in Table 4.2, we specify the distribution name. In this case, it is Normal. Then we give it either
the quantile for the PDF and CDF function or the cumulative distribution for the QUANTILE function. The final
two arguments are the parameters for the distribution. In this case, they are mean and standard deviation.

TIP: You can also use these functions in a DATA _NULL_ step to print the results of these SAS functions to
the log.

Single-Cell Plotting with PROC SGPLOT

Now that we know how to create our own random data sets, let's plot those data sets and practice the
plotting capabilities in SAS. In this section, we will learn how to reproduce the base R plotting capabilities
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shown in Figure 4.3 including a bar plot, box plot, histogram with some overlaid normal and kernel density
estimates, simple linear regression plot with the line of best fit, confidence limits, and prediction limits.

Figure 4.3: R Script and Plots

I [ 5ourceonSave W - i —tRun B | | 9 Source
#Create histogram with density estimate
n=300; vec = rexp(n,1,/10); 5 = rep(1:3,each=100
hist{vec, 50,freg-r)
Tines (density(vec),col-"red")

#Create boxplot
hoxplot (vec—s,horizontal=T!

#Create bar chart
n=12; vec = rnorm{12,10000,5000)
barplot(vec)

#Create scatter plot

X = 1:30; vyl = 10+x+rnorm{30); y2 = 35+x/2+rnorm{30)
plot (yl—x,ylim=c(10,50])); abline(Im(yl-x)]}
pointsiyz-~x); abline(Im{yz~x))

#enhance the plot

x = 1:12

revenue - rnorm{12,10000,1000)

revenua_2 - rnorm{12,13000,500)

plot (revenue-x,type="b" ,col="blue",ylim=c(8000,14000),
main="Monthly sale of Company & and B for 2015",
xlab="mMonth",ylab="Revenue for 2015",pch=16,T1ty=2)

Tines (revenue_2-x,type="h",col="red",pch=14,Tty=2

Text (10,8000, " 1ordan B7)

ablinerh=11000,col="gray"): ablineCu=6.5,col="gray")

legend(2,9500,c("a","B") ,col=c("blue","red"}, Tty=c(2,2))

Manthly Salss of Company A and B for 2018

At the end of this section, you will learn how to touch up your plots and make a nice visual presentation by
adding a title, a different legend, and even your name so that you can take credit for your plot. You can also
change the pattern of the lines, the symbols for the points, change the x and y labels, and so on.

PROC SGPLOT Syntax

All of the plotting capabilities in R can be accomplished in SAS by the SGPLOT procedure. SGPLOT stands for
statistical graphics plot. We can create single-cell plots just like the plot function in R. We can also overlay
plots on a single set of axes. If we want to overlay two scatterplots on a single plot, we can do that using PROC
SGPLOT. And finally, we will enhance the presentation of the plot with different options and statements in
PROC SGPLOT.

Table 4.3 lists a few plots that you can create in PROC SGPLOT organized into four categories. To view the rest
of the plots the SGPLOT procedure can produce, go to the SAS Documentation where you can also view
options and other statements.
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Table 4.3: SGPLOT Procedure Plot Types

scatter, series, step, needle, vector, SCATTER, SERIES, STEP, NEEDLE,
Basic bubble, and band VECTOR, BUBBLE, BAND

regression, loess, penalized B-spline  REG, LOESS, PBSPLINE, ELLIPSE
Fit and Confidence curves, ellipses

box plot, histogram, normal/kernel HBOX, VBOX, HISTOGRAM,
Distribution density DENSITY

Categorical bar chart, line chart, and dot plots HBAR, VBAR, HLINE, VLINE, DOT

The SGPLOT procedure statements conform to different syntaxes depending on the plot type. For the Basic
and Fit-and-Confidence plot types, specify the PLOT statement followed by the X-axis variable and the Y-axis
variable as shown below:

PLOTNAME X=x-variable Y=y-variable </ OPTIONS>;

For example, if you want to create a scatterplot, you would simply use the SCATTER statement in the SGPLOT
procedure. Likewise, if you wanted to create a series plot, you would just use the SERIES statement. Under the
PROC SGPLOT umbrella, you are just changing out your statements to use a different plot.

For the Distribution and Categorical plot types, specify the PLOT statement followed by the response variable
as shown in the following syntax:

PLOTNAME response-or-category-variable </ OPTIONS>;

For example, if you want a bivariate plot, scatter, series, regression, or loess, you use the PLOT statement that
is appropriate. Then you use the x equal to and y equal to options to specify your X-axis and Y-axis variables.
And you can specify options right in the statement after the forward slash.

This syntax is very consistent going forward in SAS. We will see the forward slash to denote options both in
PROC SGPLOT and lots of inferential procedures in Chapter 6. Be sure to look at the online documentation
page to see all the possible options for the procedure. You can do a lot of different fancy things with different
options, depending on the plot.

There are two basic plot types that have slightly different syntax. The band plot, of course, is bivariate, but it
has some different options. You do need the X-axis variable, but you also need the lower and upper option to
specify where exactly you are going to be shading in a region. So what region are you shading in between a
lower bound and upper bound for your band plot? For a Band plot, specify the X-axis variable followed by the
lower and upper region to be filled, as shown below:

BAND X=x-variable LOWER=Ilower-bound UPPER=upper-bound,

And finally, for the bubble plot, you do specify the x- and y-axis variables because it is a scatterplot. You also
use the size option to specify how big you want each bubble to be, which is based on another variable in your
existing SAS data set. For a bubble plot, specify the X-axis variable, y-axis variable, and a numeric variable to
alter the size of the scatter plot points with the following syntax:

BUBBLE X=x-variable Y=y-variable SIZE=size-variable;

Scatterplot Example

Imagine we have a data set called sales, which holds the revenue for each of the 12 months this past year. We
want to create a scatterplot with a SCATTER statement and let the X-axis variable be month, and Y-axis
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variable be revenue. Using the syntax in Program 4.9 will produce the exact same plot as using the plot
function in R, as shown in Output 4.9.

Program 4.9: PROC SGPLOT with a Single SCATTER Statement

proc sgplot data=sales;
scatter x=month y=revenue;
run;

Output 4.9: Results of Program 4.9

1508

In R, you generally create a plot and then iteratively add options to the plot. For example, you would create a
scatterplot and then you could use the points or lines function to overlay either another scatterplot or a series
plot on top of it. In SAS, we do everything in one PROC step. We don't iteratively add graphics to an existing
plot.

For example, if you wanted to create multiple scatterplots in a single window, which basically reproduces the
points function in R, we would just use multiple SCATTER statements. In Program 4.10, we have the same x
variable, but now we have two separate y variables—y equal to revenue and y equal to revenue 2.

Program 4.10: PROC SGPLOT with a Multiple SCATTER Statements

proc sgplot data=sales;
scatter x=month y=revenue;
scatter x=month y=revenue 2;
run;

Output 4.10: Results of Program 4.10

As you can see in Output 4.10, it plots the first revenue in blue and the second revenue in red. Again, this
would replicate the points function in R.
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If we were simply just to switch out the SCATTER statements with SERIES statements as shown in Program
4.11, it would reproduce the lines function in R. The SGPLOT procedure automatically populates a legend
when multiple SCATTER or SERIES statements are provided.

Program 4.11: PROC SGPLOT with a Multiple SERIES Statements

proc sgplot data=sales;
series x=month y=revenue;
series x=month y=revenue 2;
run;

Output 4.11: Results of Program 4.11

Generally, you can use whatever PLOT statements you want. However, there does have to be some structure.
For example, you cannot use the SCATTER statement and also the BOX PLOT statement. Those two plots are
not capable of being in the same window.

Alternative Overlay Approach

Alternative overlay approaches depend on the structure of the data table. Imagine we have a data set called
sales, but this time, we have a variable called company, which is a classification variable. A value of 1 indicates
companyl. A value 2 indicates company2. Month and revenue are stacked as shown in Figure 4.4.

Figure 4.4: Sales Data Set

Obs company month revenue
1 1 1 10083.94
1 2 9287.52

12 1 12 9923.39
13 2 1 12761.45
14 2 2 12905.25
24 2 12 13403.48

How can we reproduce the points function in this instance? We can one SCATTER statement, as shown in
Program 4.12. As an option after the forward slash, we will use the group equal to option and give it the
classification variable. This tells SAS to divide up the job. Now we are plotting revenue and revenue2
separately on the same plot, which looks the same as Output 4.10.

Program 4.12: PROC SGPLOT with GROUP= Option

proc sgplot data=sales;
scatter x=month y=revenue / group=company;
run;

If the response variables are stacked, another approach is to use the BY statement and plot the two
companies separately. In Program 4.13, we pass the BY statement the classification variable, and SAS prints
the scatterplot for companyl and then company2 separately as shown in Output 4.13.
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Program 4.13: PROC SGPLOT with BY statement

proc sgplot data=sales;
scatter x=month y=revenue
by company;

run;

Output 4.13: Results of Program 4.13

company=1

maonth

company-F

To review, the BY statement produces a plot for each category of the specified variable. Use the GROUP=
option to overlay and the BY statement to output multiple plots. We will see the BY statement again going
forward in this course. It's very consistent in most procedures. We will see it in Chapter 7 when we start using
simulations for some more efficient SAS programming.

Multi-Cell Plotting with Procedures and Statements

In this section, you will learn how to create multi-cell plots. You will learn how to create a window and fill the
window with different types of plots like a histogram, density estimate, and a box plot. We will also explore
how to create a scatter-plot matrix, and finally, create a panel of plots based on some classification variable.

In R, we would use the PAIRS function to create a scatter-plot matrix, and we would also be comfortable using
the PAR MFROW option to create a window and fill that window with different types of plots. The R script that
we will attempt to duplicate in this section is shown in Figure 4.5.

Figure 4.5: R Script

=2 Csourceonsare | G # = | i
#Create a scatter plot matrix

n = 1000

x = rexpin’
Vv = rnormin, 3,1)
r = rchisgin, 102

pairs (~x+y+T)

m
(5]
+
(=]
%]
i
(5]

#Create side by sid
n=1000

fem = rnorm{n,66,2)
mal = rnorm(n,72,2)
par (mfrow=c(1,27]

n=-1000
fem = rnorm{n,&6,2)
par (mfrow=c({1,37]

hist(fem, 50, main="Histogram of rFemale Helghrs")
hist(mal,s0, main="Histogram of Female Heights")

#reate a window with multiple plots

hist(fem, 50, main="Histogram of Female Heights")
plot(density(Fem) main="pensity EsTimare of Female Helighrs")
boxplot (fem, main="6oxploT of Female Heights™)

== Run [T = S0urce
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PROC SGSCATTER

First, let’s talk about the SGSCATTER procedure, which creates a paneled graph of scatter plots depending on
the PLOT statement that you use. There are three different PLOT statements that we can use with PROC
SGSCATTER:

® the MATRIX statement creates a scatter-plot matrix to duplicate the pairs() function in R
® the PLOT statement creates a paneled graph that contains multiple independent scatter plots

® the COMPARE statement creates a comparative panel of scatter plots based on shared axes

MATRIX Statement

First, in PROC SGSCATTER, if we use the MATRIX statement, we simply specify all the variables we want to
include in the scatter-plot matrix as shown in the following syntax:

MATRIX variable-1 variable-2 ... </ options>;

In Program 4.14, we are creating a scatter-plot matrix of mpg_city, weight, and length. Options in the MATRIX
statement enable both histograms and density estimates to be plotted on the diagonal of the scatter plot
matrix.

Program 4.14: PROC SGSCATTER with MATRIX Statement

proc sgscatter data=spdr.cars;
matrix mpg city weight length;
runy;

Output 4.14: Results of Program 4.14

PLOT Statement

Next, using the PLOT statement, we can create multi-cell scatter plots. In the PLOT statement, we cross
whatever variables we want to create a scatter plot for in our data set, as shown in the following syntax:

PLOT variable-i * variable-j ... </ options>;

In Program 4.15, we first create a scatter plot of mpg_city by weight, then create a scatter plot of mpg_city by
length, and finally, weight by length. As an option, you can use the ROWS= and COLUMNS-= to specify the
structure of the graphic.

Program 4.15: PROC SGSCATTER with PLOT Statement

proc sgscatter data=spédr.cars;
plot mpg city*weight mpg city*length
weight*length / columns=3;

run;



84 SAS Programming for R Users

In Output 4.15, you can see that we have one row and three columns for these three scatter plots.

Output 4.15: Results of Program 4.15

o
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COMPARE Statement

Finally, we can use the COMPARE statement to create a comparative panel of scatter plots according to some

shared axes. We will always use the Y= and X= option, and in parentheses, give it the y or x variables as shown
in the following syntax:

COMPARE X=(variable-i...) Y=(variable...)... </ options>;

The dimension of the graph is determined by the number of variables in the Y= and X= statements. So in
Program 4.16, for the Y-axis variable, we are specifying mpg_city, which is going to be the shared axes
variable, and the X-axis variables will be weight and length. This means we are going to create scatter plots of
mpg_city by weight and mpg_city by length.

Program 4.16: PROC SGSCATTER with COMPARE Statement

proc sgscatter data=spdr.cars;
compare y=(mpg city) x=(weight length);
run;

As you can see in the plot in Output 4.16, there is no Y-axis variable for the second plot because it is a shared
axis.

Output 4.16: Results of Program 4.16
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ODS LAYOUT Statements

ODS LAYOUT START

To combine plots of different types, use the ODS LAYOUT statement. To reproduce the par(mfrow=c(,))
function in R, we will use the ODS LAYOUT START statement with the following syntax:

ODS LAYOUT START ROWS= COLUMNS=
<WIDTH= HEIGHT= ROW_HEIGHT=
COLUMN_HEIGHT=ROW_GUTTER=
COLUMN_GUTTER=o0ptions>;

ODS LAYOUT END;

In the same way that we pass the number of rows and columns to the PAR MFROW function in R as
arguments, we use the ROWS=and COLUMNS= options to specify the structure of the new window. Once we
specify the structure, we can then fill the window with whatever plots we want.

There are lots of different options for the ODS LAYOUT statement. For example, use ROW_HEIGHT,
COLUMN_HEIGHT to specify the heights of the plots that you are creating. Use ROW_GUTTER and
COLUMN_GUTTER to reduce or increase the space between consecutive plots, and so on.

Once you are done filling the window, you should use the ODS LAYOUT END statement. That lets SAS go back
to the default plotting requirements, which is similar to turning off the PAR function in R.

ODS REGION

Once we use the ODS LAYOUT START statement, we will then use the ODS REGION statement to specify the
location of each plot by using the following syntax:

ODS REGION ROW= COLUMN=;

So, for example, in Program 4.17, in row one, column three, we are going to fit the following plot: a horizontal
box plot for mpg_city.

Program 4.17: ODS REGION Statement

ods region row=1l column=3;
proc sgplot data=spér.cars;
hbox mpg city;

run;

ODS REGION tells SAS exactly where to put the plot in your window, and if you don’t use the ODS REGION, it
will just specify them consecutively. It will start in the top left corner, filling all the way to the bottom right
corner of your window.

But of course, in this example, we only have one row and three columns, so it would start by filling the
leftmost column and ending with the rightmost column.

PROC SGPANEL

The SGPANEL procedure is used to create a panel of plots according to a classification variable. The SGPANEL
procedure combines plots of the same type only. The panel automatically generates a title for each plot
according to the classification variable.

Imagine we have a histogram for the mpg_city variable in the cars data set that is for all the observations in
my data set, but perhaps we want to split it up and create histograms for each level of the origin variable.
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If we want to create a histogram for ORIGIN= Asia, Europe, and USA, we can use the SGPANEL procedure with
the following options:

PANELBY classification-variable;
PLOTNAME response-or-category-variable </ options>;

PROC SGPANEL is followed by the PANELBY statement, which enables the user to specify a classification
variable. The panel creates the same plot type for each classification and response. All the plot types from the
“Single-Cell Plotting” section can be used with PROC SGPANEL.

Program 4.18 shows how to create a histogram for the levels of origin separately. Here, all the observations
for Asia, Europe, and USA are plotted separately.

Program 4.18: PROC SGPANEL

proc sgpanel data=sp4dr.cars;
panelby origin / columns=3;
histogram mpg city;

run;

Output 4.18: Results of Program 4.18

You can specify multiple classification variables in your PANELBY statement, and SAS will simply cross all
classification levels of each variable as shown in Program 4.19. Again, use your ROWS and COLUMNS options
to specify structure for your window.

Program 4.19: PROC SGPANEL with Multiple Classification Variables
proc sgpanel data=spdr.lesscars;

panelby origin type / rows=1 columns=4;

reg x=weight y=mpg city;
run;

Output 4.19: Results of Program 4.19
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Program 4.19 uses the REG statement to add in a line of best fit for simple linear regression data: X-axis
variable (weight), and Y-axis variable (mpg_city). Notice that the title of each plot specifies the classification
level for each variable, origin, and type.
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Exercises

Multiple Choice
1. Does the following DO loop create a data table with a sequence from 50 to 100 by 5 with the variable
name myloop?

data doloop;
do myloop=50 to 100 by 5;

end;
runy,

Yes
b. No

2. What is the dimension of the data set created below?

data random;
do i=1 to 3;
do j=1 to 2;
do k=1 to 2;
output;
end;
end;
end;
run;

a. 12x12
b. 6x3

c. 8x3

d. 12x3

3. Do the SAS functions rand('Beta’,5,7) and CDF('Beta',.3,5,7) reproduce the R functions rbeta(1,5,7)
and pbeta(.3,5,7)?
a. Yes
b. No

4. Navigate to the SGPLOT procedure HELP documentation and examine the plotting statements. Which
statement was used to create the following plot?

=l I Imn
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]
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WFG (G

Fraquency

Welght 1.8
a. HEATMAP

b. POLYGON

c. BUBBLE

d. BLOCK
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5.  Which SGPLOT procedure statement was used to create the following plot?
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c. COMPARE

Programming Exercises
1. Using the DO loop and Creating Random Data Sets

a.

Navigate to the SAS RAND function page and choose a few functions to practice generating
random numbers. Create a data table with at least two variables of random numbers and at least
10 observations. Be sure to use a random seed of your choice.
http://support.sas.com/documentation/cdl/en/lefunctionsref/67960/HTML/default/view
er.htm#pO0fpeei0opypg8nib06qe4r040iv.htm
Create a new data table with the same random variables that you specified from the previous
step. Create a variable called Class that groups the first five observations into class 1 and the
second five into class 2. Drop the nested DO loop index variable from the data table and add a
sequence from 1 to 10. Print the data upon completion.

Run the SAS code below. What do you notice?

data test;
do i=1 to 2;
output;
end;
run;

proc print data=test;
runy;

data test;
set test;
do j=1 to 5;
output;
end;
run;

proc print data=test;
run;

2. Exploring PDF, CDF, and Quantiles Variables

a.
b.

Use the DO loop to create quantiles from 0 to 10 by 1.

Identify the density and the cumulative density of a binomial distribution with parameters 0.8
and 10 by creating variables PDF and CDF.

Use the CDF variable to create the variable Quantile, which mirrors the DO loop values.

Print the data upon completion.
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3.

4.

Plotting Chi-Square Random Numbers

a.

b.

Create a data table with 1000 random deviates from a chi-square distribution with 20 degrees of
freedom and a seed of 123.

Use PROC SGPLOT to plot a histogram of the data.

1)

Alter the appearance of the plot by setting the BINWIDTH= option to 1.
Add both a normal and kernel density estimate.

Add the title ‘My Random Chi-Square Distribution’.

Add the X-axis title ‘Random Chi-Square Deviates'.

Use X-axis limits of 5 and 40.

Request the frequency instead of the percent by providing the option SCALE=COUNT in
the HISTOGRAM statement.

My Random Chi-Square Distribution

=~

60 Hpt4 ;;

40 x

Count

10 20 30 40

Random Chi-Square Deviates

MNormal

Kemel

Plotting Simple Linear Regression Data

a.

Create a data table with Y = B0 +[31 X +€ where X ranges from 1 to 30, Bo = 25, 31 =1, and
€~ N(u=0,0 =5).Keep only the variables X and Y.

Use PROC SGPLOT and the REG statement to plot the line of best fit for the data. Create a plot of
the data. Use both the SCATTER and REG statement to plot the points and a line of best fit.
a.

b
C.
d.
e

Enhance the plot by coloring the points blue and using the symbol STARFILLED
Color the regression line red and use the pattern DOT.

Add a title of your choosing to the X axis, Y axis, and the main title.

Use the X-axis limits from 0 to 31, and the Y-axis limits from 15 to 65.

Name the legend ‘Scatter’ and ‘Line of Best Fit’ for both plot types.

My Scatter Plot

Y Values
»
»

0 10 20 30
X Values

W Scatter Ling of BestFit
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c. Alter the previous plot by changing the SCATTER statement to NEEDLE and the REG
statement to PBSPLINE. (This demonstrates the ease in which plot types can be altered.)

My Needle Plot
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5. Creating a Bubble Plot

a. Create a data table with two groups of 20 and the random seed 123. Create two random
variables. Let the first be exponential and the second be binomial with parameters 0.5 and
5.

b. Use the BUBBLE statement to create a bubble plot. Set the SIZE= to the binomial random
variable. Also, specify the GROUP= option based on the two separate groups. Finally,
provide the plot with titles for the X axis, Y axis, and main title.

My Bubble Plot
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6. Using PROC SGSCATTER
a. Create a data table with 300 observations and a seed of 123.
i. Let X be the deviates from the standard normal distribution.
ii. Produce a variable Y1, which is X plus standard normal deviates.
iii. Produce another variable such that Y2 is 5*X plus standard normal deviates.
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b. Use PROC SGSCATTER to create a scatter plot matrix of X, Y1, and Y2. Include histograms
and kernel density estimates on the diagonal. (Hint: Look up the DIAGONAL= option in the
MATRIX statement of the SGSCATTER procedure.)

Scatter Plot Matrix

c. Use PROC SGSCATTER to create side-by-side scatter plots of Y1 by X and Y2 by X with the
PLOT statement. Add the regression line to both plots with the REG option.

Seatter Plets

d. Use PROC SGSCATTER and the COMPARE statement to create the same scatter plot with
shared axes.

Scatter Plots

7. Using PROC SGPANEL

a. Instead of creating Y1 and Y2 as separate variables from the previous exercise, stack the
variables in a single column denoted Y using a nested DO loop.

i Create a categorical variable called Year with groups 1 and 2.
ii. Generate 300 observations for each group with a random seed of 123.
iii. Let X be the deviates from a standard normal distribution.



b.

iv.
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Use IF-THEN/ELSE syntax to let Y be X plus standard normal deviates if Year is 1 and let Y
be 5*X plus standard normal deviates otherwise.

Use PROC SGPANEL to create a regression panel by year.

year=1

Regression Panels

Regression

year=2
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Solutions

Multiple Choice

1. b-—Inorder to save all values of each iteration, you must use the OUTPUT statement.

2. d—The number of iterations for nested DO loops is the product of the number of iterations for each
index (3x2x2=12). In addition, we did not drop any of the three indices, so the data set dimension is
12x3.

3. a—The RAND and CDF function in SAS are equivalent to the r and p probability functions in R. The
only difference is in SAS, we do not specify the number of iterations in the function when simulating
new data.

4. a-—The heat map here color codes the cells in the bivariate plot according to the frequency of
observations in each cell.

5. b —This plot was created using the PLOT statement because we have a window of four independent
scatter plots. The plot was not created using the MATRIX statement because the diagonal element
would not be scatterplots and it was not created using the COMPARE statement because there are
no shared axes.

Programming Exercises
1. Using the DO loop and Creating Random Data Sets

a. Navigate to the SAS RAND function page and choose a few functions to practice generating
random numbers. Create a data table with at least two variables of random numbers and at least
10 observations. Be sure to use a random seed of your choice.

data sp4r.random;
call streaminit (123);
do i=1 to 10;
rt = rand('T',5);
rf = rand('F',3,4);
ru = int (rand('Uniform')*10) ;
output;
end;
run;

proc print data=sp4r.random;

run;

Obs i rt rf ru
1 1 0.15554 0.57611 3
2 2 -0.71020 0.15053 2
3 3 -0.02583 0.04516 9
4 4 0.73364 0.25264 7
5 5 0.18336 0.88293 4
6 6 0.13730 1.50425 9
7 7 0.90893 2.18254 9
8 8 0.04611 0.10342 8
9 9 2.41523 0.55436 5
10 10 0.20044 1.59396 1

b. Create a new data table with the same random variables that you specified from the previous
step. Create a variable called Class that groups the first five observations into class 1 and the
second five into class 2. Drop the nested DO loop index variable from the data table and add a
sequence from 1 to 10. Print the data upon completion.

data spé4r.random (drop=j);
call streaminit (123);
do class=1 to 2;
do j=1 to 5;

sequence + 1;
rt = rand('T',5);
rf = rand('F',3,4);
ru = int(rand('Uniform')*10);
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output;
end;
end;
run;

proc print data=sp4r.random;

run;

Obs class sequence rt rf ru
1 1 1 0.15554 0.57611 3
2 1 2 -0.71020 0.15053 2
3 1 3 -0.02583 0.04516 9
4 1 4 0.73364 0.25261 7
5 1 5 0.18336 0.88293 4
5} 2 6 0.13730 1.50425 9
7 2 7 0.90893 2.18254 9
8 2 8 0.04611 0.10342 8
9 2 9 2.41523 0.55436 5
10 2 10 0.20044 1.59396 1

c. Runthe SAS code below. What do you notice?

data test;
do i=1 to 2;
output;
end;
run;

proc print data=test;
runy;

data test;
set test;
do j=1 to 5;
output;
end;
run;

proc print data=test;
runy;

The loop iterates through each observation in the data table.

Exploring PDF, CDF, and Quantiles Variables
a. Use the DO loop to create quantiles from 0 to 10 by 1.

b. Identify the density and the cumulative density of a binomial distribution with parameters 0.8

and 10 by creating variables PDF and CDF.
c. Use the CDF variable to create the variable Quantile, which mirrors the DO loop values.
d. Print the data upon completion.

data sp4r.random;
do g=0 to 10 by 1;
pdf = pdf ('Binomial',q, .8,10);
cdf = cdf('Binomial',q, .8,10);
quantile = quantile('Binomial',cdf,.8,10);
output;
end;
run;

proc print data=sp4r.random;
run;
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Obs q pdt cdt quantile
1 0  0.00000  0.00000 0
2 1 0.00000  0.00000 1
3 2 0.00007  0.00008 2
4 3 0.00079  0.00086 3
5 4  0.00551 0.00637 4
6 5  0.02642  0.03279 5
7 6  0.08808  0.12087 6
8 7  0.20133  0.32220 7
9 8  0.30199  0.62419 8

10 9  0.26844  0.89263 9
11 10 0.10737  1.00000 10

3. Plotting Chi-Square Random Numbers

a. Create a data table with 1000 random deviates from a chi-square distribution with 20 degrees of
freedom and a seed of 123.

data spér.hist;
call streaminit (123);
do i=1 to 1000;
rchisqg = rand('chisquare',20);
output;
end;
run;

b. Use PROC SGPLOT to plot a histogram of the data.

1) Alter the appearance of the plot by setting the BINWIDTH= option to 1.

2) Add both a normal and kernel density estimate.

3) Add the title ‘My Random Chi-Square Distribution’.

4) Add the X-axis title ‘Random Chi-Square Deviates’.

5) Use X-axis limits of 5 and 40.

6) Request the frequency instead of the percent by providing the option SCALE=COUNT in
the HISTOGRAM statement.

proc sgplot data=spd4r.hist;

histogram rchisqg / binwidth=1 scale=count;

density rchisqg / type=normal;

density rchisqg / type=kernel;

title 'My Random Chi-Square Distribution';

xaxis label='Random Chi-Square Deviates' min=5 max=40;
run;

My Random Chi-Square Distribution

60 *4é<;:

Count

10 20 30 40

Random Chi-Square Dewiates

Mormal

Kemel
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4. Plotting Simple Linear Regression Data

a.

b.

Create a data table with Y = B0 +[31 X +€ where X ranges from 1 to 30, Bo = 25, 31 =1, and

€~ N(u=0,0 =5).Keep only the variables X and Y.

data spd4r.simple lin (keep=x y);
call streaminit (123);
do x=1 to 30;
betall = 25;

betall = 1;
y = betalOl + betall*x + rand('Normal',O0,5);
output;
end;
run;

Use PROC SGPLOT and the REG statement to plot the line of best fit for the data. Create a plot of
the data. Use both the SCATTER and REG statement to plot the points and a line of best fit.

a. Enhance the plot by coloring the points blue and using the symbol STARFILLED
b. Color the regression line red and use the pattern DOT.

c. Add a title of your choosing to the X axis, Y axis, and the main title.

d. Use the X-axis limits from 0 to 31, and the Y-axis limits from 15 to 65.

e. Name the legend ‘Scatter’ and ‘Line of Best Fit’ for both plot types.

proc sgplot data=spdr.simple lin;
scatter x=x y=y / legendlabel='Scatter' name='Scatter’
markerattrs=(color=blue symbol=starfilled);
reg x=x y=y / legendlabel='Line of Best Fit' name='Line'
lineattrs=(color=red pattern=dot);

title 'My Scatter Plot';

xaxis label='X Values' min=0 max=31;
yaxis label='Y Values' min=15 max=65;
keylegend 'Scatter' 'Line';

run;
My Scatter Plot
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c. Alter the previous plot by changing the SCATTER statement to NEEDLE and the REG
statement to PBSPLINE. (This demonstrates the ease in which plot types can be altered.)

proc sgplot data=sp4r.simple lin;
needle x=x y=y / legendlabel='Needle' name='Needle'
markerattrs=(color=blue symbol=starfilled);
pbspline x=x y=y / legendlabel='Line of Best Fit'
name="'Line'
lineattrs=(color=red pattern=dot) ;

title 'My Needle Plot';

xaxis label='X Values' min=0 max=31;
yaxis label='Y Values' min=15 max=65;
keylegend 'Needle' 'Line';

run;
My Needle Plot
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5. Creating a Bubble Plot
a. Create a data table with two groups of 20 and the random seed 123. Create two random
variables. Let the first be exponential and the second be binomial with parameters 0.5 and

5.

data spédr.bubble;
call streaminit (123);
do group=1l to 2;
do x=1 to 20;
y = rand('Exponential');
z = rand('binomial',.5,5);
output;
end;
end;
run;

b. Use the BUBBLE statement to create a bubble plot. Set the SIZE= to the binomial random
variable. Also, specify the GROUP= option based on the two separate groups. Finally,
provide the plot with titles for the X axis, Y axis, and main title.

proc sgplot data=spé4r.bubble;
bubble x=x y=y size=z / group=group;

title 'My Bubble Plot';

xaxis label='X Values';

yaxis label='Y Values';
run;
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Using PROC SGSCATTER

a.

Create a data table with 300 observations and a seed of 123.
Let X be the deviates from the standard normal distribution.
Produce a variable Y1, which is X plus standard normal deviates.
Produce another variable such that Y2 is 5*X plus standard normal deviates.

data spé4r.random;
call streaminit (123);
do i=1 to 300;
x = rand('Normal') ;
vyl = x + rand('Normal');
y2 = 5*x + rand('Normal');
output;
end;
run;

Use PROC SGSCATTER to create a scatter plot matrix of X, Y1, and Y2. Include histograms
and kernel density estimates on the diagonal. (Hint: Look up the DIAGONAL= option in the
MATRIX statement of the SGSCATTER procedure.)

proc sgscatter data=spdr.random;
matrix x yl y2 / diagonal=(histogram kernel) ;
title 'Scatter Plot Matrix';

run;

title;

Selected PROC SGSCATTER statement and option:

MATRIX specifies the variables used to create a scatter plot matrix. Use the DIAGONAL=
option to include a histogram, density estimates, or both as the diagonal elements of the
scatter plot matrix.
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Scaster Plot Matrix
il

c. Use PROC SGSCATTER to create side-by-side scatter plots of Y1 by X and Y2 by X with the
PLOT statement. Add the regression line to both plots with the REG option.

proc sgscatter data=sp4dr.random;
plot (yl y2) * x / reg;
title 'Scatter Plots';

run;

title;

Scatter Plats

d. Use PROC SGSCATTER and the COMPARE statement to create the same scatter plot with
shared axes.

proc sgscatter;
compare y=(yl y2) x=x / reg;
title 'Scatter Plots';

run;

title;

Seatter Plots
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7. Using PROC SGPANEL

a. Instead of creating Y1 and Y2 as separate variables from the previous exercise, stack the
variables in a single column denoted Y using a nested DO loop.

i Create a categorical variable called Year with groups 1 and 2.
ii. Generate 300 observations for each group with a random seed of 123.
iii. Let X be the deviates from a standard normal distribution.

iv. Use IF-THEN/ELSE syntax to let Y be X plus standard normal deviates if Year is 1 and let Y
be 5*X plus standard normal deviates otherwise.

data sp4r.random;
call streaminit (123);
do year=1l to 2;
do j=1 to 300;

x = rand('Normal');

if year=1 then y = x + rand('Normal');
if year=2 then y = 5*x + rand('Normal');
output;

end;
end;
run;

b. Use PROC SGPANEL to create a regression panel by year.

proc sgpanel data=spdr.random;
panelby year;
reg x=x y=Yy;
title 'Regression Panels';
run;
title;

Regression Panels

year=1 year=2

Regression
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Introduction

You might find this chapter to be more challenging than the previous ones. We will start by talking about the
four go-to procedures for generating summary statistics: PROC CORR, PROC FREQ, PROC MEANS, and PROC
UNIVARIATE.

Next, we will talk about the Output Delivery System (ODS), which from an R user's perspective can be used to
customize and save the generated output. Remember, SAS does not save output in objects, so to parallelize
the approach of pulling fields from an object, we can use ODS statements.

The second half of this chapter examines macro variables and macro programs. By now you have noticed that
the scope of variables is specific to the data set that you are working with. What if we want to create a global
variable that can be passed to any procedure or DATA step? We can use macro variables.

Finally, we will learn how to create macros programs, which you can think of simply as an R function. This will
enable you to customize and automate the generation of SAS code. We will write macro programs that
generate and execute DATA and PROC steps automatically based on the parameters that we pass in the macro
call.
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Summary Statistics Procedures

This section introduces four different procedures to analyze variables and generate summary statistics. We
will reproduce the COR and COV functions in R as shown in Figure 5.1, as well as the TABLE function for
frequency tables of classification variables. We will also generate the ggnorm plot, which is not in PROC
SGPLOT. And we will compute summary statistics like mean, median, mode, range, and so on. These will be
applied to the entire column or variable of your data set.

Figure 5.1: R Script

7] Source on Save Q 2~~~ 8 =#Run 3% | _9 Soune
#Compute correlation and covariance matrices
cor (chindlcarsiHorsepower  carsiweight,carsiiength) )
covichind(carsSHorsepower  carsSweight,carsSLengthl)

#reate Treguency tables
tablelcarssorigin
tablelcarsiTypel

#Create contingency tahles
table(carsiorigin, carsiType)

#Create QQ-plot
ggnarm{carsiHits)

HCompute summary statistics
mean(carsimpo_city)
median{carsimpg_city)

mode (carsimog city.
range(carsimpg_city)

var (cars impg_city]
sd{carsimpg_city)
sumicarsimpg_city’
min{carsimpg_city
max{carsimpg_city.
guantile(carsfmpg city,c(.01,.05,.1,.25,.5,.75,.05,.9,.991)

Remember in Chapter 3 that we used functions in the DATA step, and they were only applied across rows. In
this section, for these procedures, they will operate on the entire variable.

PROC CORR

PROC CORR does exactly what you expect: it makes a correlation matrix. In the VAR statement of PROC CORR,
we list all the variables we want added into the correlation matrix, as shown in the following syntax:

PROC CORR DATA=SAS-data-set <options>;
VAR variable-1 ... variable-n;
RUN;

Tip: If no VAR statement is included, all numeric variables in the data set are included.
For example, in Program 5.1 using the cars data set, we list the variables horsepower, weight, and length in

the VAR statement.

Program 5.1: PROC CORR

proc corr data=spédr.cars;
var horsepower weight length;
run;

Output 5.1: Results of Program 5.1

Simple Statistics

Variable N Mean Std Dev Sum  Minimum Maximum
Horsepower 428 21588551 71.83603 92399 73.00000 S500.00000
Weight 428 3578 75898321 1531364 1850 7190

Length 428 186.36215 1435799 79763 143.00000 238.00000
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Pearson Comrelation Coefficients, N = 428
Prob > |rf under HO: Rho=0

Horsepower Weight Length

Horsepower 1.00000 0.63080 0.38155
<0001 <0001

Weight 0.63080 1.00000 0.69002
< 0001 <0001
Length 0.38155 069002 1.00000

<0001 <0001

Notice that the second table in Output 5.1 is the Correlation Matrix. There are two values in each cell. The first
value is the estimated correlation, and the second is the hypothesis test p-value, testing the population
correlation coefficient. For example, the correlation coefficient between Horsepower and Weight is 0.63. And
the p-value is less than 0.001, meaning it is highly significant.

Also, by default in the output, we get the Simple Statistics table. This shows the number of observations (N),
the Mean, Standard Deviation, Sum, Minimum, and Maximum for our three variables as well.

Program 5.2 and Output 5.2 show that if you tack on the COV option in the PROC CORR statement, in addition
to the previous tables, we get the Covariance Matrix, which is the same as the COV function in R.

Program 5.2: PROC CORR with COV Option

proc corr data=spé4r.cars cov;
var horsepower weight length;
run;

Output 5.2: Partial Results of Program 5.2

Covariance Matrix, DF = 427
Horse power Weight Length
Horsepower 5160.4154 343924654 3935427
Waight 34392 4654 5760555201 7519.4830
Length 3935427 T519.4830 206.1519

As you can see, there are lots and lots of different options that you can specify in these Summary Statistics
procedures.

PROC FREQ

Next, when working with categorical data, we can use PROC FREQ to create frequency tables. Instead of the
VAR statement as we did with PROC CORR, we use the TABLES statement as shown in the following syntax:

PROC FREQ DATA=SAS-data-set <options>;
TABLES variable-1 ... variable-n | <options>;
RUN;

Tip: If the TABLES statement is omitted, a one-way frequency table is produced for every variable in the
data set. This is seldom preferred. Therefore, simply specify all the one-way frequency tables that you
want to generate in the TABLE statement.

In Program 5.3, we will generate two separate tables for Origin and Type shown in Output 4.3.

Program 5.3: PROC FREQ

proc freqg data=spédr.cars;
tables origin type;
run;
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Output 5.3: Results of Program 5.3

Cumulative Cumulative

Origin  Frequency Percent Frequency Percent
Asia 158 36.92 158 36.92
Europe 123 2874 281 6565
UsA 147 34.35 428 100.00

Cumulative Cumulative

Type Frequency Percent Frequency Percent
Hybrid 3 0.70 3 0.70
suv 60 14.02 63 14.72
Sedan 262 61.21 325 75.93
Sports 45 11.45 374 87.38
Truck 24 5.61 398 9299
Wagon 30 7.01 428 100.00

As you can see in Output 5.3, we get the Frequency for each level of each variable. By default, we also get the
percentage of observations in that level, as well as the Cumulative Frequency and Cumulative Percent.

Cross Tabulation

If you want to do a cross tabulation, simply cross your variables in the TABLE statement with the star
operator. Program 5.4 and Output 5.4 shows how to cross Origin and Type.

Program 5.4: PROC FREQ Cross Tabulation

proc freqg data=spédr.cars;
tables origin*type;
run;

Output 5.4: Results of Program 2.4

Frequency Table of Origin by Type

Percent .

Row Pet yee

Col Pet Origin  Hybrid  SUV  Sedan Spons Truck Wagon Total
Asia 3 25 9 17 g 1" 158

070 584 2196 397 187 257 w92
190 1582 5549 1076 5.06 6.96
10000 4167 3588 3469 3333 3667

Europe 0 10 T8 23 0 12 123
000 234 1822 537 000 280 2874
000 813 6341 1870, o000 876
000 1667 2977 4684 000 4000

USA 0 25 o0 9 16 [ W7
000 S5B4 2103 210 I 164 M35
000 1701 €122 612 1088 476
000 4167 3435 1837 B6ET 2333

Total 3 80 62 49 24 0 4z
070 MO2 6121 1145 561 701 10000

In each cell of Output 5.4, we have the Frequency, Percent, Row Percent, and Col Percent, just like we saw
before. For example, all three vehicles that were hybrid vehicles came from Asia. And that corresponded to
only 0.7% of our data. And on the bottom, and far right of the table, we get the totals.

Options

If you want to reproduce your tables exactly like you would see them in R, you can use options in the TABLES
statement to suppress the display of selected default statistics. Specifically, we can suppress the rows,
columns, the percentage, and the frequency if we want, as shown in Table 5.1.
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Table 5.1: Options to Suppress Statistics

NOROW Suppresses the display of the row percentage.
NOCOL Suppresses the display of the column percentage.
NOPERCENT Suppresses the percentage display.

NOFREQ Suppresses the frequency display

It's unlikely that you would want to use the NOFREQ option, but you can if you would like. In Program 5.5, we
are reproducing the table() function exactly as you would see it in R. In the TABLE statement, we are crossing
Origin and Type. After the forward slash, specify norow, nocol, and nopercent so that all we have in each cell
are the Frequencies.

Program 5.5: PROC FREQ with Suppress Statistics Options

proc freqg data=spér.cars;
tables origin*type / norow nocol nopercent;
run;

Output 5.5: Results of Program 5.5

Frequency Table of Origin by Type
Type
Origin  Hybrid SUV  Sedan Sports Truck Wagon Total
Asia 3| 26 94 17 8 11 158
Europe 0 10 ig 23 0 12 123
USA 0 25 90 9 16 T 147
Total 3 60 262 49 24 30 428

Previously with PROC SQL, you saw how to print the unique levels of a variable. But perhaps there are
hundreds, maybe even thousands, of levels in a specific variable. What if we just want to print the number of
levels in each variable? In the PROC FREQ statement, use the nlevels option as shown in Program 5.6.

Program 5.6: PROC FREQ with NLEVELS Option

proc freqg data=spd4r.cars nlevels;
tables origin*type /

norow nocol nopercent noprint;
run;

Output 5.6: Results of Program 5.6

Number of Variable
Levels

Variable Levels
Origin 3
Type B

Output 5.6 shows the number of variable levels. For Origin, of course, there's only three levels, and for Type,
there's only six levels. If you don't want to print the original frequency tables, you can use the NOPRINT
option in the TABLE statement.
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PROC MEANS

The MEANS procedure is an excellent procedure for requesting summary statistics. This procedure can
reproduce the following R functions: Mean(), Median(), Mode(), Range(), Var(), sd(), Sum(), Min(), Max(), and
Quantile(). PROC MEANS will apply the function to the entire variable. So if we take the mean of the variable,
it will take the mean of the entire column vector.

As shown in the following syntax, in the VAR statement of the MEANS procedure, we specify all the variables
we want to use:

PROC MEANS DATA=SAS-data-set <options>;
VAR variable-1 ... variable-n;
RUN;

Program 5.7 shows an example using the cars data set and MPG city and MPG highway. If we run this
procedure in Program 5.7, we get the default output. Specifically, it would reproduce the Mean, Standard
Deviation, Min, and Max function. And it would also give the number observations used to estimate those
values.

Program 5.7: PROC MEANS

proc means data=sp4r.cars maxdec=2;
var mpg city mpg highway;
run;

Output 5.7: Results of Program 5.7

Variable N Mean 5Std Dev Minimum Maximum
MPG_City 428 20.06 524 10.00 60.00
MPG_Highway | 428 26.84 574 12.00 66.00

As you can see in Output 5.7, MPG City Mean is 20.06, the Standard Deviation is 5.24, and so on. The
maxdec=2 option in the PROC MEANS statement makes everything a maximum of two decimal places.
Otherwise, you can get more decimal places than you need.

There are many different options to customize the output in a PROC MEANS procedure. You can generate all
these descriptive statistics with these keywords shown in Table 5.2. You can specify Confidence Limits (CLM),
the RANGE, the SKEWNESS of the distribution, the Variance (VAR), the Standard Error (STDERR), and so on.
You can also request percentiles with these pre-determined keywords.

Table 5.2: PROC MEANS Statement Options

Descriptive Statistic Keywords

CM Css cv LCLM MAX
MEAN MIN MODE N NMISS
KURTOSIS RANGE SKEWNESS STDDEV STDERR
SUM SUMWGT UCLM uss VAR
MEDIAN | P50 P1 P5 P10 Q1| P25

Q3 | P75 P90 P95 P99 QRANGE
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For example, you can request the first percentile with the P1 keyword, the fifth percentile with the P5
keyword, and so on. Again, these are predefined, so you cannot simply say P15 to get the 15th percentile. But
later you will learn how to request your own percentiles.

To customize the MEANS procedure output, simply tack on options to the MEANS procedure statement as
shown in Program 5.8. In Program 5.8, we are requesting only the mean, median, and var options, which is
going to give us the mean, median, and variance in the table shown in Output 5.8. It's not going to print the
other default output.

Program 5.8: PROC MEANS with Options

proc means data=sp4r.cars maxdec=2 mean median var;
var mpg city mpg highway;
run;

Output 5.8: Results of Program 5.8

Variable Mean Median Variance

MPG_City 2006 1900 2744
MPG_Highway 2684 2600 3296

PROC UNIVARIATE

The final procedure that we will talk about in this section is the UNIVARIATE procedure. You can generate lots
of different output with this procedure, more than we can cover in this section.

You can generate moments like means, skewness, kurtosis. You can generate basic statistical measures, for
example, mean, median, standard deviation. You can do testing for location. It gives you predefined quantiles
by default, and it also prints the extreme observations—the five highest and lowest observations of the
variable. Some example output from PROC UNIVARIATE is shown in Figure 5.2.

Figure 5.2: Example PROC UNIVARIATE Output

Basic Statistical Measures
z Extserne Olsevvations
Quantiles {Definition 5) Locatien Varlability Tem fod Location: Mat= Coimist ' | it
Lewel Cuantile Mean 1375249 Sud Deviation IT62y o Statutl o Value Waloe Ol Value Obs
100% Max 290000 Median 1350000 Variance 16483276 ovase i A4 it -] el M0N0 W 200 e
= Siga M 150 Py = 1| €001 1 >
9% 227500 Mode 1100000 Range 255000 Signed Rank 5| 22615 Py {5 | < 0001
5% 207000 Interquartibe Range 45475
0% 187300
5% Q3 159475 e
50% Median 135000 Moments
5% O 114000 N 300 Sum Weights k1)
10% 91150 Hoan 137524 857 Sum Observations 41257460
xn, 20000 Std Doviation ITR22 8431 Variance 1415463216
k. T228TTT4
ey 18500 Skewnass 025726388 Hurtosis [}
S Uncomected 55 §09712E12 Cormocted 55 4 23224ENM
0% Min 35000
Coeff Variation 27 3569748  Sid Ervor Mean 2172 14431

The UNIVARIATE procedure is used same way as the MEANS procedure. Just list all the variables you want to
use in the VAR statement as shown in the following syntax:

PROC UNIVARIATE DATA=SAS-data-set <options>;
VAR variable-1 ... variable-n;
RUN;

You can also generate some graphics in PROC UNIVARIATE. For example, you can use the HISTOGRAM
statement similarly to PROC SGPLOT to create a histogram. You can also generate a QQ Plot directly in the
UNIVARIATE procedure using the QQPLOT statements syntax as follows:

HISTOGRAM variable-1 ... variable-n | <options>;
QQPLOT variable-1 ... variable-n | <options>;
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For examples of how to use PROC UNIVARIATE, see the SAS documentation. We will also discuss how to
control the output of this procedure in the next section.

Output Delivery System

In this section, you will learn how to customize your PROC step output, specifically, how to return only specific
tables and graphics and create new tables from PROC step results.

In R, we typically create a model object and then print the default output. We can also pull fields from the
object, like the names, or the residuals, and so on. Then we can create data frames from those fields as shown
in Figure 5.3. In this section, the SAS equivalent is pulling fields from an object to customize your results.

Figure 5.3: R Script

=~ Source & - * 2% Source

m§1m 1m.y X

my1m

#what else i
names (my1m
myImiresiduals

my Im_res data. frame myimiresiﬁua15

First, to customize our results in SAS, we need to talk about the Output Delivery System (ODS). SAS
procedures and DATA steps simply produce raw data. For example, when we run the CORR procedure, we get
the output shown in Figure 5.4. But PROC CORR only produces the raw data for the table cells, in this case,
1.00000, 0.63080, 0.38155, and so on. It's the Output Delivery System that actually provides structure to the
table, the color, titles, headings, and so on.

Figure 5.4: PROC CORR Output

Pearson Correlation Coefficients, N = 428
Prob > |rj under H0: Rho=0

Horsepower Weight Length

Horsepower 1.00000 0.63080 0.38155
<0001 <0001

Weight 0.63080 1.00000 069002
<.0001 <.0001

Length 0.38155 0.69002 1.00000

<.0001 <0001

Why is this important?

Well, we can actually get inside the Output Delivery System and alter the appearance of the output, for
example, the style, color, font, and so on. We can also change the destination file type of the output. In this
section, you will learn how to select specific output and also create new data tables from that output.

Customizing Output with the ODS SELECT Statement

PROC UNIVARIATE produces a lot of default output. For example, it produces the Quantiles table, the
Moments table, the QQ Plot graphic, and so on. Maybe we don't actually want to print all this material.
Maybe we only want to print the Basic Statistical Measures table and the QQ Plot graphic. How can we
customize these results?

To do this, we use the ODS SELECT statement before running the procedure. Then specify the object name,
specifically the table or graphic name, and SAS will only print those tables or graphics to the results page as
shown in the following syntax:

ODS SELECT object-name-1 ... object-name-n;
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You can specify as many tables and graphics as you want in a single ODS SELECT statement.
Tip: This is identical to using the S symbol in R to pull output from an object.

One way to determine what the table and graphic names are is to use the ODS TRACE ON statement. When
we run this statement, any output that is generated to the results page, the tables and graphic names, are
printed to the log as shown in Program 5.9 and Output 5.9.

Program 5.9: ODS TRACE Statement

odstrace on;

proc univariate data=ameshousing;
varsaleprice;
gaplotsaleprice/normal (mu=estsigma=est) ;

run;

odstrace off;

Output 5.9: Log of Program 5.9

Output Added

Name : Moments

Label: Moments

Template: base.univariate.Moments
Path: Univariate.SalePrice.Moments

Name : BasicMeasures

Label: Basic Measures of Location and Variability
Template: base.univariate.Measures

Path: Univariate.SalePrice.BasicMeasures

Name : TestsForLocation

Label: Tests For Location

Template: base.univariate.location

Path: Univariate.SalePrice.TestsForLocation

Quantiles

Quantiles
base.univariate.Quantiles
Univariate.SalePrice.Quantiles

Name : ExtremeObs

Label: Extreme Observations

Template: base.univariate.ExtObs

Path: Univariate.SalePrice.ExtremeQbs

Output Added:

Name : QaPlot

Label: Panel 1
Template: base.univariate.Graphics.Q0Plot

Path: Univariate.SalePrice.Q@Plot.QGPlot

Then we can grab those table and graphics names from the log and use ODS SELECT to customize the output
by printing only the BasicMeasures table and QQ plot in the next run as shown in Program 5.10 and Output
5.10.

Program 5.10: ODS SELECT Statement

ods select basicmeasures qggplot;

proc univariate data=sp4r.ameshousing;

var saleprice;

gaplot saleprice / normal (mu=est sigma=est);
run;
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Output 5.10: Results of Program 5.10

The UNIVARIATE Procedure
Variable: SalePrice

Basic Statistical Measures

Location Variability
Mean 137524.9 Std Deviation 37623
Median 135000.0 Variance 1415463276
Mode 110000.0 Range 255000
Interquartile Range 45475

Note: The mode displayed is the smallest of 2 modes with a count of 6.

Q-Q Plot for SalePrice

300000

250000

200000

150000

Sale price in dollars

100000

60000

-3 -2 -1 0 1 2 3
Marmal Quantiles

MNomnal Line

Mu=137525, Sigma=37623

If you don't want to keep printing all this output to the log, simply use the ODS TRACE OFF statement after.

Saving Results with the ODS OUTPUT Statement

Next, we will use the Output Delivery System to create new data tables from the PROC STEP results tables and
choose specific summary statistics to include in the tables. Perhaps when you ran the UNIVARIATE procedure
in Program 5.10 and generated the Basic Statistical Measures table, you also wanted to save it as a new SAS
data set. To save an output table as a SAS data set, we will use the ODS OUTPUT statement prior to running
our procedure as shown in the following syntax:

ODS OUTPUT output-object-name = data-set-name;

In the ODS OUTPUT statement you will first specify the object name, which is the same table name that we
used in ODS SELECT. Then you will set that table name equal to a new SAS data set name. For example, in
Program 5.11, our new table name will be SP_BasicMeasures. SP is going to be for sale price, the variable that
we are analyzing in the UNIVARIATE procedure.

Program 5.11: ODS OUTPUT Statement
ods output basicmeasures = SP_BasicMeasures;

proc univariate data=ameshousing;
var saleprice;
run;

If you are familiar with R, then it looks a little bit peculiar that the new data set name is on the right side of
the assignment statement and the object name is on the left, but just be aware that that is the syntax in SAS.
You can specify as many object names equal to data set names as you would like in a single ODS OUTPUT
statement. After you finish your ODS OUTPUT statement, then run the appropriate procedure to generate the
table and save it.

Saving Results with the OUTPUT Statement

What if you don’t want to save the entire table? What if all you want to do is save a single summary statistic,
like the mean? It might not make sense to only save one summary statistic to an entire data table, but in the
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next section, you will see a good reason why you would want to do it. To save a single summary statistic, use
the OUTPUT statement (not to be confused with the ODS OUTPUT statement) to customize the new data
table. The OUTPUT statement enables the user to select which individual values from the results tables to
place in the new data table. This avoids keeping unwanted statistics from default results tables. Immediately
following the OUTPUT statement, use the OUT equal to option, and specify a new SAS data set name as
shown in the following syntax:

OUTPUT OUT=new-data-set-namekeyword-1= variable-name-1... keyword-n= variable-name-n;
For example, in Program 5.12, we use the OUTPUT statement to create a new table called stats.

Program 5.12: OUTPUT Statement

procunivariate data=ameshousing;
varsaleprice;
output out=stats mean=sp mean;
run;

Program 5.12 uses the keyword mean to save the mean. You can find more keywords listed on the SAS
documentation page. We set the SAS data set variable name equal to sp_mean. You can request as many
summary statistics as there are keywords in the OUTPUT statement.

We will see the OUTPUT statement in a later chapter when we get into modeling. For example, we will save
residuals and predicted values, and then generate residual-by-predicted plots with those new SAS data sets.

Creating Macro Variables

By this point, you have probably noticed that the scope of the variables in SAS are exclusive to the data set
they were created in. For example, if we create a new data set called myvars and specify mymean and mysd
as two numeric values, we cannot then use them in other DATA or PROC steps with a different data set. For
example, we cannot go into the test data set and standardize the value y with mymean and mysd from the
myvars data set. Likewise, we cannot use mymean in the PRINT procedure when we use a different data set as
well.

How can we circumvent this problem in SAS? In R, we would just create the new variables. For example,
mymean and mysd are just numeric values that we could use to standardize value y as shown in Figure 5.5.

Figure 5.5: R Script

- Source L S~ = 5%  “Source

mymean - 123.45
mysd = 49.6
stan y - mymean mysd

fau ate the |
mymean - mean(y

mysd = sd(y

stan y - mymean mysd

This section shows you how to replicate this process manually in SAS. You will also learn how to automate the
process. What if your data changes? You do not want to have to type out 123.45. You just want to take the
mean of y and the standard deviation of y then use it to standardize values.

Manually Create a Macro Variable

In this section, you will learn an easy way to manually create a macro variable. Then we will automate the
process using the SQL procedure.

To create this variable like you would in R, in SAS you will create a macro variable with the %LET statement.
Specify the new variable name and just set it equal to whatever value you want using the following syntax:

%LET variable-name = value;
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Suppose you have a numeric variable, for example, height=67. To create the variable height=67, simply use
the %LET statement and set height equal to 67 as follows:

%let height=67;

To create a character macro variable, you will use the exact same syntax with the %LET statement. Because
macro variables are stored as text, the same syntax is used for both numeric and character macro variables.
We will call this macro variable name and set it equal to Jordan Bakerman.

%let name = Jordan Bakerman;

Notice that we do not use quotation marks like we would in R. SAS stores everything as a text string, so we do
not need to quote anything. If you do add quotation marks, the quotation marks are going to be saved inside

the macro variable as part of the text string. SAS also saves the capitalization of J and B in the macro variable.
Whatever you type in is going to be saved exactly as-is.

Let's look at some of the following characteristics of macro variables:

® Number tokens are stored as text strings.

® The minimum length is 0 characters (null value).
® The maximum length is 64k characters.

® (Caseis preserved.

® |eading and trailing blanks are removed.

® (Quotation marks are stored as part of the value.

Using Macro Variables

Now that we know how to create a macro variable, how do we use it? Macro variable references begin with
an ampersand followed by the macro variable name as shown in the following syntax:

&myvar

Imagine we have the variable myvar. To use it inside a DATA or PROC step, or wherever you want, say
&myvar. Then when you run the script, it is going to resolve to the variable that you have specified.

Macro variable references are also called symbolic references, but we will refer to them simply as macro
variable references. Here are some other qualities of macro variable references:

® They can appear anywhere in a program so that you can use them in any DATA or PROC step that you
want. When you use the %LET statement, the macro variable is global.

® The macro variable name is not case sensitive. For example, myvar is not case sensitive. But the
values that you have stored in that variable are case sensitive.

® They are passed to the macro processor to be resolved by SAS. So &myvar will resolve to whatever
you specified.

Examples

Let's look at a few examples of using a macro variable. In the first example, we will use the PRINT procedure in
Program 5.13.

Program 5.13: Code Without a Macro Variable

proc print data=ameshousing;

where yr sold = 2010;

var yr sold saleprice;

title "Price of Homes Sold in 2010";
run;
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Output 5.13: Partial Results of Program 5.13

Price of Homes Sold in 2010

Obs Yr_Sold SalePrice
1 2010 213500
2 2010 191500
3 2010 115000

Notice in Program 5.13 there are two instances of the year 2010—one in the WHERE statement and one in
the TITLE statement. Of course, you can imagine we might have much more code where we want to change
the value 2010 several times—even 10, 20, or 30 times. This is just a small example.

So how would update Program 5.13 to use a macro variable to change 2010 in both instances easily? First, use
the %LET statement to create a new macro variable called year and let it equal 2010. Now, as you can see in
Program 5.14, we can replace all instances of 2010 in the PRINT procedure with &year in the WHERE
statement and the TITLE statement.

Program 5.14: Macro Variable
%let year = 2010;

proc print data=ameshousing;

where yr sold = &year;

var yr sold saleprice;

title "Price of Homes Sold in &year";
run;

If you run Program 5.14, the output will be identical to Output 5.13.

But what if you wanted to change the year to 2011, 2012, and so on? Simply change the macro variable in the
%LET statement. That way you don’t have to change it in every spot of the PRINT procedure.

Let's look at another example using character data.

Program 5.15: Code Without Macro Variable
proc print data=ameshousing;

where garage type 2 = "Attached";

var yr sold saleprice;

title "Homes Sold with Attached Garage";
runy

Output 5.15: Partial Results of Program 5.15

Homes Sold with Attached Garage
Obs Yr_Sold SalePrice
1 2010 213500
2 2010 191500
4 2010 160000

In Program 5.15 we are running the PRINT procedure again, but you will notice this time in the WHERE
statement, we are using garage_type_2. That variable is either Attached or Detached. Because we are
specifying character data in the WHERE statement, we need to quote the value Attached. Notice also the
word Attached is in the TITLE statement.

How can we use a macro variable to make it easier to change that value? The %LET statement, of course. Let’s
create a new macro variable called gtype and let it be equal to Attached as shown in Program 5.16. It is very
important that you keep the A capitalized because that is how it appears in your data set. Then supply the
gtype macro variable into the PRINT procedure where the word Attached was, as well as in the WHERE and
TITLE statement.
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Program 5.16: Macro Variable
%$let gtype = Attached;

proc print data=ameshousing;

where garage type 2 = "&gtype";

var yr_sold saleprice;

title "Homes Sold with &gtype Garage";
run;

It's extremely important when you are quoting a macro variable to use double quotation marks. Why?
Because this allows the macro variable to resolve. &gtype will resolve to the word Attached. If you used single
guotation marks, it would leave it as &gtype. There is no value in your data set for garage_type_2 called
&gtype. When in doubt when working with macro variables, use double quotation marks.

Tip: You must use double quotation marks when you refer to a macro variable.

Creating Global Macro Variables

In the previous section, we saw how to create macros variables manually with the %LET statement. Now let's
automate the process using SQL and the following steps:

® Step 1: Create a SAS data table. In order to query a data set, we need to actually have a data set with
useful information.

® Step 2: Use PROC SQL to create a macro variable. Use the following syntax:

PROC SQL;
SELECT variable-name
INTO :macro-variable-name
FROM data-table-name;

Step 1: Create a SAS Data Table

In Program 5.17, we run the MEANS procedure using the OUTPUT statement to create a new SAS data set
with the values for mean and standard deviation. The variable names in this data set stats are going to be
mean and sd.

Program 5.17: Create SAS Data Table

proc means data=ameshousing;

var saleprice;

output out=stats mean=mean std=sd;
run;

Step 2: Use PROC SQL to Create a Macro Variable

Now we can query the data and create new macro variables. To do so, we will use PROC SQL. Start with the
SELECT statement and specify the variable-name in the data set, in this case mean, as shown in Program 5.18.
Use the keyword into, and the colon operator, and specify a new macro variable, sp_mean. Finally, tell it what
data set to look at, stats. Likewise, select the standard deviation and put that into a new macro variable called
sp_sd, again, from the stats data set.

Program 5.18: PROC SQL

proc sql;
select mean into :sp mean from stats;
select sd into :sp sd from stats;
quit;

Just like the %LET statement that we used when creating a macro variable manually, these macro variables
are also global. You can use them in any data or PROC steps that you would like.
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%PUT Statement

If you create a macro variable automatically, and perhaps put your program away for a week or two, when
you come back, to remind yourself of what you have done, you can use the %PUT statement to write a nice
message to yourself in the log using the following syntax:

%PUT text;

In this case, let’s remind ourselves that the mean and standard deviation of the sale price variable is
&sp_mean and &sp_sd. When you run this %PUT statement in Program 5.19, it's going to print that text and
resolve the macro variables.

Program 5.18: %PUT Statement

$put The mean and sd of the Sale Price
variable is &sp mean and &sp sd;

Output 5.18: Log of Program 5.18

The mean and sd of the Sale Price variable is
137524.87 and 37622.64

Writing a message to the log is an easy way to remind yourself what program you created. Quotation marks
are not required in your %PUT statement. It will print it as is. And the %PUT statement is valid in open code on
its own line. You do not need to include it in a DATA or PROC step.

_USER_ Argument

Another useful piece of syntax in SAS is the _USER_ argument in the %PUT statement that uses the following
syntax:

%PUT USER ;

That piece of code prints all the macro variables that you have created in your current SAS session. In this
chapter, we have created the GTYPE, YEAR, SP_MEAN, and SP_SD macro variables thus far, so those would be
printed in the log.

You could also use the argument _ALL_ to see the included built-in SAS macro variables as well.

Automatic Macro Variables

The built-in macro variables in SAS are called automatic macro variables. Visit the online SAS documentation
page to view all of them. Table 5.3 shows just a small subset of the long list of automatic macro variables.

Table 5.3: Selected Automatic Macro Variables

SYSDATE Date of SAS invocation (06JAN14)

SYSDATE9 Date of SAS invocation (06JAN2014)

SYSDAY Day of the week of SAS invocation (Friday)
SYSTIME Time of SAS invocation (10:47)

SYSSCP Operating system abbreviation (WIN, OS, HP 64)
SYSVER Release of SAS software (9.3)

SYSUSERID Login or user ID of current SAS process
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For example, if you wanted to know the day of the week, you would use the automatic macro variable
SYSDAY. It would print the day of the week, in this case, Friday. If you want to print the date with a width of
nine, you could use SYSDATE9, and so on. We will use a couple of automatic macro variables later in this book
when we do some conditional processing.

Tip: The macro variables SYSDATE, SYSDATE9, and SYSTIME store text, not SAS date or time values.

Creating Macro Programs

In this section, you will learn how to create a macro program in order to run SAS code repetitively. We can
also run SAS DATA and PROC steps conditionally or iteratively.

Think of a macro program simply as an R function to provide whatever customization you want. For example,
in Figure 5.6 we are creating a macro program called randnorm and passing it a single parameter. It's simply
the number of observations we are going to simulate from a normal distribution. And then we will use that
data set to generate some reports. For example, in Figure 5.6, we want a table and graphic. We do all of this
inside a single program. Of course, once you type this R function up once, you can use the function and pass it
whatever parameter you want. In Figure 5.6, we change n to be 10,000.

Figure 5.6: R Script

R Source on Save Q L~ #Run | %% Source

randnorm = function(n){

#Generate Data
vec = rnorm{n)

#Print Summary Statistics
mean(vec)

median(vec’

sd(vec)

min(vec)

max (vec)

#Create Plots
par (mfrow=c(1,2)
hist(vec
plot(vec,type="b'

#Use Function and ;',-;_-._l_ Parameters
randnorm(n=10000

By the end of this section, you should be able to write a program like this in SAS. To do this in SAS, we will
need to use a DATA step to generate the data, PROC MEANSs to print some summary statistics, and PROC
SGPLOT to create the plots. So in SAS, we are going to be combining lots of different DATA and PROC steps in
one single macro program—or, again, think of it as an R function.

The macro facility is a text processing facility for automating and customizing the generation of SAS code. You
should be thinking, “What code do | actually want to generate and compile inside my macro program?” The
macro facility minimizes the amount of code that you need to enter.

The macro facility supports the following:

®  Symbolic substitution within SAS code. For example, we can pass it a macro variable or parameters.
® Automated production of SAS code. We can run an unsupervised script.

® (Conditional construction of SAS code. We can generate certain code, plots, or reports, depending on
whatever parameters we pass the macro.
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Defining a Macro

So how do we actually create a macro? We are going to use %MACRO to start and %MEND to end as shown in
the following syntax:

%MACRO macro-name;
macro-text
%MEND <macro-name>;

In Program 5.19, we use the %MACRO to start and then name the macro today. Anything between %$MACRO
and %MEND will be the programming statements. In this program we have %put, so all this macro does is
write a message to the log.

Program 5.19: Defining a Macro

%macro today;
$put Today is &sysday &sysdate9;
$mend;

Tip: Macro names follow SAS naming conventions and cannot be reserved names such as names of
macro statements or functions (for example, LET and SCAN).

Calling a Macro

After the macro is compiled, the macro is stored in the Work library with the name sasmacr. To call the macro
variable, we will simply tack on a percent sign to the macro name as shown in the following syntax:

%macro-name

To run the today macro created in Program 5.19, simply use the name with the percent sign as shown in
Program 5.20.

Program 5.20: Macro Call
$today

Output 5.20: Log of Program 5.20

178 %today
Today is Friday 01JAN2016

When we Program 5.20, it is going to run the %PUT statement within the macro. Therefore, it generates to
the log the message that today is Friday, 01 January, 2016—or whatever day it happens to be when you run
the program.

A macro call can appear anywhere in code. It does not have to be in a DATA or PROC step. It can just be on its
own line. It's passed to the macro processor, so it can run the statements inside the macro. It's not a
statement. You do not need to use a semi-colon after you call the macro. Notice there is no semi-colon after
%today in Program 5.20. It runs just as it is.

Customizing with Parameter Lists

A parameter list is a list of macro variables referenced within the macro. There are three types of parameter
lists:

1. positional — must appear in the same order as their corresponding parameter names
2. keyword — assigned a default value after an equal sign
3. mixed — has both positional parameters and keyword parameters

Just like in R, we can pass macros a parameter list to customize the program even further. And just like in R,
we can use positional keyword or a mixture of those parameter lists. In R, you probably don't know the exact
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names of the parameters. You have probably just bypassed that part. But in SAS, there is more structure, so
you need to be more aware of what a positional and keyword parameter is.

Positional Parameters

In Program 5.21 we are creating a macro called calc. Notice that it is just the MEANS procedure. There are two
positional parameters—DSN for Data Set Name separated by a comma and vars for the variables that we are
going to put in the VAR statement.

Program 5.21: Creating a Macro with Positional Parameters

$macro calc(dsn,vars);
proc means data=é&dsn;
var &vars;
run;
%mend calc;

%calc (business, yield)

Notice that when we pass in those parameters, we are passing them in as if they are macro variables. We are
tacking on an ampersand to DSN and vars in the MEANS procedure.

When we call the macro with %calc, we simply list the data set name—in this case, business—and the
variables—in this case, just yield.

Why are these positional parameters? Well, the parameter values must appear in the same order as their
corresponding parameter names. So the first argument in the macro call of %calc—business—has to
correspond to the first parameter in the macro definition—in this case, DSN. The same can be said for the
second argument. Yield must correspond to vars.

Keyword Parameters

Keyword parameters, on the other hand, are assigned a default value after an equal sign. In Program 5.22, we
are creating a macro program called count, which is simply the FREQ procedure.

Program 5.22: Creating a Macro with Keyword Parameters

$macro count (opts=,start=01jan08, stop=31dec08) ;
proc freq data=orion.orders;
where order date between
"&start" and "&stop";
table order type / &opts;
titlel "Orders from &start to &stop";
run;
%mend count;

Notice in Program 5.22 there are three keyword parameters—opts equal to the null value, start equal to
01jan08, and stop equal to the 31st of December, '08. In the FREQ procedure, we use those dates in the
WHERE statement to provide condition. In the TABLE statement after the forward slash, we provide the opts
as the keyword parameter. So all three parameters have a default value.

The first parameter has a null value by default. On the final call, all parameters receive their default value. The
empty parentheses are important because this macro “knows” that it has a parameter list. If you omit the
parentheses, the macro does not execute but patiently waits for its expected parameter list. If the next token
submitted does not begin a parameter list, the macro “knows” that a parameter list is not forthcoming and
executes using default parameter values. Parentheses, even if empty, are recommended as explicit and
unambiguous, and they guarantee immediate execution of the macro.

So how do we call the macro when we are using keyword parameters? A few different ways are shown in
Program 5.23.



Chapter 5: Descriptive Procedures, Output Delivery System, and Macros 121

Program 5.23: Call a Macro with Keyword Parameters
options mprint;

%count (opts=nocum) @

%count (stop=01jul08, opts=nocum nopercent) @
%count () ©

OThe first way is to run %count with just a single keyword parameter—opts equal to nocum. And
then the other two keyword parameters just stick to their default values.

@ A second way to call the macro is to change the order of the keyword parameters as they are
listed in the macro definition. So first, we start with stop equal to changing the date. Then we
specify the options NOCUM and NOPERCENT. Keyword parameters can be out of order, whereas
positional parameters cannot.

Also, if you want to change the keyword parameter in the macro call, you have to use the
keyword parameter name and set it equal to a new value. For example, you cannot just say
nocum. It will not default to the first parameter opts. You have to literally say opts equal to
nocum.

© And finally, if you run %count with empty parentheses, it will just default to the parameters in the
macro definition.

Mixed Parameters

In a mixed parameter list, we have both positional parameters and keyword parameters. You are required to
list the positional parameters first in the macro definition followed by the keyword parameters. The same is
true for the macro call, as shown in Program 5.24.

Program 5.24: Creating and Calling a Macro with Mixed Parameters

$macro count (opts,start=01jan08, stop=31dec08); ©
proc freq data=orion.orders;
where order date between
"&start" and "&stop";
table order type / &opts;
titlel "Orders from &start to &stop";
run;
smend count;
options mprint;
%count (nocum) @
%count (stop=30jun08, start=01apr08) ©
%count (nocum nopercent, stop=30jun08) @
%count () ©

© Notice in the %MACRO statement, opts is now a positional parameter. We are not setting it equal to the
null value. But we are leaving start and stop as keyword parameters.

® In our first macro call of %count, we are only changing the positional parameter opts to nocum. Start and
stop keyword parameters will be at their default values.

©® In the second macro call, we are changing the stop and start keyword parameters to two different dates.
Notice that we have not specified anything for the positional parameter opts. If we do not change the
positional parameter, it defaults to the null value.

O In the third macro call, notice we have changed both the opts positional parameter and the stop keyword
parameter. This is important. The positional parameter must come first. So we have to change opts to
nocum and nopercent, and then we can change the keyword parameters—in this case, stop.

© In the final macro call, we will run it with the null value. opts will default to the null value. And both start
and stop keyword parameters will be left at their default values.
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Macro Statements: An Example

A macro language statement instructs the macro processor to perform an operation. It consists of a keyword
and begins with the percent sign, just like our macro call and macro definition, and ends in a semicolon.
Macro statements enable the following actions:

® conditional processing — choose which PROC or DATA steps to run based on certain parameters

® parameter validation — check if a value is outside a specific range, and if it is, tell SAS to throw an
error so that it doesn't keep processing

® iterative processing — use loops to create a dynamic program that executes for a number of
iterations based on some conditions

For more information, look up macro statements on the online documentation page. There are many
different macro statements that you can incorporate into your own macro programming.

This example will focus on iterative processing. We want to read in multiple CSV files in a single macro
program so that we don't have to keep typing out PROC IMPORT or the appropriate DATA steps. This is one
instance where macro programming can help quite a bit.

For example, imagine you work in a business where a daily sales report is generated every night. Every Friday,
a weekly report is generated. Let's determine the best method to automate both of these reports.

For the daily report, we want to create a macro program that runs a PRINT procedure. But if it is Friday, we
also want the macro program to generate the MEANS procedure.

What are a few different ways that we could accomplish this? In this example, we will look at two different
methods, but you could probably come up with several more solutions of your own.

® Method 1: We will create multiple macros, including a driver macro, meaning the driver macro will
call the appropriate macro conditionally where necessary.

® Method 2: We will create a single macro and use macro statements like %DO and %END to run SAS
syntax conditionally.

Method 1

First, let’s create separate macros for the daily and weekly programs. The daily macro program will simply be
the PRINT procedure shown in Program 5.25. Likewise, the weekly macro program will be the MEANS
procedure.

Program 5.25: Method 1 — Separate Macros

$macro daily;
proc print data=orion.order fact;
where order date="&sysdate9";
var product id total retail price;
title "Daily sales: &sysdate9";
run;
gmend daily;

%macro weekly;
proc means data=orion.order fact n sum mean;
where order date between
"&sysdate9"-6 and "&sysdate9";
var quantity total retail price;
title "Weekly sales: &sysdate9";
run;
$mend weekly;

%macro reports;

%daily

%$if &sysday=Friday %then %weekly;
$mend reports;
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Notice in Program 5.25 that we created a DRIVER macro called REPORTS that always calls the daily macro and
conditionally calls the weekly macro. Program 5.25 is a true macro program, with a macro call and a macro
language statement. This is a “system-driven” macro insofar as it is driven by or makes a decision according to
system information, such as the day of the week.

In order to conditionally run the weekly macro, we need to use macro statements. A lot of the macro
statements are very similar to what we have seen in SAS syntax already. The only difference in the macro
programming language, is that we will tack on a percent sign. So notice we use %IF and provide it an
expression. If our automatic macro variable SYSDAY is equal to Friday, we use %THEN and then run the weekly
macro that uses the MEANS procedure. Use the following syntax within macro statements:

%IF expression %THEN action;
%ELSE action;

Table 5.4 shows some of the differences between macro expressions and SAS expressions. For example, in
macro expressions, character constants are not quoted or case-sensitive. The %ELSE statement is optional and
%IF-%THEN and %ELSE statements can be used inside a macro definition only.

Table 5.4: Macro Expressions

Arithmetic operators v v

Logical operators v 4
(Do not precede AND or OR with %.)

Comparison operators v v
(symbols and mnemonics)

Case sensitivity v v
Special WHERE operators
Quotation marks v

Ranges such as 1<=x<=10 v

IN operator: parentheses required

Method 2

Program 5.26 shows an alternative method to accomplish the same goal. Here we put everything in a single
macro instead of creating three separate macros. We are creating the macro reports, and if we run reports,
we automatically want it to execute the PRINT procedure. Again, we want to use macro statements to tell SAS
to conditionally run the MEANS procedure. The %DO %END syntax enables users to write multiple statements
between the %DO and %END. This is useful for conditionally running DATA or PROC steps.

Program 5.26: Method 2 - Single Macro

%macro reports;
proc print data=orion.order fact;
where order date="&sysdate9";
var product id total retail price;
title "Daily sales: &sysdate9";
run;
%if &sysday=Friday S%then %do;
proc means data=orion.order fact n sum mean;
where order date between
"&sysdate9"d - 6 and "&sysdate9"d;
var quantity total retail price;
title "Weekly sales: &sysdate9";



124 SAS Programming for R Users

run;
send;
$mend reports;

In Program 5.26 we have an entire PROC step, so we need to use a DO group. If it is true, then the program
runs the MEANS procedure. Don’t forget the %END statement! Now when we run the report's macro, it will
automatically run the PRINT procedure and conditionally run the MEANS procedure. Everything is under one

roof.
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Exercises

Multiple Choice
1. Which SAS procedures are used to reproduce the R functions min(), cov(), table(), and sd()?
a. FREQ, MEANS, CORR, MEANS
b. MEANS, CORR, FREQ, MEANS
c. MEANS FREQ, CORR, MEANS
d. CORR, FREQ, FREQ, MEANS

2. Which statements are true regarding macro variables? Select all that apply.
a. Macro variables must be assigned in a DATA or PROC step.
b. Caseis preserved.
c. Toreference a macro variable, you must use the & symbol.
d. Macro variables can be used only three times or less in a PROC step.

3. The SAS code below creates the PROC CORR and PROC MEANS analyses.

%let cont var = saleprice garage area basement area gr liv area;

ods select pearsoncorr;

proc corr data=sp4dr.ameshousing;
var cont var;

run;

proc means data=sp4r.ameshousing;
var cont var;

runy
a. True
b. False

Short Answer
1. Navigate to the TABLES statement on the SAS documentation page for the FREQ procedure. What
does the PROC step below do?

proc freqg data=spér.cars;
tables origin*type / chisqg;

run;

2.  What types of functions do you make in R that call R functions and packages? How can this be
translated into SAS PROC and DATA steps?

3. There are three mistakes in the SAS code below. Can you find all three?

$macro test (condition=50000,dt);
proc means data=dt;
where msrp > &condition;
run;
gmend;
%test (cars,100000)

Programming Exercises

Use the AmesHousing data set to complete Exercises 1, 2, 3, and 5. Use the Cars data set to complete
Exercise 4.

1. Using Descriptive Procedures and ODS
a. Navigate to the SAS Help documentation and view the TABLES statement options for the FREQ
procedure. Which option enables you to create a frequency plot? Use PROC FREQ to create one-
way frequency tables for the variables central_air and house_style along with frequency plots.
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What percentage of homes in this sample have central air? What percent are only one story?

The FREQ Procedure
Central_ Cumulative Cumulative
Air Frequency Percent Frequency Percent
N 42 14.00 42 14.00
Y 258 86.00 300 100.00

Distribution of Central_Air

200

Frequency

N ¥
Central_Air

House_ Cumulative Cumulative
Style Frequency Percent Frequency Percent
1.5Fin 28 9.33 28 9.33
1.5Unf 4 1.33 32 10.67
1Story 194 64.67 226 75.33
2.5Unf 2 0.67 228 76.00
25tory 38 12.67 266 88.67
SFoyer 13 4.33 279 93.00
SLvl 21 7.00 300 100.00

Distribution of House_Style

200

Frequency

15Fin 1.5Unf 15ton 2 6Unf 23tory SFoyer Sl

House_Style

b. The default PROC CORR output gives a table of simple statistics and correlation coefficients. Use
ODS SELECT to print only the correlation coefficients for the variables saleprice, garage_area,
basement_area, and gr_liv_area. (Hint: It might be easiest to use the ODS TRACE statement to
learn the table name instead of going to the documentation page.) Is there a statistically
significant correlation between saleprice and each of the other variables?
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The CORR Procedure
Pearson Correlation Coefficients, N = 300
Prab = |r| under HO: Rho=0

Sale Garage_ Basement_ Gr_Liv_
Price Area Area Area
SalePrice 1.00000 0.57892 0.68956 0.65046
<.0001 <.0001 <.0001
Garage_Area 0.57892 1.00000 0.35630 0.33283
<. 0001 <.0001 <.0001
Basement_Area 0.68356 0.35630 1.00000 0.433985
<. 0001 <.0001 <.0001
Gr_Liv_Area 0.65046 0.33283 0.43985 1.00000

<. 0001 <.0001 <.0001

c. Use PROC MEANS to print the 10th percentile, median, and 90th percentile for the variables

saleprice and gr_liv_area. In addition, use the CLASS statement to separate the summary
statistics by the yr_sold variable. Finally, save the output using ODS OUTPUT and name the table
summary_table. Print the table to ensure it is saved. Which year had the highest median sale

price?

VName_ SalePrice_ SalePrice_ SalePrice_
Obs Yr_Sold NObs SalePrice P10 Median P30
1 2006 55 SalePrice 93500 131000 169000
2 2007 72 SalePrice 96500 128500 180500
a 2008 62 SalePrice 867000 136250 181900
4 2009 73 SalePrice 91300 144000 192000
5 2010 38 SalePrice 100000 146875 192000

VName_Gr_ Gr_Liv_Area_ Gr_Liv_Area_ Gr_Liv_Area_

Obs Liv_Area P10 Median Pa0

1 Gr_Liv_Area 8664 1092 1368

2 Gr_Liv_Area 8664 1076 1435

a Gr_Liv_Area 664 1185 1430

4 Gr_Liv_Area 600 1210 1456

5 Gr_Liv_Area 848 1148.5 1395

d. Use PROC UNIVARIATE to analyze the gr_liv_area variable and create both a histogram and a
QQPlot. For the histogram, overlay a normal and density kernel estimate. Use the OUTPUT
statement to create a new data table of percentiles called gr_percs. Instead of providing the
PCTLPTS= option a list, use the following syntax: PCTLPTS= 40 to 60 by 2.Letthe
prefixes for the saved percentiles be gr_. Print the table to ensure that it is saved.

Obs gr_40 gr_42 gr_44 gr 46 gr_48 gr 50 gr_52 gr 54 gr 56 gr 58 gr_60

1 1063.5 1075.5 1087 1092 1109.5 1135 1151 1169.5 1191 1206 1218

Creating and Using a Macro Variable for Unsupervised Scripting
a. Usethe MEANS procedure to create a new data table with the median of the SalePrice variable.
b. Use PROC SQL to create a macro variable of the median SalePrice value.

c. Inthe AmesHousing data set, create a new variable that is a value of 1 if the SalePrice is greater
than the median and 0 otherwise. Use PROC FREQ to create a frequency table of the new

variable.
The FREQ Procedure
Cumulative Cumulative
sp_bin Frequency Percent Frequency Percent
4} 153 51.00 153 51.00
1 147 49.00 300 100.00
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3.

Using the SYMPUTX Subroutine

a.

The SYMPUTX subroutine enables you to create a macro variable inside a DATA step. Navigate to
the online documentation for a complete description. Run the SAS code below (SP4R05e03.sas)
and analyze both the code and log output. What does this code do?
data NULL ;

x=-3;

df=5;

p=(l-probt (abs (x),df)) *2;

call symputx('sig level',p);
run;

$put The significance level for the two-tailed t test is
&sig level;

An alternative method to creating the macro variable in Exercise 2 is to use the SYMPUTX
subroutine. Use a DATA _NULL_ step, a SET statement, and the SYMPUTX routine to create a
macro variable for the median of the saleprice variable. Use the %PUT statement to ensure that
the macro variable is created correctly.

Creating a Macro to Generate Summary Statistics and Plots of Any Data Table

a.

Open SP4R05e04.sas. Create the mystats macro. It should have a single positional parameter
(dt) and four keyword parameters (freq=no, means=no, opts=, and scatter=no). Use the %IF,
%THEN, and %END macro statements to validate the positional parameter. If no data table (dt) is
supplied by the user, use %PUT to write the sentence “dt is a required argument” to the log and
use the %RETURN statement to terminate the macro.

Use PROC CONTENTS with the OUT= option to write the contents of the input data table (dt) to a
new data table called dtcontents. Use PROC SQL to use the Name field from dtcontents to
create two macro variables. Let vars_cont be the unique names of continuous variables in the
data set separated by a space. Let vars_cat be the unique names of the categorical variables in
the data set separated by a space.

Use macro statements to generate a PROC FREQ step if the user supplied freq=yes when calling
mystats. In this case, use PROC FREQ to create frequency tables for the categorical variables.
Use macro statements to generate a PROC MEANS step if the user supplies means=yes. In this
case, specify the continuous variables in the VAR statement. In addition, use the opts parameter
in the PROC MEANS statement to easily change the descriptive statistics.

Use macro statements to set a condition if the user supplies scatter=yes. In this case, use PROC
SGSCATTER to create a scatter plot matrix of the continuous variables. End the creation of the
macro with %MEND.

Call the mystats macro to create frequency tables for the cars data set.

The FREQ Procedure

Drive Cumulative Cumulative

Train Freguency Percent Frequency Percent

All 92 21.50 az 21.50

Front 226 52.80 318 74.30

Rear 110 25.70 428 100.00

Cumulative Cumulative

Make Frequency Percent Frequency Percent
Acura 7 1.64 7 1.64
Audi 19 4.44 26 6.07
BMW 20 4.67 46 10.75
Buick 9 2.10 55 12.85
Cadillac 8 1.87 63 14.72
Chevrolet 27 6.3 90 21.03
Chrysler 15 3.50 105 24.53
Dodge 13 3.04 118 27.57
Ford 23 5.37 141 32.94
GMC 8 1.87 149 34.81
Honda 17 3.97 166 38.79
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Hummer 1 0.23 167 39.02
Hyundai 12 2.80 179 41.82
Infiniti 8 1.87 187 43.69
Isuzu 2 0.47 189 44.16
Jaguar 12 2.80 201 46.96
Jeep 3 0.70 204 47.66
Kia 11 2.57 215 50.23
Land Rover 3 0.70 218 50.93
Lexus 11 2.57 229 53.50
Lincoln 9 2.10 238 55.61
MINI 2 0.47 240 56.07
Mazda 11 2.57 251 58.64
Mercedes-Benz 26 6.07 277 64.72
Mercury 9 2.10 286 66.62
Mitsubishi 13 3.04 299 69.86
Nissan 17 3.97 316 73.83
0ldsmobile 3 0.70 319 74.53
Pontiac 11 2.57 330 77.10
Porsche i 1.64 337 78.74
Saab T 1.64 344 B80.37
Saturn 8 1.87 352 82.24
Scion 2 0.47 354 82.71
Subaru 11 2.57 365 B85.28
Suzuki 8 1.87 373 87.15
Toyota 28 6.54 401 93.69
Volkswagen 15 3.50 4“6 97.20
Volvo 12 2.80 428 100.00
Partial Model Table
The FREQ Procedure
Cumulative Cumulative
Model Frequency Percent Frequency Percent
3.5 RL 4dr 1 0.23 1 0.23
3.5 RL w/Navigation 4dr 1 0.23 2 0.47
300M 4dr 1 0.23 3 0.70
300M Special Edition 4dr 1 0.23 4 0.93
325Ci 2dr 1 0.23 5 1.17
325Ci convertible 2dr 1 0.23 6 1.40
Cumulative Cumulative
Origin Frequency Percent Freguency Percent
Asia 158 36.92 158 36.92
Europe 123 28.74 281 65.65
UsA 147 34.35 428 100.00
Cumulative Cumulative
Type Frequency Percent Freguency Percent
Hybrid 3 0.70 3 0.70
sSuv 60 14.02 63 14.72
Sedan 262 61.21 325 75.93
Sports 49 11.45 374 87.38
Truck 24 5.61 398 592.99
Wagon 30 7.01 428 100.00

Call the mystats macro to create the means output with opts=mean median maxdec=2.

Generate a scatter plot matrix for the continuous variables.

The MEANS Procedure

\Variable Label Mean Median
Cylinders 5.81 6.00
EngineSize Engine Size (L) 3.20 3.00
Horsepower 215.89 210.00
Invoice 30014.70 25294.50
Length Length (IN) 186.36 167.00
MPG_City MPG (City) 20.06 19.00
MPG_Highway MPG (Highway) 26.84 26.00
MSRP 32774.86 27635.00
eight Weight (LBS) 3577.95 3474.50
heelbase Wheelbase (IN) 108.15 107.00
L
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Tip: A macro variable created inside a macro program is local in scope. For example,
vars_cont and vars_cat can be referenced only inside the macro program. To create a
global macro variable, you must use the SYMPUTX subroutine. The third argument
enables the user to specify a global option for the macro variable that is being created.
View the SAS online documentation for a complete description.

5. Creating a Macro for Iterative Processing

Import a series of Excel workbook sheets into corresponding SAS data sets. The amesbyyear Excel

workbook contains five separate sheets. Each sheet holds only the information for homes sold in a

specific year. Each sheet is named according to the year (2006, 2007, 2008, 2009, 2010). The data

begins on row 2, and row 1 contains all the variable names.

a. Create a macro to iteratively call PROC IMPORT to read in each sheet of the amesbyyear
spreadsheet. Call the macro myimport and give it two positional parameters (firstyear, lastyear).
Let each new data set (one for each sheet) be named year20## where ## refers to each specific
year.

b. Call myimport to read in each sheet of the Excel file.

Tip: Remember that the iteration index value can be referenced as a macro variable.

c. Check the SP4R library to ensure that all five data sets are created.
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Solutions

Multiple Choice

1.

b — The MEANS procedure can reproduce the min and sd functions, the covariance matrix is
generated in the CORR procedure, and tables are created in the FREQ procedure.

b and c — Macro variables can be assigned in the %LET statement outside of DATA or PROC steps.
Case is preserved for the text saved inside the macro variable however, the macro variable name is
not case sensitive. To resolve the macro variable when you compile your code, you must use the &
symbol.

b — Macro variables must be referenced with the & symbol.

Short Answer

1.

The CHISQ option requests chi-square tests of homogeneity or independence and measures of
association that are based on the chi-square test statistic. The four summary statistics procedures in
this section can also be used for conducting hypothesis tests by supplying specific options to the
procedures.

Answers will be vast and vary; here is one possible response. Imagine you want to create a function
that generates simple linear regression data for various values of the population intercept, slope,
model error, and the number of sampled observations. You then want to fit the model with the
simulated data to see the estimated parameters and a simple linear regression plot.

In R, you would create a function with four parameters: intercept, slope, error, observations. You
would then create a data frame with the observed values Y and covariates X. These would be created
by simulating values with the random function rnorm(). You would then pass this data frame to the
Im() function to fit the model and print results. Finally, you create a plot of Y by X with the plot()
function and use the abline() function to add on a line of best fit. Each time you call this R function,
you can create a new data set and see different results.

To create an equivalent function in SAS, we will use a SAS macro program. To accomplish the same
tasks, we will first create a data set with the values of Y and X using a DATA step and the RAND
function. Next, we will use the REG procedure (discussed in chapter 6) to fit the model. Finally, we
can use the SGPLOT procedure with the REG statement to plot the data and line of best fit. A macro
program will automatically generate all the necessary code according to the parameters we pass it.
Since DT is a positional parameter, it must be referenced first in the macro definition.

Macro parameters must be used as if they are macro variables. Thus, dt in the PROC MEANS
statement must be referenced with the & symbol.

To change the keyword parameter's default value in the macro call, you must use the parameter
name.

$macro test(dt, condition=50000) ;
proc means data=&dt;
where msrp > &condition;
run;
gmend;

$test (cars,condition=100000)

Programming Exercises

1.

Using Descriptive Procedures and ODS

a. Navigate to the SAS Help documentation and view the TABLES statement options for the FREQ
procedure. Which option enables you to create a frequency plot? Use PROC FREQ to create one-
way frequency tables for the variables central_air and house_style along with frequency plots.
What percentage of homes in this sample have central air? What percent are only one story?

proc freqg data=sp4r.ameshousing;
tables central air house style / plots=fregplot;
run;
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Selected PROC FREQ option:

PLOTS: use the FREQPLOT option to display a frequency plot (bar chart) of the
corresponding frequency table.

The FREQ Procedure
Central_ Cumulative Cumulative
Air Frequency Percent Frequency Percent
N 42 14.00 42 14.00
Y 258 86.00 300 100.00

Distribution of Central_Air

200

200

Fraquency

N v
Central_Air

House_ Cumulative Cumulative
Style Frequency Percent Frequency Percent
1.5Fin 28 9.33 28 9.33
1.5Unf 4 1.33 32 10.67
15tory 194 64.67 226 75.33
2.5Unf 2 0.67 228 76.00
25tory 38 12.67 266 86.67
SFoyer 13 4.33 279 93.00
SLvl 21 7.00 300 100.00

Distribution of House_Style

Frequency

=

1.5Fin 1.80Unf 15tory 25Unf 25tory SFoyer Slvl

House_Style

b. The default PROC CORR output gives a table of simple statistics and correlation coefficients. Use
ODS SELECT to print only the correlation coefficients for the variables saleprice, garage_area,
basement_area, and gr_liv_area. (Hint: It might be easiest to use the ODS TRACE statement to
learn the table name instead of going to the documentation page.) Is there a statistically
significant correlation between saleprice and each of the other variables?

ods select pearsoncorr;
proc corr data=sp4dr.ameshousing;

var saleprice garage area basement area gr liv area;
run;
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The CORR Procedure
Pearson Correlation Coefficients, N = 300
Prab = |r| under HO: Rho=0

Sale Garage_ Basement_ Gr_Liv_
Price Area Area Area
SalePrice 1.00000 0.57892 0.68956 0.65046
<.0001 <.0001 <.0001
Garage_Area 0.57892 1.00000 0.35630 0.33283
<. 0001 <.0001 <.0001
Basement_Area 0.68356 0.35630 1.00000 0.433985
<. 0001 <.0001 <.0001
Gr_Liv_Area 0.65046 0.33283 0.43985 1.00000

<. 0001 <.0001 <.0001

Use PROC MEANS to print the 10th percentile, median, and 90th percentile for the variables
saleprice and gr_liv_area. In addition, use the CLASS statement to separate the summary
statistics by the yr_sold variable. Finally, save the output using ODS OUTPUT and name the table
summary_table. Print the table to ensure it is saved. Which year had the highest median sale
price?

ods output summary=summary table;

proc means data=spédr.ameshousing pl0 median p90;
var saleprice gr liv area;
class yr sold;

run;

proc print data=summary table;
runy;

Selected PROC MEANS statement:

CLASS specifies the variables whose values define the subgroup combinations for the analysis.
Class variables are numeric or character. Class variables can have continuous values, but they
typically have a few discrete values that define levels of the variable.

VName_ SalePrice_ SalePrice_ SalePrice_
Obs ¥r_Sold NObs SalePrice P10 Median Pg0
1 2006 55 SalePrice 93500 131000 169000
2 2007 72 SalePrice 96500 1268500 180500
3 2008 62 SalePrice 87000 136250 181900
4 2009 73 SalePrice 91300 144000 192000
5 2010 38 SalePrice 100000 148875 192000
VName_Gr_ Gr_Liv_Area_ Gr_Liv_Area_ Gr_Liv_Area_
Obs Liv_Area P10 Median P30
1 Gr_Liv_Area 864 1092 1368
2 Gr_Liv_Area 864 1076 1435
3 Gr_Liv_Area 864 1185 1430
4 Gr_Liv_Area 80O 1210 1456
5 Gr_Liv_Area 648 1148.5 1395

Use PROC UNIVARIATE to analyze the gr_liv_area variable and create both a histogram and a
QQPIot. For the histogram, overlay a normal and density kernel estimate. Use the OUTPUT
statement to create a new data table of percentiles called gr_percs. Instead of providing the
PCTLPTS= option a list, use the following syntax: PCTLPTS= 40 to 60 by 2.Letthe
prefixes for the saved percentiles be gr_. Print the table to ensure that it is saved.

proc univariate data=sp4r.ameshousing;
var gr_liv_area;
histogram gr_liv_area / normal kernel;
ggplot gr liv area / normal (mu=est sigma=est);
output out=gr percs pctlpts= 40 to 60 by 2
pctlpre=gr liv area ;
run;

proc print data=gr percs;
run;
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Selected PROC UNIVARIATE statements and options:
OUT specifies the name of the new SAS data table.
PCTLPTS specifies the percentiles to be calculated for the VAR statement variables.

PCTLPRE specifies one or more prefixes for the name of the variable to be created followed
by the percentile listed in the PCTLPTS option.

VAR specifies numeric variables to analyze.

HISTOGRAM specifies the numeric variable that is used to create a histogram. Use the
NORMAL and KERNEL option to overlay a normal density and kernel density estimate.

INSET specifies which statistics to include in the histogram plot. Use the POSITION= option
to provide a location. Provide the option with a compass direction (NE = North East).

QQPLOT specifies numeric variables to create a Q-Q plot. Use the NORMAL option to add a
line to the Q-Q plot. Use the MU= and SIGMA= options to specify the parameters of the
distribution for which quantiles are compared.

The UNIVARIATE Procedure
Variable: Gr_Liv_Area

Moments
300 Sum Weights 300
Mean 1130.74 Sum Observations 339222
Std Deviation 232.649389 Variance 54125.7362
Skewness -0.3905489 Kurtosis -0.3328098
Uncorrected S8 399755480 Corrected S8 16183595.7
Coeff Variation 20.5749676 5td Error Mean 13.43201687

Basic Statistical Measures

Location Variability
Mean 1130.740 Std Deviation 232.64939
Median  1135.000 Variance 54126
Mode 864.000 Range 1166

Interquartile Range  365.50000

Tests Tor Location: Mu0=0

Test -Statistic-  ----- p Value------
Student’s t T 84.18243 Pr = |t| <.0001
sign ] 150 Pr >= |M|  <.0001
Signed Rank S 22575 Pr >= |S| =<.000

Quantiles (Definition 5)

Level Quantile
100% Max 1500.0
99% 1490.0
95% 1466.0
90% 1431.0
75% 03 1337.5
50% Median 1135.0
25% o 952.0
10% §47.0
5% 768.0
1% 509.0
0% Min 334.0
Extreme Observations
----Lowest---- ----Highest---
Value Obs Value abs
334 190 1484 142
438 100 1486 95
498 294 1494 181
520 145 1494 290
599 70 1500 222
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Distribution of Gr_Liv_Area
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Fitted Normal Distribution for Gr_Liv_Area
Parameters for Normal Distribution
Parameter Symbol Estimate

Mean Mu 1130.74
Std Dev Sigma 232.6494

Goodness-ofT-Fit Tests for Normal Distribution

Test ----Statistic-----  ------ p Value------
Kolmogorov-Smirnov D 0.07537655 Pr =D <0.010
Cramer-von Mises W-58q 0.33461417 Pr > W-Sq <0.005
Anderson-Darling A-5q 2.41868951 Pr = A-Sq <0.005

Quantiles for Normal Distribution

------- Quantile------
Percent Observed Estimated
1.0 509.000 580.517
5.0 768.000 746.066
10.0 847.000 832 .588
25.0 952.000 973.620
50.0 1135.000 1130.740
75.0 1337.500 1287 .660
90.0 1431.000 1428.892
95.0 1466.000 1513.414
99.0 1490.000 1671.963

Gr_Liv_Area

Q-Q Plot for Gr_Liv_Area
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2.

3.

Obs  gr_40  gr 42 gr 44 gr 46 gr 48 gr 50 gr 52  gr 54 Qr 56 gr 586 gr_60

1 1063.5 1075.5 1087 1092 1109.5 1135 1151 1169.5 1191 1206 1218

Creating and Using a Macro Variable for Unsupervised Scripting

a.

Use the MEANS procedure to create a new data table with the median of the SalePrice variable.

proc means data=sp4r.ameshousing;

var saleprice;

output out=spdr.stats median=sp med;
run;

Use PROC SQL to create a macro variable of the median SalePrice value.

proc sql;
select sp med into :sp med from spér.stats;
quit;

sp_med

135000

In the AmesHousing data set, create a new variable that is a value of 1 if the SalePrice is greater
than the median and 0 otherwise. Use PROC FREQ to create a frequency table of the new
variable.

data spé4r.ameshousing;
set spé4r.ameshousing;
if saleprice > &sp med then sp bin = 1;
else sp bin = 0;

run;

proc freq data=sp4r.ameshousing;
tables sp bin;

run;
The FREQ Procedure
Cumulative Cumulative
sp_bin Frequency Percent Frequency Percent
0 153 51.00 153 51.00
1 147 49.00 300 100.00

Using the SYMPUTX Subroutine

a.

The SYMPUTX subroutine enables you to create a macro variable inside a DATA step. Navigate to
the online documentation for a complete description. Run the SAS code below (SP4R05e03.sas)
and analyze both the code and log output. What does this code do?

data NULL ;
x==-3;
df=5;
p=(l-probt (abs (x),df)) *2;
call symputx('sig level',p);
run;

$put The significance level for the two-tailed t test is
&sig level;

|The significance level for the two-tailed t test is 0.0300992479

This code uses a DATA _NULL_ step to create a macro variable for the significance level of a two-
sided t test with five degrees of freedom and a test value of -3.

Selected functions and subroutines:

PROBT(x,df) returns the probability that an observation form a Student’s distribution, with
degrees of freedom df, is less than or equal to x.

SYMPUTX assigns a value to a macro variable and removes both leading and trailing blanks.
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An alternative method to creating the macro variable in Exercise 2 is to use the SYMPUTX
subroutine. Use a DATA _NULL_ step, a SET statement, and the SYMPUTX routine to create a
macro variable for the median of the saleprice variable. Use the %PUT statement to ensure that
the macro variable is created correctly.

proc means data=sp4r.ameshousing;
var saleprice;
output out=stats median=sp med;
run;

data null ;

set stats;

call symputx ('med',sp med) ;
run;

$put The median of the Sale Price variable is &med;

|The median of the Sale Price variable is 135000

4. Creating a Macro to Generate Summary Statistics and Plots of Any Data Table

a.

Open SP4R05e04.sas. Create the mystats macro. It should have a single positional parameter
(dt) and four keyword parameters (freq=no, means=no, opts=, and scatter=no). Use the %IF,
%THEN, and %END macro statements to validate the positional parameter. If no data table (dt) is
supplied by the user, use %PUT to write the sentence “dt is a required argument” to the log and
use the %RETURN statement to terminate the macro.

$macro mystats (dt, freg=no, corr=no,means=no,opts=, scatter=no) ;

%$if &dt= $then %do;
%put dt is a required argument;
Sreturn;

%end;

Use PROC CONTENTS with the OUT= option to write the contents of the input data table (dt) to a
new data table called dtcontents. Use PROC SQL to use the Name field from dtcontents to
create two macro variables. Let vars_cont be the unique names of continuous variables in the
data set separated by a space. Let vars_cat be the unique names of the categorical variables in
the data set separated by a space.

proc contents data=&dt varnum out=dtcontents;
run;

proc sql;
select distinct name into: vars cont separated by ' '
from dtcontents where type=1l;
select distinct NAME into: vars cat separated by ' '
from dtcontents where type=2;

quit;

Use macro statements to generate a PROC FREQ step if the user supplied freq=yes when calling
mystats. In this case, use PROC FREQ to create frequency tables for the categorical variables.

%$1f %upcase(&freq)=YES %$then %do;
proc freqg data=&dt;
tables &vars cat;
run;
%end;

Use macro statements to generate a PROC MEANS step if the user supplies means=yes. In this
case, specify the continuous variables in the VAR statement. In addition, use the opts parameter
in the PROC MEANS statement to easily change the descriptive statistics.

%$if %Supcase (&means)=YES %then %do;
proc means data=&dt &opts;
var &vars_cont;
run;
%end;
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e. Use macro statements to set a condition if the user supplies scatter=yes. In this case, use PROC
SGSCATTER to create a scatter plot matrix of the continuous variables. End the creation of the
macro with %MEND.

$if %upcase (&scatter)=YES $then %do;
proc sgscatter data=é&dt;
matrix &vars_ cont;
run;
%end;
$mend;

f.  Call the mystats macro to create frequency tables for the cars data set.

Smystats (spd4r.cars, freg=yes)

The FREQ Procedure
Drive Cumulative Cumulative
Train Frequency Percent Frequency Percent
All 92 21.50 a2z 21.50
Front 226 52.80 318 74.30
Rear 110 25.70 428 100.00
Cumulative Cumulative
Make Frequency Percent Frequency Percent
Acura 7 1.64 T 1.64
Audi 19 4.44 26 6.07
BMw 20 4.67 46 10.75
Buick 9 2.10 55 12.85
Cadillac @ 1.87 63 14.72
Chevrolet 27 6.31 90 21.03
Chrysler 15 3.50 105 24.53
Dodge 13 3.04 118 27.57
Ford 23 5.37 14 32.94
GMC @ 1.87 149 34.61
Honda 17 3.97 166 36.79
Hummer 1 0.23 167 39.02
Hyundai 12 2.80 178 41.82
Infiniti 8 1.87 187 43.69
Isuzu 2 0.47 189 44.16
Jaguar 12 2.80 201 46.96
Jeep 3 0.70 204 47.66
Kia 11 2.57 215 50.23
Land Rover 3 0.70 218 50.93
Lexus i1 2.57 229 53.50
Lincoln 9 2.10 238 55.61
MINI 2 0.47 240 56.07
Mazda i1 2.57 251 58.64
Mercedes-Benz 26 6.07 277 64.72
Mercury 9 2.10 286 66.82
Mitsubishi 13 3.04 299 69.86
Nissan 17 3.97 316 73.83
0Oldsmobile 3 0.70 319 74.53
Pontiac 11 2.57 330 77.10
Porsche 7 1.64 337 78.74
Saab 7 1.64 344 80.37
Saturn a8 1.87 352 B82.24
Scion 2 0.47 354 62.71
Subaru i1 2.57 365 85.28
SuZuki 8 1.87 373 B87.15
Toyota 28 6.54 401 93.69
Volkswagen 15 3.50 Eals 97.20
Volvo 12 2.80 428 100.00
Partial Model Table
The FREQ Procedure
Cumulative Cumulative
Model Frequency Percent Frequency Percent
3.5 AL 4dr 1 0.23 1 0.23
3.5 AL w/Navigation 4dr 1 0.23 2 0.47
300M 4dr 1 0.23 3 0.70
300M Special Edition 4dr 1 0.23 4 0.93
325C1i 2dr 1 0.23 5 1.17
325Ci convertible 2dr 1 0.23 6 1.40
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Cumulative Cumulative
Origin Frequency Percent Frequency Percent
Asia 158 36.92 158 36.92
Europe 123 28.74 281 65.65
UsA 147 34.35 428 100.00

Cumulative Cumulative
Type Frequency Percent Frequency Percent
Hybrid 3 0.70 3 0.70
SUv 60 14.02 63 14.72
Sedan 262 61.21 325 75.93
Sports 44 11.45 374 87.386
Truck 24 5.61 398 592.99
Wagon 30 7.01 428 100.00

g. Call the mystats macro to create the means output with opts=mean median maxdec=2.
Generate a scatter plot matrix for the continuous variables.

Smystats (spdr.cars,means=yes, opts=mean median
maxdec=2,scatter=yes)

The MEANS Procedure
Variable Label Mean Median
Cylinders 5.81 6.00
EngineSize Engine Size (L) 3.20 3.00
Horsepower 215.89 210.00
Invoice 30014.70 25294.50
Length Length (IN) 186.36 187.00
MPG_City MPG (City) 20.06 19.00
MPG_Highway MPG (Highway) 26.84 26.00
MSRP 32774.86 27635.00
eight Weight (LBS) 3577.95 3474.50
heelbase Wheelbase (IN) 108.15 107.00
L
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5. Creating a Macro for Iterative Processing

Import a series of Excel workbook sheets into corresponding SAS data sets. The amesbyyear Excel
workbook contains five separate sheets. Each sheet holds only the information for homes sold in a



140 SAS Programming for R Users

specific year. Each sheet is named according to the year (2006, 2007, 2008, 2009, 2010). The data
begins on row 2, and row 1 contains all the variable names.

a. Create a macro to iteratively call PROC IMPORT to read in each sheet of the amesbyyear
spreadsheet. Call the macro myimport and give it two positional parameters (firstyear, lastyear).
Let each new data set (one for each sheet) be named year20## where ## refers to each specific
year.

Remember that the iteration index value can be referenced as a macro variable.
$macro myimport (firstyear, lastyear);
%$do i=&firstyear %$to &lastyear;
proc import datafile = "&path\amesbyyear.xlsx"
out = spdr.year&i
dbms = x1lsx REPLACE;
getnames = yes;
sheet = "&i";
datarow = 2;
run;
Send;
$mend;
b. Call myimport to read in each sheet of the Excel file.
options mprint;
Smyimport (2006,2010)
5078 options mprint;
5079 %myimport(2006,2010)
MPRINT (MYIMPORT) : proc import out = year2006 datafile =
“C:\Users\jobake\Desktop\sp4rtestiamesbyyear.x1lsx" dbms = x1sx REPLACE;
MPRINT(MYIMPORT):  RXLX;
MPRINT (MYIMPORT) : getnames = yes;
MPRINT(MYIMPORT):  sheet = "2006";
MPRINT(MYIMPORT): datarow = 2;
MPRINT(MYIMPORT):  run;
MPRINT (MYIMPORT) : proc import out = year2007 datafile =
“C:\Users'jobake\Desktop\sp4rtestiamesbyyear.xlsx™ dbms = x1sx REPLACE;
MPRINT (MYIMPORT) : RXLX;
MPRINT (MYIMPORT) : getnames = yes;
MPRINT (MYIMPORT) : sheet = "2007";
MPRINT (MYIMPORT) : datarow = 2;
MPRINT (MYIMPORT) : run;
MPRINT (MYIMPORT) : proc import out = year2008 datafile =
“C:\Users\jobake\Desktop\sp4rtestiamesbyyear.xlsx" dbms = x1sx REPLACE;
MPRINT (MYIMPORT) : RXLX;
MPRINT (MYIMPORT) : getnames = yes;
MPRINT (MYIMPORT) : sheet = "2008";
MPRINT (MYIMPORT) : datarow = 2;
MPRINT (MYIMPORT) : run;
MPRINT (MYIMPORT) : proc import out = year2009 datafile =
“C:\Users\jobake\Desktop\sp4rtestiamesbyyear.xlsx” dbms = x1lsx REPLACE;
MPRINT (MYIMPORT):  RXLX;
MPRINT (MYIMPORT): getnames = yes;
MPRINT (MYIMPORT):  sheet = "2009";
MPRINT (MYIMPORT):  datarow = 2;
MPRINT (MYIMPORT):  run;
MPRINT(MYIMPORT):  proc import out = year2010 datafile =
“G:\Users\jobake\Desktop\sp4rtest\amesbyyear.x1sx" dbms = x1sx REPLACE;
MPRINT (MYIMPORT):  RXLX;
MPRINT (MYIMPORT): getnames = yes;
MPRINT(MYIMPORT):  sheet = "2010";
MPRINT (MYIMPORT):  datarow = 2;
MPRINT (MYIMPORT):  run;
c. Check the SP4R library to ensure that all five data sets are created.
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Introduction

In the previous chapters, you learned how to import your data into SAS, alter the data to meet your
specifications, and create graphics and summary statistics to get a feel for the data. You are now ready to
begin creating some statistical models. We will practice using inferential procedures in SAS with a whole slew
of linear, generalized linear, and mixed models.

SAS modeling procedure syntax is very consistent. After you master the syntax required to create these
models, you will have no problem extending your own statistical knowledge to time series, Bayesian, or
survival procedures, to name a few.

Linear Models

In this section, we will create lots of different linear models including a multiple linear regression, analysis of
variance, analysis of covariance, and finally, we will get into a little bit of effect selection. We will hypothesize
a linear model, use an appropriate PROC step to create the linear model and generate both tables and
statistical graphics, and then save the important model information with the OUTPUT statement that we have
learned before.

For linear models, we would use the LM function in R for regression, polynomial regression, ANOVA, and so
on, as shown in Figure 6.1. We just tack on the AS.FACTOR function to indicate a classification variable, and an
analysis of covariance when we have both classification variables and continuous variables. You will learn how
to reproduce the ANOVA, SUMMARY, and PLOT functions applied to your model object.
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Figure 6.1: R Script

5 [7]Source on Save Q L1 % Run 2% | #Source
#Regression

mylm = Im(SalePrice ~ Gr_Liv_Area + Age_Sold)

myim; summary(mylim); anova(mylm

par (mfrow=c(2,2)); plot(myim)

"i'J|.|'J-"i_'.

X2 = XAZ: X3 = XAZ; 4 = XAQ; XTF = NAF
my Im Tm(y X + X2 + X3 + X4 + X5
my1m; summary(mylm); anova(mylm

par (mfrow=c(2,2)); plot(mylm)

m;r'lm . Im(saleprice -~ as.factor(Heating_qc
my1m; anova(mylm); summary (mylm
par (mfrow=c(2,2)); plot(myim)

mylm = Im(salePrice -~ as.factor(Heating_QC) + Gr_Liv_Area
+ as.factor (Heating_QC) “Gr_Liv_Area

my1m; anova(mylm); summary (mylm)

par (mfrow=c(2,2

plot(mylm

PROC REG

PROC REG can be used to create a simple linear regression or multiple linear regression model. In PROC REG,
we are only going to specify continuous predictors. If you wanted to dummy-code your own variable to create
classification variables, you could do that, but we will see how to create a classification variable explicitly in
SAS using PROC GLM a little bit later.

To specify your model, we will simply use the MODEL statement as shown in the following syntax:

PROC REG DATA=data-set-name;
MODEL dependent-variable = regressors </ options>;
RUN; QUIT;

Tip: Variables specified in the MODEL statement must be numeric variables.

Simple Linear Regression

In Program 6.1, we are creating a simple linear regression model using the ameshousing data set. The
dependent variable is on the left (saleprice), and we set that equal to all the regressors in the model. In this
case, there is only one: the gr_liv_area, and you do not need to use your plus symbols to add in predictors.
You just simply list them after the equal sign.

Program 6.1: PROC REG

proc reg data=ameshousing;
model saleprice = gr liv area;
run;quit;

Output 6.1: Results of Program 6.1

Analysis of Variance

Sum of Mean
Source DF Squares Square | F Value Pr>F
Model 1 1.7906T1E11 1.TS0ETIE11| 21856 < (001
Error 208 2441584E11  B19316790

Cormrected Total 295 4 232235E11
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Root M5SE 28624 R-Square 04231
Dependent Mean 137525 AdjR-Sq 04212
Coeff Var 2081348

Parameter Estimates

Parameter  Standard
Variable DF Estimate Emor tVaolue Pre= |y

Intercopt 1 18533 821343837 226 0.0244
Gr_Liv_Ares 1 105 18002 T 115622 14.T8 =< 0001
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As shown in Output 6.1, by default we get similar output to the SUMMARY and ANOVA functions applied to
the model object (for example, when you get the analysis of variance table), and also our parameter estimates
with standard errors, t values, and p-values. We also get a little bit of other information like the root mean
square error, R square, and so on. By default, PROC REG will give you a diagnostics panel, and a lot of this
information is the same as plotting the model object in R. For example, we get the Residual by Predicted plot,
R studentized Residuals by the Predicted Values, R studentized Residuals by Leverage, and so on.

Tip: Use the PLOTS(UNPACK) option in the PROC REG statement to plot the default output individually,
without a panel.

The one output that you do not get from plotting the model object in R is the Cook's Distance plot by
Observation, but this is just a measure of how predicted scores change when observations are removed from
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the model, so it is trying to identify outliers. You can see in the Fit Diagnostics in Output 6.1, at observation
125, the Cook's Distance is very large, indicating this is a possible outlier.

Also, by default, you will get the Residual by the Predictor Value graphic, so for every regressor that you have

in your model, it will create a single Residual by Regressor plot. And if you are doing a simple linear regression
model, SAS will go ahead and give you the simple linear regression plot. It will tack on that line of best fit, your
confidence limits, and prediction limits, by default.

Polynomial Regression

To do polynomial regression in SAS, we have to begin the same way as we would in R. Specifically, we had to
add those regressors to our existing SAS data set. In Program 6.2, you can see we are adding x squared, x
cubed, all the way through x to the fifth power. We are adding those polynomial regressors to our data set,
and then we can use them in PROC REG.

Program 6.2: Preparation for Polynomial Regression

data mydata;

set mydata;

X2 = xX**2; x3 = x**3; x4 = x**4; x5 = x**5;
run;

Tip: Recall that SAS does not use the A symbol for exponentiation. It uses the double star symbol.

PROC PLM

To reproduce the PREDICT function in R, we can use the PLM procedure to score new SAS data sets. We begin
the same way as we would in R. Specifically, in R, we create a model object. In SAS, we are going to store the
model with the STORE statement inside the procedure using the following syntax:

STORE jtem-store-name;

In Program 6.3, we are running PROC REG with whatever MODEL statement you want to use, and storing the
model with the STORE statement under the mymod name. Once we save the model, then we can pass it to
the PLM procedure like we would pass the model object to the PREDICT function.

Program 6.3: Save the Model with the STORE Statement
proc reg data=ameshousing;

store mymod;
run;

The STORE statement requests that the procedure save the context and results of the statistical analysis. The
resulting item store has a binary file format that cannot be modified. The contents of the item store can be
processed with the PLM procedure.

In the R Script in Figure 6.1, we passed the model object to the PREDICT function, and then the new data set
we want to score. In SAS, we are going to pass the model to the PLM procedure using the RESTORE= option
with the following syntax:

PROC PLM RESTORE-=jtem-store-specification;
SCORE DATA=new-data-set
OUT =predicted-data-set <keywords>;
RUN;

In Program 6.4, we restore mymod, which we specified in the STORE statement of the SAS procedure PROC
REG in Program 6.3. We use the SCORE statement, and specify the DATA= option to tell SAS the new SAS data
set we are scoring—in this case, newdata. SAS is going to use the model specified in the RESTORE option to
predict values for the new data set. You can also use the OUT= option to save the new scored values. We are
calling the new data set pred, for predicted.
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Program 6.4: PROC PLM

proc plm restore=mymod;
score data=newdata out=pred;
run;

You can also pass a bunch of other keywords to the PROC PLM SCORE statement to generate other output.
For example, you can generate predicted values, standard errors, residuals, confidence limits, and also
prediction limits as shown in Table 6.1.

Table 6.1: SCORE Statement Keywords

PREDICTED Linear predictor
STDERR Standard Error

RESIDUAL  Residual

LCLM Lower confidence limit
UCLM Upper confidence limit
LCL Lower prediction limit
UCL Upper prediction limit

Tip: If you want to change from an alpha level of 0.05, just use the ALPHA= option for your limits.

The STORE statement to save your model is supported by most of the SAS/STAT procedures. In this book, we
are going to use it in PROC REG, GLM, GLMSELECT, LOGISTIC, GENMOD, and MIXED. There are a few
procedures where you can score data right in the procedure where you are creating your model. Specifically,
you can use the SCORE statement in PROC GLMSELECT and PROC LOGISTIC to bypass the use of PROC PLM. In
this book we will always use the STORE statement in the modeling procedure, and then pass that to PROC
PLM to score new data set. This is very similar to using the PREDICT function in R, but you should be aware of
the SCORE statement in both the GLMSELECT and LOGISTIC procedures.

PROC GLM

In this section, we move on from PROC REG to PROC GLM, which stands for the general linear model. In this
case, we are going to perform an ANOVA and also an analysis of covariance. So we are moving away from
PROC REG with just continuous variables and now we can use classification variables in PROC GLM as shown in
the following syntax:

PROC GLM DATA=data-table-name;

CLASS variables <options>;

MODEL dependent-variable = independent-variables </options>;
RUN;

In Program 6.5, we continue working with the ameshousing data set. To do an analysis of variance, choose the
heating_qc (for quality control) in that data set. This variable has four levels: Excellent, Good, Average, and
Fair. To tell SAS explicitly that it is a classification variable, use the CLASS statement and specify the variable
heating_qc.
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Program 6.5: PROC GLM

proc glm data=ameshousing;

class heating gc (ref='Fa'); ©

model saleprice = heating gc / solution; @
run;quit;

© The CLASS statement is identical to the AS.FACTOR function in R, so it is going to create a column in the
design matrix for each classification level. As an option in parentheses, we specify the reference level. In
this case, we set it equal to Fa for fair. That is case sensitive and it is as appears in the data set.

® Next, we use the MODEL statement the same way as in PROC REG. Set saleprice equal to the classification
variable, heating_qc.

Tip: The CLASS statement in PROC GLM creates columns in the design matrix for each classification
variable. The number of columns is the same as the number of levels in the CLASS variable. The value of
each design column is either 0 or 1 across all observations.

Output 6.5: Results of Program 6.5

Source DF Sum of Squares Mean Square F Value Pr=F
Mol 3 GE8I5556221 222TB518T40 18.50 | <0001
Error Fal i J56367963285 1204013385 5

Correctad Total 299 42327351851

A-Square Coell Var Root MSE  SalePrice Mean
0. 157920 | 2523100 3465850 137524 .9

Source DF Type | 55 Mean Square F Value Pr»F
Heating_QC | 3 65335556221 222TES18T40 18.50 <0001

Source DF  Type lll 55 Mean Square F Value Pr»F
Heating QC | 3 66835556221 222TBS18740 18.50 < 0001

Distribution of SalePrice
300000 F 1850

B, Prob = F <0001
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Standard
Parameter Estimate Error tValue Pr=> i

Intercept 97118.75000 8674.724021 | 1120 <0001
Heating_QC Ex 57800.43692 9300.714942 621 <0001
Heating_QC TA 33454 77941 9239.512780 362 0.0003

B
B
Heating QC Gd 3372533621 B | 9798.453367 344 0.0007
B
Heating_QC Fa 0.00000 B

By default, in Output 6.5 we get the analysis of variance table, which has an overall significant F test. We also
get the R square, coefficient of variation, root mean square error, and the mean sale price. We also get the
Type 1 and Type 3 sums of squares, which of course, when we only have one variable, are going to be
identical.

One of the great things about SAS is that it is always giving you relevant statistical graphics. SAS knows we are
doing a one-way analysis of variance, so in this case, it outputs a side-by-side box plot. For Excellent, it
appears that the sale price on average is greater than Good, Average, and Fair. It appears that Good and
Average are quite similar. And of course, the sale price for the Fair heating_qc (the lowest level) is associated
with the lowest sale prices.

As a best practice, use the SOLUTION option in the MODEL statement to print the parameter estimates table.
It displays the intercept, four levels, estimate, standard error, t value, and p-value. Notice the column in the
middle that has the letter B In each element. That simply means that those terms are not uniquely estimable
and there are no linear combinations of predictors to estimate those parameters individually.

MEANS Statement

There are lots of different statements that can be used in PROC GLM, and going forward in this book, they will
be quite consistent. Let’s use the MEANS statement to specify our classification variables (in this case,
heating_qc) using the following syntax:

MEANS class-variable < | HOVTEST=test-name >;
Using the MEANS statement in Program 6.6 gives us the default table shown in Output 6.6.

Program 6.6: MEANS Statement

proc glm data=ameshousing;

means heating gc / hovtest=bf;
run;quit;

Output 6.6: Partial Results of Program 6.6

SalePrice
Level of
Heating QC | N Mean Std Dev
Ex 107 | 154919.187 36822.8795
Gd 58 130844 086 34912 5027
TA 119 | 130573.529 32177.4508
Fa 16| 97118.760 37423.5437

Output 6.6 shows us the number of observations in each level (for example, Excellent has 107 observations),
and it also gives me the mean and standard deviation. Another reason to use the MEAN statement is that you
can use the HOVTEST option, the homogeneity of variance test. To test the assumption of equal variances, we
have four options here as shown in Table 6.2.
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Table 6.2: HOVTEST Options

HOVTEST= Homogeneity of Variance Test

BARTLETT Bartlett's Test

BF Brown and Forsythe’s Test
LEVENE Levene’s Test
OBRIEN O’Brien’s Test

Check out the SAS documentation to see which option you might want to use.

LSMEANS Statement

Another statement that can be used in PROC GLM is the LSMEANS statement, which stands for the least
square means. Use the statement to add in the classification variables that you want to find the least square
means for, as shown in the following syntax:

LSMEANS class-variable < | options>;

As an option, you can use the ADJUST= option to request multiple simultaneous comparisons. We can use the
Tukey, Bonferroni, Dunnett, or Scheffe adjustments as shown in Table 6.3.

Table 6.3: ADJUST= Options

Homogeneity of

ADJUST= Variance Test Description

Tukey Adjustment  Tukey is probably the test most users are familiar with. It
tends to be the most powerful in most cases.

TUKEY
Bonferroni This adjustment specifies an overall alpha and then that
BON Adjustment alpha is divvied up for each comparison.
Dunnett Dunnet is most frequently used when comparing
Adjustment everything to a control group. For example, if you are
testing three drugs against a control, use the Dunnett
adjustment because you would actually only be testing
DUNNET three comparisons in that case.
Scheffé The Scheffé adjustment controls for all possible
Adjustment comparisons. This is useful if you engage in data
SCHEFFE snooping.

Also, by default, when you use the LSMEANS statement, of course, you get the least square mean for saleprice
for each level of the classification variable, and you also get the comparison. In Program 6.7 and Output 6.7,
we are comparing group 1 to group 2, and it has a p-value of 0.002 for the hypothesis test, which indicates the
Excellent heating quality and Good heating quality are significantly different. On the other hand, comparing
levels 2 to 3, comparing Good to Average, we can see that the p-value is definitely not less than 0.05, so these
are not significantly different from each other.
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Program 6.7: LSMEANS Statement

proc glm data=ameshousing;

lsmeans heating gc / adjust=tukey;
run;quit;

Output 6.7: Results of Program 6.7

Least Squares Means for effect Heating_QC
Pr > |i] for HD: LSMean(i}=L SMean(j)
Dependent Variable: SalePrice

Heating_QC SalePrice LSMEAN LSMEAN Number ifj 1 2 3 4
Ex 154919.187 1 1 0.0002  <.0001 <.0001
Gd 130844 086 2 2 0.0002 1.0000  0.0037
TA 130573.529 3 3 <0001 1.0000 0.0020
Fa 97118.750 4 4 <0001 0.0037 0.0020

SalePrice Comparisons for Heating_QC

X

140000
120000

100000

T os

E0000

80000 100000 120000 140000 180000
Differences for aipha=0 05 (Tukey Kramer Adjustment)
Bot significant Significant

In Output 6.7, you can also see the default graphic, which has the same information as the comparison table.
For example, Fair is significantly different from Average, Good, and Excellent, and we see that Average and
Good are not significantly different.

ESTIMATE Statement

Previously we talked about using PROC PLM to score new data sets. But what if you want to test a linear
function of the parameters or a linear combination? In R, you could multiply the coefficients beta hat by a
vector of coefficients L. That would give you your linear combination. In SAS, if you want to test main effects
or simply estimate one single home price, you could do that directly in the ESTIMATE statement of the
procedure. We will specify the vector L in the ESTIMATE statement using the following syntax:

ESTIMATE 'estimate-name' class-variable
linear-combination < | options>;

This method is not for scoring entire data sets. The ESTIMATE statement only enables you to estimate linear
functions of the parameters by creating the L matrix. The linear function is checked for estimability. The
estimate of LB, where 8 = (X 'X) X ' Yis displayed along with its associated standard error,

\/L(X'XTL'SZ ,and t test.

Let’s look at an example. We want to test the linear combination mul equal to mu2, so we run PROC GLM
with the appropriate statements as shown in Program 6.8.
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Program 6.8: ESTIMATE Statement

proc glm data=ameshousing;
... ©
estimate 'mul vs the rest'
heating gc 3 -1 -1 -1 / divisor=3; @
run;quit;

© Here we are leaving out the MODEL statement just for space.

® Inthe ESTIMATE statement, we are going to test the main effects for mul equal to mu2. So first, we
name the estimate. In quotation marks, specify mul minus mu2, and then pass it the classification
variable, heating_qgc. Then specify the coefficients for the L vector. We want a coefficient 1 for Excellent
and -1 for Good; the rest all set as 0. If we omit the zeros, it would simply set all the remaining
coefficients to zero where necessary.

Running Program 6.8 produces the table shown in Output 6.8.

Output 6.8: Results of Program 6.8

Standard
Parameter Estimate Error | t Value | Pr > ji]

mul-mu2  24075.1007 565785411 426 <.0001

In Output 6.8, we get an estimate of about $24,000. It appears that the sale price for homes with the Excellent
heating condition are about $24,000 greater, on average, than homes with the Good heating condition. We
also get the standard error, t value, and p-value. Here the p-value indicates that the main effect difference is
statistically significant.

Ny Hy W
Let’s look at another example testing the linear combination for [, e A S Program 6.9, we

3 3 3

have coefficients of minus a third for each of the other three levels, And in the ESTIMATE statement, we will
specify the integer values: 3 minus 1 minus 1 minus 1. As an option, we will give it the divisor equal to 3. This
is simply going to divide each one of the coefficients by 3 and produce the appropriate fractions.

Program 6.9: ESTIMATE Statement for Linear Combination
proc glm data=ameshousing;

estimate 'mul vs the rest'

heating gc 3 -1 -1 -1 / divisor=3;
run;quit;

Output 6.9: Results of Program 6.9

Standard
Parameter Estimate Error tValue Pr> |t

mul vs the rest | 35407 0650 4800 45834 7.38 <.0001

In Output 6.9, we get an estimate of about $35,000, standard error, t value, and a significant p-value.

As a best practice, it is a good idea to use the E option in the ESTIMATE statement. That option will print your
L vector to make sure you specify the coefficients correctly. In Program 6.10, we have an intercept with a
coefficient of 0. Excellent has a coefficient of 1, And of course, the rest have coefficients of -1/3. Output 6.10
will be printed to the results page when you use the E option.
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Program 6.10: E Option in ESTIMATE Statement

proc glm data=ameshousing;
estimate 'mul vs the rest'

heating gc 3 -1 -1 -1 / e divisor=3;
run;quit;

Output 6.10: Partial Results of Program 6.10

Coefficients for Estimate mu1
vs the rest

Row 1
Intercept 0
Heating_QC Ex 1
Heating_QC Gd -0.333333333
Heating_QC TA -0333333333
Heating_QC Fa -0.333333313

Tip: The E option is useful when you confirm the ordering of parameters for specifying L.

So far, we have been talking about analysis of variance with just a single classification variable. In PROC GLM,
we can add in continuous variables to an analysis of covariance such as the following ANCOVA model:

Yij =u+a + ﬂiXij + Hsz t&; . So, we can add in the predictor X;. We still have the classification

variable represented by alpha. Now we can estimate an overall slope and the slope adjustment for each level,
but everything is going to be very consistent in PROC GLM. We are still going to use the CLASS, MODEL,
LSMEANS, ESTIMATE, and OUTPUT statements.

PROC GLMSELECT

To finish up this section on linear models, let's talk about stepwise model selection. Imagine we have lots and
lots of different predictors. We want to run those predictors through some type of procedure and get back a
more parsimonious model. To do so, we are going to use PROC GLMSELECT to perform effect selection. This is
only for general linear models framework, but fitting the model is exactly the same as the procedures that we
discussed earlier in this section. We are going to use the same CLASS and MODEL statements. The only
difference here is we are going to specify different options to do the effect selection.

PROC GLMSELECT, in general, combines the features of PROC GLM and PROC REG, so you can do all your
general linear models, all your multiple linear regression, ANOVA, analysis of covariance right in PROC
GLMSELECT using the following syntax:

PROC GLMSELECT DATA=data-table-name;

CLASS categorical-variables;

MODEL dependent-variable = model-effects | options;
RUN;

On the other hand, you might prefer to use the three separate procedures that we have talked about so far in
this section because they tend to give you different graphical output. For example, in PROC GLM, when it
knows you are doing a one-way analysis of variance, it automatically gives you a side-by-side box plot. That
might not be the case when using in PROC GLMSELECT.

SELECTION= Option

If you want to do multiple linear aggression, ANOVA, ANCOVA, in PROC GLMSELECT, choose the SELECTION=
option to specify a selection method and specify it as NONE. So, no model selection; just simply fit the model.

On the other hand, if you want to do effect selection in PROC GLMSELECT, we can use the following methods
shown in Table 6.4.
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Table 6.4: SELECTION= Options

SELECTION= Description

NONE No model selection.

Forward selection. The model starts with no effects and
FORWARD iteratively adds in effects according to some criteria.

Backward selection. The model starts with all effects in the
BACKWARD model already and deletes effects according to some criteria.

Stepwise regression; similar to the FORWARD method except

effects in the model do not necessarily stay in the model. That

is not the case in FORWARD selection. In FORWARD
STEPWISE selection, if it is in the model, it stays in the model.

Least angle regression; similar to the FORWARD method
LAR except parameter estimates are shrunk.

Specifies the LASSO method, which adds and deletes
parameters based on a version of ordinary least squares
where the sum of the absolute regression coefficients is
constrained.

LASSO

An extension of LASSO. Both the sum of the absolute
ELASTICNET regression coefficients and the sum of the squared regression
coefficients are constrained.

A variant of LASSO. Based on a version of ordinary least
GROUPLASSO  squares in which the sum of the Euclidean norms, a group of
regression coefficients is constrained.

Tip: If the SELECTION= option is omitted, the default is SELECTION=STEPWISE.

Some of the more modern selection methods are LASSO, ELASTICNET, and GROUPLASSO. All three of these
selection methods apply a penalty to your likelihood to shrink your model parameter estimates down to 0 and
find a more parsimonious model representation.

SELECT= Option

After you specify your SELECTION= option and your selection method, you are then going to use the SELECT=
option to specify the criteria. This is the criteria used to determine the order in which effects either enter or
leave (or both) at each step of the selection method.

The SELECT= options are shown in Table 6.5.

Table 6.5: SELECT= Options

SELECT= Description

ADJRSQ adjusted R-square statistic
AIC Akaike information criterion
AICC corrected Akaike information criterion

BIC Sawa Bayesian information criterion
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SELECT= Description

CP Mallow’s C(p) statistic

cVv predicted residual sum of square with k-fold cross validation

CVEX predicted residual sum of square with k-fold external cross validation
PRESS predicted residual sum of squares

SBC Schwarz Bayesian information criterion

significance level

The SELECT=SL option must be followed by either of the following options:
o SLE= specifies significance level for entry
SL e SLS= specifies significance level for removal

VALIDATE average square error for the validation data.

Tip: The default value of the SELECT= criterion is SELECT=SBC.

Tip: The SELECT= option is not valid with the LAR and LASSO methods.

For example, if we choose SELECT=ADJRSQ, and we are using forward selection, it is going to add parameters
into the model iteratively, as long as the adjusted R square continues to increase. The second adjusted R
square decreases, the model selection process stops, and the model at the final step will be the model that
you deploy.

On the other hand, if you use the AIC option and you are using forward selection, parameters will be
iteratively added into the model, as long as the AIC continues to reduce. The second it increases, the model
selection process stops.

CHOOSE= Option
You can also use the CHOOSE= option in the MODEL statement to choose the model that yields the best value
of the specified criteria from the selection process. The CHOOSE= options are shown in Table 6.6.

Table 6.6: CHOOSE= Options

SELECT= Description

ADJRSQ adjusted R-square statistic

AIC Akaike information criterion

AlCC corrected Akaike information criterion

BIC Sawa Bayesian information criterion

CP Mallow’s C(p) statistic

cVv predicted residual sum of square with k-fold cross validation

CVEX predicted residual sum of square with k-fold external cross validation
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PRESS predicted residual sum of squares
SBC Schwarz Bayesian information criterion
SL significance level

average square error for the validation data

This option requires the user to specify a data set in the PROC

GLMSELECT statement with the VALDATA= option or use the

PARTITION statement to enable the procedure to split the data into
VALIDATE training and validation data sets.

Tip: If no CHOOSE= option is specified, then the model selected is the model at the final step in the
selection process.

Behind the scenes when you are doing the selection process, SAS is actually saving model fit statistics. If you
use the CHOOSE= AIC option, it actually ignores the model at the final step and simply chooses the model with
the best AIC, regardless of where it came in the selection process.

If you ignore the CHOOSE= option, the model selected is the model at the final step. That might not be the
same model when you use the CHOOSE= option. Regardless of the final selection process, it will evaluate the
specified criteria at each step and choose the best model.

EFFECTS Statement

Remember when we were creating a Polynomial Regression in PROC REG, we had to first create the quadratic
in cubic effects using a DATA step? We can use PROC GLMSELECT to make this process a little bit simpler.
Specifically, we can use the EFFECTS statement to bypass creating new variables in the DATA step using the
following syntax:

EFFECT name = effect-type(variables </ options>) ;

In Program 6.11, we use the EFFECTS statement, and the first thing we do is give it a name. In this case, this
will be x_new.

Program 6.11: EFFECTS Statement in PROC GLMSELECT

proc glmselect data=paper outdesign=des;
effect x_new = polynomial (amount / degree=5); ©
model strength = x _new / selection=none; @
run;quit;

O x_new represents a new set of predictors that the EFFECT statement is creating, and then we will set that
equal to an effect type. In this case, we to set it equal to polynomial, but you could also use splines. In
parentheses, when we specify the keyword polynomial, give it the variable amount, which is the
predictor. After the forward slash we will say degree=to 5. We want to create polynomial regressors for
the amount variable up to degree 5, and those will be contained in the x_new variable.

® Inthe MODEL statement, we specify strength and set it equal to the new set of regressors, x_new. Here,
we are not doing the selection process, so we will say selection=to none. We just want to fit a polynomial
model up to degree 5. If you wanted to alter more than one variable, you can simply pass a list to the
polynomial effect type, and be sure to use the outdesign= to option. This is going to create the design
matrix or a new SAS data set according to the model that you have created. So in this case it is going to
create a new SAS data set with all regressors up to degree 5 without needing to use a DATA step.
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If you use the EFFECTS statement in PROC GLMSELECT, it creates a macro variable representing the predictors
that you have specified. In this case, in Program 6.11, & glsmod is representing X, X2, X3, X3, all the way to X°.
We can pass that macro variable into a MODEL statement in PROC REG as shown in Program 6.12. If you are
passing the variable in to PROC REG, make sure your data set is the OUTPUT data set from the out design
option from PROC GLMSELECT. Remember, we called it des, for design matrix.

Program 6.12: PROC REG Using Macro Variable from Program 6.11

proc reg data=des;
model y = & glsmod;
run;quit;

In Programs 6.11 and 6.12, we use PROC GLMSELECT to create new regressors and a new SAS data set, and
then pass that information to PROC REG to do a Polynomial Regression. We could have stayed in PROC
GLMSELECT to do this, but in PROC REG we can get more graphics. If you use the EFFECTS statement to create
a set of variables in PROC GLMSELECT and you also do an effects selection process, the new macro variable
and SAS data set that it creates will only have the predictors from the final model selection.

So, for example, if it deleted the amount to the fourth and amount to the fifth power in a backward effect
selection, the new macro variable and the output data set des would only have the variables amount, amount
squared, and amount cubed, which is very convenient.

Generalized Linear Models

The previous section covered linear models, and now we are going to move on, both in models and
procedures. We are going to create generalized linear models now. This is when we are assuming that the
response is not Gaussian, but we are going to do the exact same thing. We are going to create models, create
statistical graphics, and save other information, create tables, reports, and so on.

In R, we would use the GLM function for the generalized linear model as shown in Figure 6.2. Remember,
when you are using the GLM function, you need to specify the appropriate distribution family, with the
FAMILY= option. In this section, we will talk about logistic regression for binomial data and Poisson regression,
but in SAS, we can use the STORE statement just like we have done before, and use that information in PROC
PLM to score new data sets

Figure 6.2: R Script

I Source on Save 4 = Run e Source
g L

mylm = gim{Bonus ~ Basement_Area, family-binomial
anova(mylm); summary{mylm

par (mfrow=c(2,2)); plot(mylim

mylm = gim{Satellites weight, family-poisson
anova(mylm); summary(mylm
par (mfrow=c(2,2)); plot(mylm

o

predict(mylm, newdata-mynew.dataframe

PROC LOGISTIC

Most likely, the first model you worked with when you learned generalized linear models was logistic
regression. The assumption in logistic regression is that the logit has a linear relationship with the predictor
variables. For binary data, and of course, for binomial distributions, we have a probability of success. To
model binary variables, we want to model the probability of success, and you will notice in the graph on the
left side of Figure 6.3, the probability is not linearly associated with its covariates. It's also bounded between 0
and 1.
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Figure 6.3: Logit Transformation
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We make the logit transformation and predict the logit, or the log odds. The logit is generally linearly
associated with our covariates. Then we can simply specify a linear model as before.

In this section, we will continue to use the ameshousing data set. We use the binary variable for the
dependent variable, bonus, and this is simply a value of 1 if the saleprice was greater than $175,000, and a 0
otherwise. We call this variable bonus because home buyers receive a tax incentive for buying a home that is
greater than $175,000. To conduct logistic regression, we are going to use the LOGISTIC procedure, so we
don't need to specify a family of distributions in this procedure. In the MODEL statement, we specify bonus,
and as a best practice in parentheses, you want to tell it what event you are modeling, as shown in the
following syntax:

PROC LOGISTIC DATA=data-table-name <options>;
MODEL dependent-variable(EVENT=) = effects;
RUN;

In Program 6.13, we want to model the probability of success, or an actual bonus-eligible home, which has a
value of 1, and set that equal to just one continuous variable, basement_area.

Program 6.13: PROC LOGISTIC

proc logistic data=ameshousing;
model bonus (event='l') = basement area;
run;

Output 6.13: Results of Program 6.13

Model Fit Statistics Testing Global Null Hypothesis: BETA=0
Intercept and Test Chi-Square DF | Pr> ChiSq
Criterion | Intercept Only Covariates x v
Likelihood Ratio 957870 1 <0001
AlC 255.625 161.838
Score 655624 1 < 0001
SC 259.329 169 246
Wald 48.0617 1 <.0001
2LloglL 253.625 157.838
Odds Ratio Estimates Analysis of Maximum Likelihood Estimates
95% Wald Standard Wald
Effect Point Estimate Confidence Limits Parameter DF  Estimate Error Chi-Square Pr> ChiSq
Basement_Area 1.007 1.008 1.010 Intercept 1 -9.7854 1.2696 57.5758 <.0001
Basement Area| 1 0.00739  0.00107 48.0617 <.0001

By default, we get the model fit statistics table and the global null hypothesis tests shown in Output 6.13. One
thing to be aware of is that the residual deviance in R is the same as the value 157.838 in SAS. Also, the
deviance in R is the likelihood ratio test statistic here at 95.787. There is other information about these tables
that you might want to look into as well, but the values will be the same.
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Also, by default, we get the odds ratio estimates for each variable in our model. In this case, we only have
one, basement_area. This is the odds ratio for a single unit increase in the predictor, which has a point
estimate of 1.007. We also get the analysis of maximum likelihood estimates, simply our parameter estimates,
standard errors, Wald chi-square test statistic, and our p-value.

The odds ratios for a single unit increase in the predictor, basement_area, are not the most meaningful. You
are probably not going to want to compare two houses where one is simply one square foot larger in
basement area. Use the UNITS statement to specify the units of change for a continuous variable and the
CLODDS= option in the MODEL statement to request a confidence interval. As shown in Program 6.14, to
change the units of measurement, we will use the UNITS statement and specify the variable, basement_area,
equal to 100.

Program 6.14: PROC LOGISTIC with UNITS Statement and CLODDS= Option

proc logistic data=ameshousing;
model bonus (event='1l"') = basement area
/clodds=wald;
units basement area=100;
run;

Output 6.14: Partial Results of Program 6.14

Odds Ratio Estimates and Wald Confidence Intervals
Effect Unit  Estimate 95% Confidence Limits

Basement_Area 100.0 2.095 1.700 2.582

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 895 Somers'D 0791

Percent Discordant 10.4 Gamma 0.792
Percent Tied 0.1 Tau-a 0.202
Pairs 11475 ¢ 0.696

In the odds ratio estimates in Output 6.14, we get an odds ratio estimate for a home that is 100 square feet
larger in basement area. As you can see, the odds for a bonus-eligible house are more than two times the
odds with a 100-square-foot difference in basement area. Based on our confidence limits, it is significant. It
does not cover a value of 1.

We also get the association of predicted probabilities and observed responses, and this table is just additional
output containing model fit. These values are not in the default output in R, so you might not be familiar with
them. We will talk more about this first column, the percent concordant, discordant, tied, and pairs in the
next section. If you want to look up the statistics for Summers D, Gamma, Tau-a, and C, take a look at the
online documentation.

Comparing Pairs
To find the concordant, discordant, and tied pairs, we are going to compare all homes in this data set that are

bonus eligible versus not bonus eligible. In this case, that means we are comparing 45 bonus-eligible homes
with 255 non-bonus-eligible homes. That is 11,475 total comparisons. But what exactly are we comparing?

In each comparison, we will find the probability of being bonus eligible. In Figure 6.4, we have a bonus-eligible
home with 1,200 square feet. We will say the probability of being bonus eligible is 0.28, and the probability of
being bonus eligible for the non-bonus-eligible home is 0.02.
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Figure 6.4: Concordant Pair

Mot Eligikle, 800 sq ft Bonus Eligible, 1200 sq fi

B B

P{Eligible}=.0204 P(Eligible}=_2865

This sorting agrees with our model. We said the probability of being bonus eligible was higher for the actual
bonus-eligible home. We will chalk this up to a good model fit and say this is a concordant pair.

On the other hand, if the probability of being bonus eligible for the actual bonus-eligible home is less than the
probability of being bonus eligible for the non-bonus-eligible home, this sorting does not agree with our
model. We will say the pair shown in Figure 6.5 is a discordant pair.

Figure 6.5: Discordant Pair

Mot Eligible, 1600 =q ft Bonus Eligible, 1400 =q ft

—d

P(Eligible)=.8855 P(Eligible)=.6379

As you can see, we want as many concordant pairs as possible, and as few discordant pairs also. These values
are just additional summaries of model fit.

Effect Selection

Another feature of the LOGISTIC procedure is that you can do effect selection right in the procedure. In the
MODEL statement, you can use the SELECTION= option and specify FORWARD, BACKWARD, or STEPWISE
model selection. By default, if you are doing FORWARD or BACKWARD selection, the significance level for
entry and stay is going to be 0.05, which is different from PROC REG and PROC GLMSELECT.

But again, you can do FORWARD, BACKWARD, and STEPWISE selection right in PROC LOGISTIC. Otherwise,
you have to use a different procedure to do more modern effect selection like LASSO, ELASTICNET, and so on.

PROC GENMOD

Now we are going to move away from PROC LOGISTIC and into the GENMOD procedure. With PROC
GENMOD, we can specify any distribution, not just a binomial distribution, but we are going to be doing the
exact same things. We are going to run the GENMOD procedure, get graphics, tables, create new data sets,
and so on.

In this section, we will look at a new research example. The data come from a study that was conducted about
the mating habits of female horseshoe crabs. The population of horseshoe crabs is monitored because they
provide a critical food source for migrating birds. Each year, at the end of May and during June, hundreds of
thousands of horseshoe crabs emerge from Delaware Bay to lay and fertilize their eggs. Each female
horseshoe crab had a male crab resident in her nest. The study investigated factors affecting whether the
female horseshoe crab had any other males, called satellites, residing nearby. The response variable for each
female horseshoe crab is her number of satellites. The data are stored in Crab.

Figure 6.6 is a partial view of the data. Width and weight are continuous variables. Satellite is a count variable,
so as you can tell, we are probably going to be doing Poisson regression. We have two classification variables:
color and spine. Color is light medium, medium, dark medium, or dark, but we will use numeric values to
indicate those. Spine can be both good, one worn or broken, and both worn or broken.
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Figure 6.6: Female Horseshoe Crab Data

Width  Weight  Color  Spine  Satellites
28.3 3.05 2 3 8
22.5 1.55 3 3 0
26.0 2.30 1 1 9
24.8 2.10 3 3 0
26.0 2.60 3 3 4
23.8 2.10 2 3 0
26.5 2.35 1 1 0
24.7 1.90 3 2 0
23.7 1.95 2 1 0
25.6 2.15 3 3 0
24.3 2.15 3 3 0
25.8 2.65 2 3 0
28.2 3.05 2 3 11
21.0 1.85 4 2 0
26.0 2.30 2 1 14
27.1 2.95 1 1 8
Color: 1=Light Medium 2=Medium 3=Dark Medium 4=Dark
Spine: 1=Both Good 2=0One Worn or Broken 3=Both Worn or Broken

To use PROC GENMOD, we are going to first specify our MODEL statement as shown in the following syntax:

PROC GENMOD DATA=data-table-name;

MODEL dependent-variable = effects
| DIST=probability-distribution LINK=link-function;
RUN;

For the crab data set, we want to predict satellites and will set that equal to the regressor, weight. To specify
the distribution, we use the DIST= option the same way we would use the FAMILY= option in R. In Program
6.15, we are sending it to poi for Poisson data. We get all the same default output as PROC LOGISTIC, such as
parameter estimates, goodness-of-fit assessments, and so on.

Program 6.15: PROC GENMOD

proc genmod data=crab;
model satellites = weight / dist=poi;
run;

DIST= Option
There are several different distributions that we can use as options in the MODEL statement as shown in
Table 6.7.

Table 6.7: DIST= Option

Distribution Default Link Function
BINOMIAL Binomial Logit
GAMMA Gamma Inverse
GEOMETRIC Geometric Log
IGAUSSIAN Inverse Gaussian Inverse squared
MULTINOMIAL Multinomial Cumulative logit
NEGBIN Negative Binomial Log
NORMAL Normal Identity
POISSON Poisson Log
ZIP Zero-inflated Poisson Log/Logit

ZINB Zero-inflated Negative Binomial  Log/Logit
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You can actually specify the binomial distribution to do logistic regression, if you want. Using PROC LOGISTIC is
highly recommended instead though, because it knows you are doing a logistic regression and it will give you
more relevant graphics. You will notice in Table 6.7 that the right-hand most column is the default link
function. When you specify your distribution, it is going to automatically use that appropriate link function.
For binomial, it uses the logit. For Poisson, it's going to use the log, and so on.

If, for whatever reason, you wanted to change the link function, just use the LINK= option in the MODEL
statement. The LINK= Option options are shown in Table 6.8.

Table 6.8: Link= Option

CUMLL, CCLL Cumulative Complementary Log-Log
CUMLOGIT, CLOGIT Cumulative Logit

CUMPROBIT, CPROBIT  Cumulative Probit

CLOGLOG, CLL Complementary Log-Log
IDENTITY, ID Identity

LOG Log

LOGIT Logit

PROBIT Probit

POWER Power

Tip: The cumulative LINK functions are appropriate only for the multinomial distribution.

For example, if you read an article and you want to change the link function to cumulative logit, you would
just specify the appropriate keyword, CUMLOGIT. Most likely, though, you will not be using the link function.
You will just be using the default link from the DIST option.

Mixed Models

In this section we will briefly talk about mixed models and how to create a linear mixed model. We will
estimate some variance components and test fixed effects and random effects for significance, but we will be
doing all the same things that you have seen in the previous chapters: running a PROC step, generating
output, saving new SAS data sets, and so on. We are going to see a lot of the same statements as before.

In R, you probably use the LME4 package, the linear mixed effects model R package, to conduct your mixed
models, and then use the LMER function as shown in Figure 6.7. Until now in this book, we have been
considering fixed effects only. Fixed effects are those factors whose levels are selected deliberately to
evaluate the differences. All levels of interest are in your data set. The researcher is interested in comparing
the effects of the factors on the response variable only for those levels included in the study.
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Figure 6.7: R Script
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install. packages (" Imed"

library(1med
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summary { Tmem

Suppose that you are working for a pharmaceutical company and you are testing three drugs: A, B, and C.
These are the only three drugs that you care about. Of course, they did not combine a random process, and
these are the only three drugs that you are including in the study. These are fixed effects. A model containing
only fixed effects is called a fixed effects model. Models in which some factors are fixed effects and other
factors are random effects are called mixed models.

To make this example a mixed model, we need to build in a random effect into our model. Suppose that we
want to test our drugs in different clinics. Of course, we can't test our drug in all possible clinics, so the
hospital itself is not of direct interest, nor is actually comparing clinic to clinic. We will assume that these
clinics are sampled randomly from the population of possible hospitals. To generalize our results beyond the
set of clinics included in the study, we will specify these as random.

In some situations, a factor might have a large number of levels and the researcher or data analyst selects a
subset of the levels to be included in the study. They represent a sample (although often an imperfect sample)
from a population with a probability distribution. The inference about fixed effects from the data analysis
applies to all population levels of random effects and not only the subset of levels included in the study.
Effects such as these are random effects. For example, in the same drug study, four clinics are randomly
selected from a population of clinics in a region. The researcher wants to make an inference for the drug
effects across the population of clinics, not only the ones included in the study. Then Clinic is a random effect.

Mixed Procedure Model

Previously, we have been considering only x beta. Beta are fixed effects, X our fixed effects design matrix.
Now, we are including into the model, Z, our random effects design matrix, and gamma are random effects,
and we will actually refer to those specific values on the results page as well.

Y=Xp+Zy+¢

We assume that gamma is normally distributed with a mean of 0 and a G-matrix for variance components,
and epsilon is normally distributed with a mean of 0 and residual matrix, R. The expected value is the same,
just X-Beta, because the expected value of gamma is 0, and if you were to do the matrix multiplication for the
variance of y, you would get ZGZ prime plus R. We will call all of this V.

G 0
4 =0 and Var 4 =
& & 0 R

E

E(y)=Xp, Var(y)=2GZ'+R=V

There are a few different estimation methods for the covariance parameters in PROC MIXED. We have
method of moments and likelihood-based methods, as follows:

® Methods of Moments

°  MIVQUEO
° Typel
°  Type?2

°  Type3
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® Likelihood-based Methods
° ML
©  REML (default)
®  For the fixed-effects parameters and standard errors

©  Generalized least squares (GLS) method

MIVQUE performs minimal variance quadratic unbiased estimation of the covariance parameters, so it
produces method of moments estimates that are invariant with respect to the fixed effects. That is, the mean
squares associated with the random effects are adjusted for the fixed effects. For Type 1, Type 2, and Type 3
method of moments, SAS uses expected mean squares to estimate the variance components.

The likelihood-based methods, in particular ML, can be biased. Most people use REML, residual maximum
likelihood, and this is the default method in SAS. It's also the default method in the LME4 package that you
probably use in R. REML constructs the likelihood function based on the residuals and obtains maximum
likelihood estimates of the variance components from this likelihood. Again, this is the default option because
it tends to be the most unbiased.

PROC MIXED

After you estimate your covariance parameters, you can then estimate your fixed effects parameters and
standard errors using the generalized least squares method. PROC MIXED is very similar to the procedures
that we have seen thus far, as shown in the following syntax:

PROC MIXED DATA=data-table-name;
CLASS variables;
MODEL dependent-variable= fixed-effects/ solution;

RANDOM random-effects/ <options>;

ESTIMATE 'label fixed-effect-values| random-effect-values / <options>;
LSMEANS fixed-effects/ options;
RUN;

Notice in the syntax that we are building in the RANDOM statement into the model, and as you can expect,
we are going to specify all our random effects right in the RANDOM statement. In the MODEL statement, we
set the dependent variable equal to only the fixed effects. Your model will look a little bit empty, but again,
you only specify your fixed effects in the MODEL statement and your random effects in the RANDOM
statement. SAS will then go ahead and combine them to create your complete model.

Let’s look at an agricultural example using PROC MIXED. Three seed growth methods are applied to seeds
from each of five varieties of turf grass. Six pots are planted with seeds from each method by a variety
combination. These 90 pots are randomly placed in a uniform growth chamber and dry matter yields, our
response, are measured from clippings at the end of four weeks.

And here is the key sentence: Assume that the five varieties were randomly chosen from a broader population
of varieties. Thus, varieties is going to be our random effect and method is going to be our fixed effect. We are
only concerned with these specific methods and we want to compare them in our model.

So we are going to do a two-way mixed model. In the equation below, we have mu, the overall mean. Alpha-i
is the method effect, b-j is the variety effect, and the inner action, alpha-b, is also going to be random because
b is a random effect.

Vi =H+o+b+(ab), ¢,

We also want to identify our variance components, interaction, variety effect, and error variance components.

(ab), = N(0,02,) b, = N(0,07) &, ~ N(0,6%)
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First, we use PROC SGPLOT to explore the data in the data set Grass in Program 6.16.

Program 6.16: PROC SGPLOT
proc sgplot data=spé4r.grass;

vline variety / group=method stat=mean response=yield;

run;

Output 6.16: Results of Program 6.16

20 s i ”‘\

yield (Mean)
/

1 2 3
variety
A

method B

As evidenced in Output 6.16, there seems to be some variability among varieties. In addition, the yield for

Method A is largest for all five varieties.

Now we will use PROC MIXED to create a two-way mixed model and use the METHOD=REML option in

Program 6.17. (This method reproduces the R package Imer.) Remember that the random effects appear only
in the RANDOM statement, not the MODEL statement. However, all classification variables, fixed and random
effects, are listed in the CLASS statement. Use an LSMEANS statement to compute the least square means for
METHOD and use the PDIFF option to evaluate the difference in methods. Finally, use an ESTIMATE statement

to compare Method A versus B and C.

Program 6.17: PROC MIXED

proc mixed data=spd4r.grass method=REML;

class method variety;

model yield = method / solution ddfm=kr2;

random variety method*variety;

lsmeans method / pdiff;

estimate 'A vs. B and C' method 1 -.5 -.5;

run;

Output 6.17: Results of Program 6.17

The Mized Procedure
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Do pendent Variable
Covariance Structure
Estimation Method
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Dimensions
Covariance Parameters 3
Columns in X 4
Columns in Z 20
Subjects 1
Max Dbs per Subject g0
Number of Observations
Number of Observations Read w0
Number of Observations Used #0
Number of Observations NotUsed 0
Ieration History
Ieration | Evaluations -2 Res Log Like Criterion
L] 1 52589057283
1 1 22.49142063 | 0.00000000
Convergence ortens mal
Covariance Parameter Estimates
Cov Parm Estimate
variety ' 0.4285
method'variety | 47715
Residual T YT
Fit Statistics
-2 Res Log Likelihood 5225
AIC (Smaller is Better) 5285
AICT (Smalleris Bemer) S22 8
BIC (Smaller is Better) 527.3
Solution for Fixed Efects
Standard
Effect method | Estimate Errer OF | t¥alue Pro>|g
Intercept 19.7087 1.2883 nga 12.89 <000
methed A 8.3023 17713 g 3.54  0.0074
methed & L9100 L7713 ] <0.51 08213
methed = ]
Type 3 Tests of Fixed Effects
Effect Num DF | DenDF | FValue Pr=F
method 2| 8| o8¢ 00070
Estimates
Standand
Label Estimate Error | DF | tValue | Proe g
Avs.Band C 8.7583 1.5340 g l +.41  0.0023
Least Squares Means
Stancard
Effect method Estimate Error DF  tValue  Pr>|f
method A 23.0100 12883 1@ 17.80 | =< 0001
method 2 157087 12883 119 1228 | <0001
method C 18.7087 12882 1.9 12,60 | <000
Differences of Least Squares Means
Standard
Effect method  _method Estimate Error | DF | tValue | Pr> |t
method | A 72133| 17713 | 8| 407 | 0.0038
methed | A [+ 8.3033 1.77T13 ] 188 | 0.007
method | § c 00100 | 1| 8| 081 | 08213
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Other Procedures

At this point, you are probably getting the knack for using SAS procedures. You have seen lots of the same
statements and the modeling procedures are very consistent. Once you pick up the syntax, you are going to
be able to learn others, especially if you have the modeling background. In this section, we are going to look
at a couple of other procedures briefly to get you started in the right direction without going into great detail
one each one. Maybe you want to look at generalized linear mixed models, Bayesian models, survival data,
multivariate data, or work with time series. What procedures should you start with? Let’s find out!

PROC GLIMMIX

If you want to do generalized linear mixed models, meaning that you want to create a mixed model for a
response that is not Gaussian, use the GLIMMIX procedure. Everything is very similar to the other PROCs that
we have previously discussed. The only difference is that in the MODEL statement now you are using the
DIST= option to specify a probability distribution, and the LINK= option to specify your link, as shown in the
following syntax:

PROC GLIMMIX DATA=data-table-name;
CLASS variables;
MODEL dependent-variable = fixed-effects | SOLUTION
DIST=probability-distribution LINK=link-function;
RANDOM random-effects | <options>;
ESTIMATE 'label fixed-effect-values | random-effect-values
/ <options>;
LSMEANS fixed-effects / options;
RUN;

In the generalized linear mixed model, you apply a LINK function to the conditional mean E(y|y). The
conditional distribution of y|y plays the same role as the distribution of y in the fixed-effects generalized
linear model. You apply the same basic strategies for fitting a generalized linear model to E(y) in a fixed effect
model to fitting a mixed model to conditional mean E(y|y).

However, to obtain the parameter estimates, you must obtain the marginal log-likelihood function, which is a
challenge when you fit generalized linear mixed models (and nonlinear mixed models). By default, the
GLIMMIX procedure uses the linearization technique to approximate the generalized linear mixed model as a
linear mixed model. Two maximum likelihood methods are also available for fitting generalized linear mixed
models in PROC GLIMMIX.

f(x|9)7(8)

p(O)x) = )

The above equation is often expressed as follows:

posterior density=(likelihood*prior)/marginal likelihood

The marginal density of x is an integral defined as follows:

[ f(x|o)z(0)d6

PROC MCMC

The posterior density or distribution describes the distribution of the parameter of interest with respect to
the data and prior. The posterior distribution is necessary for probabilistic prediction and for sequential
updating.

Although the name prior suggests a temporal relationship, it is feasible for a prior distribution to be decided
after seeing the results of the study (for example, empirical Bayes methods. Prior distribution refers to a
situation where you assess what the evidence would be if you had no data. This assessment can be made after
seeing the data, but there are issues in this.
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There is no such thing as the “correct” prior. In fact, researchers suggest using a “community of priors” to
describe the range of reasonable opinions.

Even though Bayesian analysis is driven by the prior distribution, it is sometimes not important in the analysis.
As the sample size increases, the prior usually is overwhelmed by the likelihood and exerts a negligible
influence on the conclusions. However, Bayesian analysis is not based on this assumption.

The development of the posterior distribution might be difficult. The specific problem is carrying out the
integrations that are necessary to obtain the posterior distributions of quantities of interest in situations
where nonstandard prior distributions are used. For many years, these problems in integration restricted
Bayesian applications to rather simple examples involving conjugate priors.

Most Bayesian analyses require sophisticated computations, including the use of simulation methods such as
the Monte Carlo methods, to generate samples from the posterior distribution. The basic idea of Monte Carlo
is to simulate the sampling process from a defined population repeatedly by using a computer instead of
actually drawing multiple samples to estimate the population summaries of the events of interest.

Markov Chain Monte Carlo methods (MCMC) enable researchers to directly sample sequences of values from
the posterior distribution of interest, foregoing the need for closed-form analytic solutions. With MCMC, you
use these samples to estimate the posterior distribution’s quantities of interest. MCMC methods sample
successively from a target distribution. Each sample depends on the previous one, hence, the notion of the
Markov chain. You can think of a Markov chain applied to sampling as a mechanism that traverses randomly
through a target distribution without having any memory of where it was given the immediate past value.
Where it moves next is entirely dependent on where it is now.

The Markov chain method is quite successful in modern Bayesian computing. One reason is that if the
simulation algorithm is implemented correctly, the Markov chain is guaranteed to converge to the target
distribution under rather broad conditions, regardless of the initial values of the parameters. Therefore, the
Markov chain is able to improve its approximation to the true distribution at each step in the simulation.
Furthermore, the simulation algorithm is easily extensible to models with a large number of parameters or
high complexity.

Program 6.18 is an example of a simple linear regression model.
2
Y, ~ normal(f, + f.X,.0")

Here we want to estimate three parameters: the intercept, BetaO, the slope, Betal, and the error, sigma-
squared. Use PROC MCMC, specify the number of Monte Carlo simulations, tell SAS what parameters you are
working with, give those prior distributions, set a model, and give it a model distribution. SAS will do all the
work for you behind the scenes to sample from that posterior.

Program 6.18: PROC MCMC

proc mcmc data=slrnbi=2000 nmc=10000;
parms betal0 0 betal 0;
parms sigma2 1;
prior betal betal ~ normal (mean=0, var=leb6);
prior sigma2 ~ igamma (shape=2.001, scale=1.001);
mu=betal + betal*X1l;
model Y ~ normal (mu, var=sigmaZ2);

run;
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Output 6.18: Partial Results of Program 6.18
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PROC MCMC gives you relevant graphics like the trace plot, the autocorrelation plot, and the density
estimates of each parameter.

PROC LIFETEST

If you are doing survival analyses, you might want to start with PROC LIFETEST. This procedure computes and
plots survival function and tests for difference between survival functions. Survival analysis is a collection of
specialized methods that are used to analyze data in which time until an event occurs is the response variable
of interest. The response variable (often called, in survival analysis, a failure time, survival time, or event time)
is usually continuous and can be measured in days, weeks, months, years, and so on. Events can be deaths,
onset of disease, marriages, arrests, and so on. What is unique about survival analysis is that even if the
subject did not experience an event, the subject’s survival time or length of time in the study is taken into
account.

Survival analysis is used heavily in clinical and epidemiological follow-up studies. Other fields that use survival
analysis methods include sociology, engineering, and economics. Survival analysis is also known as time-to-
event analysis, reliability analysis, durability analysis, event history analysis, and lifetime analysis, among
others. Regardless of the field, the common objective of a survival analysis study is not only whether an event
occurred, but also when it occurred. For example, subjects who die five years after surgery are different from
subjects who die one month after surgery. An analysis that simply counted deaths ignores valuable
information about survival time.

Survival analysis can also be used to analyze outcomes other than time. For example, an engineer might want
to analyze the amount of mileage until a tire fails or the number of cycles until an engine requires repair.
What is common across these studies is that you are analyzing an outcome until an event occurs, and that
outcome does not necessarily have to be time.

Survival analysis allows the response variable to be incompletely determined for some subjects. Exact failure
time remains unknown. When this occurs, it is called censoring. These subjects should not be ignored. The
time at which they are observed contributes information to the study. Ignoring them completely adds bias to
the estimates of population survival time. They should not be assumed to have the event at the closest
observed time point because event times (assuming an event eventually occurs) reported that way would be
inaccurately measured.

Censoring is categorized into three main types: right, left, and interval, depending on where the lack of
information exists on the timeline relative to the observed follow-up times.

Usually, the first step in the analysis of survival data is to estimate and plot the survival function. The survival
function gives the probability that a subject survives longer than some specified time t. This can be defined by
the formula where T is a random variable for a person’s survival time and t is any specific value of interest. At
t=0, S(0)=1 (at the start of the study, because no one experienced the event yet, the probability of surviving
past time O is 1), while at t= oo, S(e=)=0 (eventually nobody survives, so the survival function theoretically
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must fall to 0). As t increases, S(t) never increases and usually decreases. The factors that influence the shape
of the survival function are when the subjects experience the event, when the subjects were censored, and
the pattern of enroliment in the follow-up study. In practice, the survival function resembles a decreasing step
function rather than a smooth curve. Furthermore, because not everyone might experience the event by the
end of the study (they are Type | censored), the survival function might not reach 0.

A useful graph in exploratory data analysis is a graph that compares survival functions across groups as shown
in Figure 6.8. In the plot at the upper left, the female survival function lies above the male survival function,
which means that females had a more favorable survival experience. If the event was death, then at any point
in time, the proportion of females estimated to be alive is larger than the proportion of males estimated to be
alive.

Figure 6.8: Survival Function Plots
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A graph comparing survival functions can also give insight into how time is related to the survival experience
across groups. It can indicate interactions with time. In the plot at the upper right, subjects in Clinic 1 have a
more favorable survival experience than subjects in Clinic 2. However, the differences between the groups are
relatively small in the early time points and become progressively larger in the later time points. Early in the
study, both clinics lost a similar proportion of patients. However, as the study progressed, the patients in
Clinic 1 had much longer survival times compared to the patients in Clinic 2.

PROC PHREG

If you are comfortable with survival data, check out the PHREG procedure. The PHREG procedure performs
regression analysis of survival data based on the Cox proportional hazard model.

Figure 6.9: PROC PHREG Output
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In many situations, either the true form of the hazard function is unknown, or it is so complex that the
distributions covered in PROC LIFEREG do not adequately describe your data. This is a problem in parametric
models because one of the assumptions is that the true form of the underlying hazard function is correctly
specified. Therefore, the parameter estimates of the survival model might be biased if the wrong distribution
is specified.

This problem was addressed in 1972 by the British statistician Sir David Cox in a paper called “Regression
Models and Life Tables.” In his paper, Cox proposed a model (now called the Cox proportional hazards model)
that does not require that the distribution of survival times be known. It is a semi-parametric model because
it makes a parametric assumption concerning the effect of the predictor variables on the hazard function. (It
assumes that the predictor variables act multiplicatively on the hazard function.) However, the model makes
no assumption regarding the nature of the hazard function. For example, the model does not assume that the
hazard function is constant (the exponential model), or that it follows the form specified in a Weibull model or
any other parametric model.

The Cox model is extremely popular because, in many instances, the modeling goal of survival data is to
characterize how the distribution of survival times changes as a function of the predictor variables. For
example, suppose a clinical trial was designed to test whether one drug therapy improves the survival of AIDS
patients when compared to another drug therapy. The primary importance of the survival model is to
estimate parameters that compare the survival experience of the two treatment groups. The description of
the underlying distribution of survival time is not important. Therefore, the actual form of the baseline hazard
function is not important.

Another reason that the Cox model is popular is because the model is as efficient in estimating and testing
regression coefficients as the parametric models even when the distribution is correctly specified. When the
distribution of survival times is incorrectly specified, the Cox model is more efficient than the parametric
models.

The Cox model also uses only the rank ordering of the event and censoring times. This property makes the
model less affected by outliers in the event times than in parametric models.

Multivariate Analysis Procedures

Multivariate analysis refers to a broad category of statistical methods used when more than one variable at a
time is analyzed for a subject. Although many physical and virtual systems studied in scientific and business
research are, by their very nature, multivariate (that is, there are many responses influenced by many
different variables simultaneously), most analyses are univariate (analyzing only one response at a time) in
practice. Examples of common multivariate procedures are as follows:

® PROC FACTOR for factor analysis

® PROC CANCORR for canonical correlation

® PROC CANDISC for canonical discrimination

® PROC DISCRIM, in general, to discriminate between different groups
® PROC PLS for partial least squares

® PROC ARIMA for time series so that you can estimate moving average, autoregressive, seasonal
components. Once you create the model, you can then go ahead and forecast.

When in doubt, search for a procedure in the documentation at
https://support.sas.com/en/documentation.html. Also, check out some of the free videos at
support.sas.com/training. These are great resources for learning additional SAS syntax.
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Exercises

Multiple Choice

1.

Which statements are correct? Select all that apply.

a. The PLM procedure uses the model specified by the STORE statement.

b. PROC REG uses a CLASS statement to specify categorical variables.

c. The PLM procedure SCORE statement keywords provide interval output.

d. The PLM procedure scores new data sets.

Choose the correct statements. Select all that apply.

a. The CLASS statement is equivalent to the as.factor() function in R.

b. The MEANS statement provides the same default output as PROC MEANS.

c. The ADJUST= option in the LSMEANS statement is used to adjust for multiple comparisons.
d. The SOLUTION option in the MODEL statement is used to display parameter estimates.

The GLMSELECT procedure can be used to create a regression model, a polynomial regression model,
an ANOVA model, an ANCOVA model, and to conduct stepwise model selection.

a. True
b. False

Consider a logistic regression model where the binary response is whether a person is a dog owner.
You sample 140 people and find that 95 people are dog owners. How many total concordant and
discordant pairs are considered?

a. 140

b. 95*45=4275

c. (95*45)/140=30.53

d. 95*45*140 = 598500

Logistic regression can be conducted in both PROC LOGISTIC and PROC GENMOD.
a. True

b. False

Programming Exercises

1.

Fitting a Regression Model

Percentage of body fat, age, weight, height, and 10 body circumference measurements were
recorded for 252 men by Dr. Roger W. Johnson of Calvin College in Minnesota. The data are in the
BodyFat data set, which consists of the following variables:

Case Case number

PctBodyFat2 Percent body fat using Siri’s equation (495/density -450)
Age Age in years

Weight Weight in pounds

Height Height in inches

Neck Neck circumference (cm)

Chest Chest circumference (cm)

Abdomen Abdomen circumference (cm)

Hip Hip circumference (cm)

Thigh Thigh circumference (cm)

Knee Knee circumference (cm)

Ankle Ankle circumference (cm)

Biceps Extended biceps circumference (cm)
Forearm Forearm circumference (cm)

Wrist Wrist circumference (cm)
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Generate PROC CORR output for the variables Height, Neck, Chest, and Weight. Which variables
are highly correlated with Weight?

The CORR Procedure

4 Variables: Height  Neck Chest Weight

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
Height 252 70.30754 2.60958 17718 64.00000 77.75000
Neck 252 37.99206 2.43091 9574 31.10000 51.20000
Chest 252 100.82421 8.43048 25408 79.30000 136.20000
Weight 252 178.92440 29.38916 45089 118.50000 363.15000

Pearson Correlation Coefficients, N = 252
Prob > |r| under HO: Rho=0

Height Neck Chest Weight
Height 1.00000 0.32114 0.22683 0.48689
<.0001 0.0003 <.0001
Neck 0.32114 1.00000 0.78484 0.83072
<.0001 <.0001 <.0001
Chest 0.22683 0.78484 1.00000 0.89419
0.0003 <.0001 <.0001
Weight 0.48689 0.83072 0.89419 1.00000

<.0001 <.0001 <.0001

Generate PROC UNIVARIATE output with the same variables. Use the ODS SELECT statement to
request only the BasicMeasures table. Do any of the variables appear to be skewed judging only
from the mean and median summary statistics?

The UNIVARIATE Procedure
Variable: Height
Basic Statistical Measures
Location Variability
Mean 70.30754 8td Deviation 2.60958
Median 70.00000 Variance 6.80992
Mode 71.50000 Range 13.75000
Interquartile Range 4.00000
The UNIVARIATE Procedure
Variable: Neck
Basic Statistical Measures
Location Variability
Mean 37.99206 8td Deviation 2.43091
Median 38.00000 Variance 5.90934
Mode 38.50000 Range 20.10000
Interquartile Range 3.05000
The UNIVARIATE Procedure
Variable: Chest
Basic Statistical Measures
Location Variability
Mean 100.8242 Std Deviation 8.43048
Median 99.6500 Variance 71.07292
Mode 99.1000 Range 56.90000
Interquartile Range 11.15000
The UNIVARIATE Procedure
Variable: Weight
Basic Statistical Measures
Lacation Variability
Mean 178.9244 8td Deviation 29.38916
Median 176.5000 Variance 863.72272
Mode 152.2500 Range 244.65000
Interquartile Range 38.25000
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c. Use PROC SGSCATTER to plot Weight by Height, Neck, and Chest separately. Add the regression
line to each plot. Does each variable appear to be linearly associated with Weight?

350

Weight
u
Waight

Waight

an 100 120
Chast

140

d. Use PROC REG to create a multiple linear regression model with Weight as the dependent
variable and Height, Neck, and Chest as independent variables. Use the ODS SELECT statement
to request only the tables ANOVA, FitStatistics, and ParameterEstimates. Use the OUTPUT
statement to create a new data set with the predicted and residual values. Which variables are
statistically significant for this model?

The REG Procedure
Model: MODELA
Dependent Variable: Weight
Analysis of Variance
sum of Mean
Source DF Squares Square F Value Pr = F
Model 3 196216 65405 788.25 <.0001
Error 248 20578 82.97585
Corrected Total 251 216794
Root MSE 9.10911 R-Square 0.9051
Dependent Mean 178.92440 Adj R-Sq 0.9039
Coeff Var 5.09104
Parameter Estimates
Parameter Standard
Variable DF Estimate Error t Value Pr = |t
Intercept 1 -366.66231 16.07211 -22.81 <.0001
Helight 1 2.96912 0.23287 12.75 =.0001
Neck 1 2.87083 0.39287 7.3 <.0001
Chest 1 2.25905 0.11015 20.51 =.0001

e. Use PROC UNIVARIATE to create a histogram with a normal density estimate and a Q-Q plot
compared to a normal distribution of the residuals. Use the ODS SELECT statement to request
only the histogram and Q-Q plot. Do the residuals appear to be normally distributed?

Distribution of res

] g

Q-0 Plot for res

a5

Hemeal Quantiles

Hoernal Line M, Sigma=d 0445
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Predicting New Data

a. Rerun the model from Exercise 1, but this time use a STORE statement to save the model.

b. The data set Newdata_Bodyfat_Reg contains five new observations. Use PROC PLM to score the
new data. Use the PREDICTED keyword in the SCORE statement and save the scored data set as
Pred_Newdata_Bodyfat.

c. Print the predicted values from the scored data set and the response and independent variables.

Obs Weight Height Meck Chest Predicted
1 179.00 68.00  39.1 103.3 180.847
2 200,50 69.75  41.3  111.4 210.657
3 140.25 66.25  33.9 86.0 127.579
4 148.75 70.00  35.5 86.7 138.950
5 151.25 67.75  34.5 90.2 137.305

Fitting an ANOVA Model
The data set Cars contains information about a sample of 1993 model cars from the 1993 Cars

Annual Auto Issu

e published by Consumer Reports and from Pace New Car and Truck 1993 Buying

Guide. The data set consists of the following variables:

Make Name of the manufacturer
Model Name of the model
Type Vehicle type (Hybrid, SUV, Sedan, Sports, Truck, or Wagon)
Origin Vehicle origin (Asia, Europe, or USA)
DriveTrain Drivetrain type (All, Front, or Rear)
Invoice Invoice
MSRP Manufacturer’s suggested retail price
EngineSize Engine displacement size in liters
Cylinders Number of Cylinders
Horsepower Maximum horsepower
MPG_City Average city miles per gallon (EPA rating)
MPG_Highway Average highway miles per gallon (EPA rating)
Weight Weight of vehicle in pounds
Wheelbase Wheelbase in inches
Length Length of the vehicle in inches
a. Generate a frequency table for the variable Type. Are the counts of each vehicle in this sample
evenly distributed?
The FREQ Procedure
Cumulative Cumulative

Type FFEqLIEFICy Percent Frequency Percent

Hybrid 3 0.70 3 0.70

suv 60 14.02 63 14.72

Sedan 262 61.21 325 75.93

Sports 49 11.45 374 87.38

Truck 24 5.61 398 92.99

Wagon 30 7.01 428 100.00
b. Use PROC UNIVARIATE to analyze the MPG_Highway variable. Request only the Moments table

and the histogram plot with a density estimate. Does MPG_Highway appear to be normally

distributed?

Moments
N 428 Sum Weights 428
Mean 26.8434579 Sum Observations 11489
Std Deviation 5.74120072 Variance 32.9613857
Skewness 1.25239527 Kurtosis 6.04561068
Uncorrected SS 322479 Corrected S8 14074 .5117
Coeff Variation 21.38770092 Std Error Mean 0.27751141
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4.

Distribution of MPG_Highway
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Curve MemnalMu=26 843 Sigma=57412)

Use PROC GLM to create a one-way ANOVA model. Use MPG_Highway as the dependent
variable and Type as the independent variable. Use the PLOTS(ONLY)= option in the PROC GLM
statement to request only the ANCOVA plot and use the hybrid vehicle as the reference
category. Use the SOLUTION and CLPARM options in the MODEL statement to view parameter
estimates and confidence limits. Identify the least squares means (LS-means). Use the
ADJUST=TUKEY option and the PDIFF and CL options in the LSMEANS statement. Finally, use the
ESTIMATE statement to see whether there is a significant difference in MPG_Highway for SUV

versus Truck. Are all parameter estimates statistically significant? Are SUV and Truck significantly
different?

Partial PROC GLM Output

Sum of
Source oF Squares Mean Square F Valug Pr>F

Madél 5 6743, 47900 1348, 69580 77.64 <, 0001
Error 422 7331.03268 17.37212
Corrected Total 427 14074 .51168

Stangard
Paramster Estimate Error 1t Value Fr = |t 95% Gonfidence Limits

SV vs Truck -0, 50000000 1. DOGEE44D -0.50 0.6197  -2.47870110  1.47870110

Fitting an ANCOVA Model

a.

Extend the ANOVA model above to an ANCOVA model by adding the HorsePower variable into
the set of independent variables. First, create a macro variable of the mean value of the
HorsePower variable.

215.8855

Use PROC GLM to fit an ANCOVA model. Use the PLOTS(ONLY)= option to request only the
ANCOVA plot from the GLM procedure. Identify the LS-means for the variable Type. Use the AT
option to hold the variable HorsePower fixed at the mean and use the ADJUST=TUKEY option.
Estimate the significance of the same linear combination as before, SUV versus Truck. Are all
parameter estimates statistically significant? Is SUV still significantly different from Truck?

Partial PROC GLM Output

Sum of

Source OF Squares Maan Square F Value Pr=F

Model 1 10765 . 94182 a78.72198 123.06 <. 0001

Error 416 3308 . 56986 T.95320

Corrected Total 427 14074 .51168

Standard

Parameter Estimate Error t Value Pr = |t| 95% Confidence Limits
S0 vs Truck -0.09692078 0.69865201 -0.14 0.8897 -1.4T024909  1.27640754
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Fitting a Logistic Regression Model

The Safety data set is created by an insurance company that wants to relate the safety of vehicles to
various features. The data set consists of the following variables:

Unsafe 1=Yes, 0=No

Size Size of vehicle (1, 2, or 3)

Weight Weight of Vehicle (1, 2, 3, 4, 5, or 6)

Region Asia or North America

Type  Vehicle type (Large, Medium, Small, Sport/Utility, or Sports)

a. Use PROC FREQ to create a table of each variable. What percentage of vehicles in the sample are
rated as safe?

The FREQ Procedure
Cumulative Cumulative
Unsafe Frequency Percent Frequency Percent
o 66 68.75 66 68.75
1 a0 31.25 96 100.00
Cumulative Cumulative
8ize Frequency Percent Frequency Percent
1 a5 36.46 35 36.46
2 29 30.21 64 66.67
3 az 33.33 96 100.00
Cumulative Cumulative
Weight Freguency Percent Frequency Percent
1 1 1.04 1 1.04
2 " 11.46 12 12,50
3 53 55.21 3 67,71
4 26 27.08 L1 894.79
5 3 3.13 84 97,92
L] 2 2.08 96 100.00
Cumulative Cumulative
Region Frequency Percent Frequency Percent
Asia EH 36,46 35 36,46
N America &1 63.54 %6 100.00
Cumulative  Cusulative
Type Frequency Percent Freguency Percent
Large 16 16.67 16 16.67
Vedium 25 30.21 45 25,88
&mall 20 20.83 65 &7. N
Sport/Utility 16 16,67 Ll 4,38
Sports 15 15.63 26 100.00

b. Use PROC LOGISTIC to model the unsafety of a vehicle with independent variables Weight,
Region, and Size. Specify Region and Size as categorical variables with reference categories Asia
and 3 respectively. Request only the effect plot for the analysis and use the CLODDS=WALD
option in the MODEL statement. Use the ESTIMATE statement to estimate the probability of a
vehicle from North America with Weight=4 and Size=1 as unsafe.

Partial PROC Logistic Output

Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr = ChiSq
Intercept 1 0.0500 1.8008 0.0008 0.9778
Weight 1 -0.6678 0.4589 2.1176 0.1456
Region N America 1 -0.3775 0.5624 0.4506 0.5020
Size 1 1 2.6783 0.8810 9.2422 0.0024
Size 2 1 0.6582 0.9231 0.5085 0.4758
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c. Because the significance of the parameter estimates was weak for the model above, conduct
backward selection with a significance level to stay in the model of 0.05. Use ODS SELECT to
request only the ModelBuildingSummary, ModelAnova, and ParameterEstimates values of the
final model. Which variables were removed from the model?

Summary of Backward Elimination
Effect Number Wald
Step Removed DF In Chi-Square Pr > Chisq
1 Region 1 2 0.4506 0.5020
2 Weight 1 1 2.1565 0.1420
Type 3 Analysis of Effects
Wald
Effect DF Chi-Square Pr = ChiSq
Size 2 24,2875 <.0001
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr = ChiSq
Intercept 1 -2.7080 0.7303 13.7505 0.0002
Size 1 1 3.3585 0.8125 17.0880 <.0001
Size 2 1 1.1393 0.8803 1.6751 0.1956

6. Fitting a Generalized Linear Model

A Survey was undertaken to examine which factors are related to ear infections among swimmers.
The response variable is the number of self-diagnosed ear infections reported by the participant. The
data are stored in the EarInfection data set. The data set consists of the following variables:

Infections Number of self-diagnosed ear infections
Swimmer Frequent or Occasional swimmer

Location Typical swimming location (NonBeach or Beach)
Age Age in years

Gender Gender of swimmer (Male or Female)

The data were obtained with permission from the OZDATA website. This website is a collection of
data sets and is maintained in Australia.

a. Create afrequency table for the variables Swimmer, Location, Age, Gender, and Infections.
What is the range of the number of infections for swimmers in this sample?

Cumulative

Cumulative

=87

Swimmer  Fyequency Percent Frequeency Percant
Freq 143 49.83 143 49.83
Occas 148 5017 287 100,00

Cumulative  Cumulative

Location  Frequency  Percent Frequency Percent

Besch 7 s1.22 147 51.22

MonBaach 140 46.78 287 100,00

Cumulative Cumulative
Age  Freguency Fercent Frequency Fercent
1% 2 9.76 28 9.7
16 26 54 18,62
17 28 82 20.57
18 32 114 39.72
1% 26 140 878
20 16 156 54.36
21 15 1 59,58
22 18 187 5,18
23 16 203 .73
24 16 219 78.31
25 12 231 80,49
26 a 245 85,37
27 14 258 80,24
26 15 278 9547
20 13 4,53 287 100,00
Cumulative  Cusulative
Genger  Freguency  Percent Fraquancy Farcant
Eemale 59 aa.a8 as 38.28
uale 188 65.51 za7 00.00
Cumulative Cumulative
Infections  Frequency  Perce Freguency
o 151 52.61 151 52.61
1 an 13,54 191 66.55
H a8 13,88 20 #0.14
a ] 9.08 256 29,20
4 13 4.53 269 93.73
5 s 1.74 274 96.47
6 . 1.39 zis 96.85
° 3 1.08 281 97,91
10 a 1.05 284 48,95
1 1 0.35 5 9,30
1 1 208 95,65
1

100.00
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Request only the BasicMeasures table and a histogram with a normal density estimate from
PROC UNIVARIATE for the Infections variable. Does this variable appear to be normally
distributed?

Basic Statistical Measures
Location Variability
Mean 1.386760 5td Deviation 2.33854
Median 0.000000 Variance 5.46878
Mode 0.000000 Range 17.00000
Interquartile Range 2.00000

Distribution of Infections

1 3068 Sagmas2 3365

Create a Poisson regression model with Infections as the dependent variable and Swimmer,
Location, Age, and Gender as the independent variables. For the variables Swimmer, Location,
and Gender use the reference categories Occas, NonBeach, and Female respectively. Be sure to
use the STORE statement to predict the number of Infections using PROC PLM. Which variables
are statistically significant?

Partial PROC GENMOD Output

Analysis Of Maximum Likelihood Parameter Estimates
Standard Wald 95% Confidence Wald

Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 1.3586 0.2736 0.8224 1.8948 24.66 <.0001
Swimmer Freq 1 -0.6086 0.1050 -0.8145 -0.4028 33.59 <.0001
Location Beach 1 -0.4896 0.1048 -0.6951 -0.2841 21.81 <.0001
Age 1 -0.0261 0.0122 -0.0500 -0.0021 4.55 0.0330
Gender Male 1 -0.0294 0.1092 -0.2433 0.1846 0.07 0.7878
Scale o 1.0000 0.0000 1.0000 1.0000

Create a new data set with the following observations:

Freq NonBeach 25 Female

Occas Beach 15 Male

Use PROC PLM to score the new data set and predict the number of Infections on the original
data scale. Finally, print the predicted values from the PROC PLM output data set.

Obs Swimmer Location Age Gender Predicted
1 Freq NonBeach 25 Female 1.10338
2 Occas Beach 15 Male 1.56621
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Solutions

Multiple Choice

1.

a, ¢, and d. The PLM procedure scores new data by using the model saved in the STORE statement of
the modeling procedures. The REG procedure is generally used to create models with continuous
predictors only. Categorical variables would need to be dummy coded by the user for this procedure.
The PLM procedure can generate confidence and prediction limits by using options in the SCORE
statement.

a, ¢, and d. The CLASS statement is equivalent to the as.factor function in R because it dummy codes
your variables for the model. It creates a column in your design matrix for each unique level of each
categorical variable that you specify. As a best practice, use the SOLUTION option in the model
statement to print your model parameter estimates. The ADJUST= option is used to control the
overall type one error for multiple simultaneous comparisons.

a. The GLMSELECT procedure can be used to create all the models in PROC REG and PROC GLM, as
well as to conduct stepwise effect selection.

b. The number of pairs is equal to the number of success times the number of failures (95*45).

a. The GENMOD procedure can be used to create any generalized linear model including logistic
regression models. However, the LOGISTIC procedure will generate tables and graphics specific to
logistic regression models that PROC GENMOD will not.

Programming Exercises

1.

Fitting a Regression Model

Percentage of body fat, age, weight, height, and 10 body circumference measurements were
recorded for 252 men by Dr. Roger W. Johnson of Calvin College in Minnesota. The data are in the
BodyFat data set, which consists of the following variables:

Case Case number

PctBodyFat2 Percent body fat using Siri’s equation (495/density -450)
Age Age in years

Weight Weight in pounds

Height Height in inches

Neck Neck circumference (cm)

Chest Chest circumference (cm)

Abdomen Abdomen circumference (cm)

Hip Hip circumference (cm)

Thigh Thigh circumference (cm)

Knee Knee circumference (cm)

Ankle Ankle circumference (cm)

Biceps Extended biceps circumference (cm)
Forearm Forearm circumference (cm)

Wrist Wrist circumference (cm)

a. Generate PROC CORR output for the variables Height, Neck, Chest, and Weight. Which variables
are highly correlated with Weight?

proc corr data=spér.bodyfat;
var height neck chest weight;
run;
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The CORR Procedure
4 Varilables: Helght Neck Chest Welght

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
Height 252 70.3075% 2.60958 17718 64.00000 77.75000
Neck 252 37.99206 2.43091 9574 31.10000 51.20000
Chest 252 100. 82421 8.43048 25408 79.30000 136.20000
Weight 252 178.92440 29.38916 45089 118.50000 363.15000

Pearson Correlation Coefficients, N = 252
Prob > |r| under HO: Rho=0

Helght Neck Chest Welight
Height 1.00000 0.32114 0.22683 0.48689
=.0001 0.0003 <.0001
Neck 0.32114 1.00000 0.78484 0.83072
<.0001 <.0001 <.0001
Chest 0.22683 0.78484 1.00000 0.89419
0.0003 =.0001 <.0001
Weight 0.48689 0.83072 0.89419 1.00000

<.0001 =.0001 <.0001

Generate PROC UNIVARIATE output with the same variables. Use the ODS SELECT statement to
request only the BasicMeasures table. Do any of the variables appear to be skewed judging only
from the mean and median summary statistics?

ods select basicmeasures;

proc univariate data=sp4r.bodyfat;
var height neck chest weight;

run;

The UNIVARIATE Procedure
variable: Height

Bagic Statistical Measures

Location Variability
Uean 70.30754 Std Deviation 2.60958
uedian  70.00000 variance 6. 80992
uode 71.50000 Range 13.75000

Interquartile Range 4.00000

The UNIVARIATE Procedure
Variable: Neck

Basic Statistical Measures

Location Variability

Uaan AT .e206 Std Deviation 2.43091

Median 3800000 variance 5.90934

Uode 38 . 50000 Range 20.10000
Interquartile Range 3.05000

The UNIVARIATE rdur
Variable: Chest

Basic Statistical Measures

Location Variability
Yean 100. 8242 Std Deviation 8.43048
Median #9.6500 Variance 71.07282
Uode 99,1000 Range 568.90000
Interquartile Range 11.15000

The UNIVARIATE Procedure
Variable: Weight

Basic $tatistical Measures

Location Variability
Meran 178.5244 Std Deviation 29.38516
Madian 176. 5000 Variance @83.72272
Mode 162, 2600 Aange 24465000
Interquartile Range 38.25000

Use PROC SGSCATTER to plot Weight by Height, Neck, and Chest separately. Add the regression
line to each plot. Does each variable appear to be linearly associated with Weight?

proc sgscatter data=spédr.bodyfat;
plot weight * (height neck chest) / reg;
run;
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Use PROC REG to create a multiple linear regression model with Weight as the dependent
variable and Height, Neck, and Chest as independent variables. Use the ODS SELECT statement
to request only the tables ANOVA, FitStatistics, and ParameterEstimates. Use the OUTPUT
statement to create a new data set with the predicted and residual values. Which variables are

statistically significant for this model?

ods select anova fitstatistics parameterestimates;
proc reg data=spé4r.bodyfat;

run;

model weight =

height neck chest;

output out=spdr.out predicted=pred residual=res;

quit;

The REG Procedure
Model: MODELA1

Dependent Variable: Weight

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value
Model 3 196216 65405 788.25
Error 248 20578 82.97585
Corrected Total 251 216794
Root MSE 9.10911 R-Square 0.9051
Dependent Mean 178.92440 Adj R-Sq 0.9039
Coeff Var 5.09104
Parameter Estimates
Parameter Standard
Variable DF Estimate Error t Value Pr
Intercept 1 -366.66231 16.07211 -22.81 <
Height 1 2.96912 0.23287 12.75 <
Neck 1 2.87083 0.39287 7.31 <
Chest 1 2.25905 0.11015 20.51 <

Pr > F

<.0001

= |t]

.0001
.0001
.0o01
.0001

Use PROC UNIVARIATE to create a histogram with a normal density estimate and a Q-Q plot
compared to a normal distribution of the residuals. Use the ODS SELECT statement to request
only the histogram and Q-Q plot. Do the residuals appear to be normally distributed?

ods select histogram ggplot;
proc univariate data=spér.out;

run;

var resy;

histogram res / normal kernel;
gagplot res / normal (mu=est sigma=est);
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Distribution of res
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Predicting New Data

a.

Rerun the model from Exercise 1, but this time use a STORE statement to save the model.

proc reg data=spé4r.bodyfat;
model weight = height neck chest;
store mymod;

run;quit;

The data set Newdata_Bodyfat_Reg contains five new observations. Use PROC PLM to score the
new data. Use the PREDICTED keyword in the SCORE statement and save the scored data set as
Pred_Newdata_Bodyfat.

proc plm restore=mymod;
score data=sp4dr.newdata bodyfat reg
out=spé4r.pred newdata bodyfat predicted;
run;

Print the predicted values from the scored data set and the response and independent variables.

proc print data=spd4r.pred newdata bodyfat;
var weight height neck chest predicted;
run;

Obs Weight Height MNeck Chest Predicted
1 179.00 68.00 39.1 103.3 180.847
2 200.50 69.75 41.3 111.4 210.657
3 140.25 68.25 33.9 86.0 127.579
4 148.75 70.00 35.5 86.7 138.950
5 151.25 67.75 34.5 90.2 137.305
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Fitting an ANOVA Model

The data set Cars contains information about a sample of 1993 model cars from the 1993 Cars
Annual Auto Issue published by Consumer Reports and from Pace New Car and Truck 1993 Buying
Guide. The data set consists of the following variables:

Make
Model

Type

Origin
DriveTrain
Invoice
MSRP
EngineSize
Cylinders
Horsepower
MPG_City
MPG_Highway
Weight
Wheelbase
Length

Name of the manufacturer

Name of the model

Vehicle type (Hybrid, SUV, Sedan, Sports, Truck, or Wagon)
Vehicle origin (Asia, Europe, or USA)
Drivetrain type (All, Front, or Rear)

Invoice

Manufacturer’s suggested retail price

Engine displacement size in liters

Number of Cylinders

Maximum horsepower

Average city miles per gallon (EPA rating)
Average highway miles per gallon (EPA rating)
Weight of vehicle in pounds

Wheelbase in inches

Length of the vehicle in inches

a. Generate a frequency table for the variable Type. Are the counts of each vehicle in this sample
evenly distributed?

proc freqg data=spér.cars;
table type;

run;
The FREQ Procedure
Cumulative Cumulative
Type Frequency Percent Frequency Percent
Hybrid 3 0.70 3 0.70
suv 60 14.02 63 14.72
Sedan 262 61.21 325 75.93
Sports 49 11.45 374 B87.38
Truck 24 5.61 398 92.99
Wagon 30 7.01 428 100.00

b. Use PROC UNIVARIATE to analyze the MPG_Highway variable. Request only the Moments table

and the histogram plot with a density estimate. Does MPG_Highway appear to be normally

distributed?

ods select moments histogram;
proc univariate data=spér.cars;
var mpg highway;
histogram mpg highway / normal;

run;
The UNIVARIATE Procedure
Variable: MPG_Highway (MPG (Highway))
Moments

N 428 Sum Weights 428
Mean 26.8434579 Sum Observations 11489
Std Dewviation 5.74120072 Variance 32.9613857
Skewness 1.25239527 Kurtosis 6.04561068
Uncorrected SS 322479 Corrected 5SS 14074.5117
Coeff Variation 21.3877092 Std Error Mean 0.27751141
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Distribution of MPG_Highway
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Curve Normal(Mu=26.843 Sigma=5.7412)

Use PROC GLM to create a one-way ANOVA model. Use MPG_Highway as the dependent
variable and Type as the independent variable. Use the PLOTS(ONLY)= option in the PROC GLM
statement to request only the ANCOVA plot and use the hybrid vehicle as the reference
category. Use the SOLUTION and CLPARM options in the MODEL statement to view parameter
estimates and confidence limits. Identify the least squares means (LS-means). Use the
ADJUST=TUKEY option and the PDIFF and CL options in the LSMEANS statement. Finally, use the
ESTIMATE statement to see whether there is a significant difference in MPG_Highway for SUV

versus Truck. Are all parameter estimates statistically significant? Are SUV and Truck significantly
different?

proc glm data=spé4r.cars plots(only)=boxplot;
class type (ref='Hybrid');
model mpg highway = type / solution clparm;
lsmeans type / adjust=tukey pdiff cl;
estimate 'SUV vs Truck' type 1 0 0 -1 0 0;
run;quit;

The GLM Procedure

Class Level Information

Class Levels Values
Type 6 SUV Sedan Sports Truck Wagon Hybrid
Number of Observations Read 428

Number of Observations Used 428
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Dependent Variable: MPG_Highway  MPG (Highway)
Sum of
Source DF Squares Mean Square F Value Pr > F
Model 5 6743.47900 1348.69580 77.64 <. 0001
Error 422 7331.03268 17.37212
Corrected Total 427 14074.51168
R-Square Coeff Var Root MSE MPG_Highway Mean
0.479127 15.52701 4.167987 26.84346
Source DF Type I S8 Mean Square F Value Pr > F
Type ] 6743.478998 1348.695800 77.64 <. 0001
Source DF Type III S8 Mean Square F Value Pr > F
Type 5 6743.478998 1348.695800 77.64 <. 0001
Standard
Parameter Estimate Error t Value Pr > |t] 95% Confidence Limits
Intercept 56.00000000 B 2.40638840 23.27 <.0001 51.26999968 60.73000032
Type suv -35.50000000 B 2.46581434 -14.40 <.0001 -40.34680804 -30.65319196
Type Sedan -27.37022901 B 2.42012622 -11.31 <.0001 -32.12723240 -22.61322562
Type Sports  -30.51020408 B 2.47895907 -12.31 <.0001 -35.38284942 -25.63755875
Type Truck -35.00000000 B 2.55236033 -13.71 <.0001 -40.01692295 -29.98307705
Type Wagon -28.10000000 B 2.52384144 -11.13 <.0001 -33.06086618 -23.13913382
Type Hybrid 0.00000000 B
NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve
the normal equations. Terms whose estimates are Tollowed by the letter 'B' are not
uniquely estimable.
Distribution of MPG_Highway
F TTEL
Prok = F <0001
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UV Sedan Spons Truex Wagon b
Tres
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
MPG_Highway LSMEAN
Type LSMEAN Number
suv 20.5000000 1
Sedan 28.6297710 2
Sports 25.4897959 3
Truck 21.0000000 4
Wagon 27.9000000 5
Hybrid 56.0000000 6
Least Squares Means for effect Type
Pr > |t| Tor HO: LSMean(1)=LSMean(j)
Dependent Variable: MPG_Highway
i/j 1 2 3 4 5 6
1 <.0001 <.0001 0.9963 <.0001 <.0001
2 <.0001 <.0001 <.0001 0.9443 =.0001
3 <.0001 <.0001 0.0003 0.1280 <.0001
4 0.9963 <.0001 0.0003 <.0001 <.0001
5 <.0001 0.9443 0.1280 <.0001 <.0001
6 <.0001 <.0001 <.0001 <.0001 <.0001
MPG_Highway
Type LSMEAN 95% Confidence Limits
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suv 20.500000 19.442340 21.557660
Sedan 28.629771 28.123630 29.135912
Sports 25.489796 24.319424 26.660167
Truck 21.000000 19.327692 22.672308
Wagon 27.900000 26.404243 29.395757
Hybrid 56.000000 51.270000 60.730000

Least Squares Means for Effect Type

Difference Simultaneous 95%

Between Gonfidence Limits for
i j Means LSMean(i)-LSMean(j)
1 2 8.129771 -9.837539 -6.422003
1 3 -4.989796 -7.287355 -2.692237
1 4 -0.500000 -3.381944 2.381944
1 5 -7.400000 -10.068162 -4.731838
1 6 -35.500000 -42.559293 -28.440707

Adjustment for Multiple Comparisons: Tukey-Kramer
Least Squares Means for Effect Type
Difference Simultaneous 95%
Between Gonfidence Limits for
i j Means LSMean (1) -LSMean(j)
2 3 3.139975 1.282775 4.997175
2 4 7.629771 5.084970 10.174572
2 5 0.729771 -1.570120 3.029662
2 6 -27.370229 -34.298723 -20.441735
3 4 4.489796 1.516864 7.462728
3 5 -2.410204 -5.176394 0.355986
3 6 -30.510204 -37.607128 -23.413280
4 5 -6.900000 -10.167817 -3.632183
4 6 -35.000000 -42.307062 -27.692938
5 6 -28.100000 -35.325416 -20.874584

Dependent variable: MPG_Highway  MPG (Hignway)

Standard
Parameter Estimate Error t Value Pr > |t]| 95% Confidence Limits
SUV vs Truck -0.50000000 1.00666449 -0.50 0.6197 -2.47870110 1.47870110

Fitting an ANCOVA Model

a.

Extend the ANOVA model above to an ANCOVA model by adding the HorsePower variable into
the set of independent variables. First, create a macro variable of the mean value of the
HorsePower variable.

proc sql;
select mean (horsepower) into :hp mean from spdr.cars;
quit;

215.8855

Use PROC GLM to fit an ANCOVA model. Use the PLOTS(ONLY)= option to request only the
ANCOVA plot from the GLM procedure. Identify the LS-means for the variable Type. Use the AT
option to hold the variable HorsePower fixed at the mean and use the ADJUST=TUKEY option.
Estimate the significance of the same linear combination as before, SUV versus Truck. Are all
parameter estimates statistically significant? Is SUV still significantly different from Truck?

proc glm data=sp4r.cars plots(only)=ancovaplot;
class type (ref='Hybrid'");
model mpg highway = type|horsepower / solution clparm;
lsmeans type / at horsepower=&hp mean
adjust=tukey pdiff cl;
estimate 'SUV vs Truck' type 1 0 0 -1 0 0 type*horsepower
&¢hp mean 0 0 -&hp mean 0 0;

run;quit;

The GLM Procedure

Class Level Information

Class Levels Values
Type 6 SUV Sedan Sports Truck Wagon Hybrid
Number of Observations Read 428

Number of Observations Used 428
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Dependent Variable: MPG_Highway MPG (Highway)
Sum of
Source DF Squares Mean Square F Value Pr = F
Model i1 10765.94182 978.72198 123.06 <.0001
Error 416 3308.56986 7.95329
Corrected Total 427 14074.51168
R-Square Coeff Var Root MSE MPG_Highway Mean
0.764925 10.50594 2.820158 26.84346
Source DF Type I SS Mean Square F Vvalue Pr = F
Type 5 6743.478998 1348.695800 169.58 <.0001
Horsepower 1 3699.837286 3699.837286 465.20 <.0001
Horsepower *Type 5 322.625534 64.525107 8.11 <.0001
Source DF Type III SS Mean Square F Value Pr > F
Type 5 653.3927903 130.6785581 16.43 <.0001
Horsepower 1 272.6094049 272.6094049 34.28 <.0001
Horsepower *Type 5 322.6255340 64.5251068 8.1 <.0001
Standard
Parameter Estimate Error t Value Pr = |t|
Intercept 94.22157434 B 10.03894199 9.39 <.0001
Type suv -64.05940099 B 10.16284659 -6.30 <.0001
Type Sedan -55.15403535 B 10.05608869 -5.48 <.0001
Type Sports -61.56306301 B 10.12406223 -6.08 <. 0001
Type Truck -62.82986720 B 10.28016825 -6.11 <. 0001
Parameter 95% Confidence Limits
Intercept 74.48819768 113.95495100
Type sUV -84.03633480 -44.08246718
Type Sedan -74.92111698 -35.38695372
Type Sports -81.46375905 -41.66236696
Type Truck -83.03741819 -42.62231620
Analysis of Covariance for MPG_Highway
50
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Dependent Variable: MPG_Highway MPG (Highway)
Standard
Parameter Estimate Error t Value Pr > |t|
Type Wagon -55.28132488 B 10.17751744 -5.43 <.0001
Type Hybrid 0.00000000 B . . .
Horsepower -0.415451580 B 0.10767414 -3.86 0.0001
Horsepower*Type SUV 0.374478656 B 0.10787191 3.47 0.0006
Horsepower*Type Sedan 0.36369176 B 0.10771002 3.38 0.0008
Horsepower*Type Sports 0.39022444 B 0.10776347 3.62 0.0003
Horsepower*Type Truck 0.36923229 B 0.10809315 3.42 0.0007
Horsepower*Type Wagon 0.35854339 B 0.10798664 3.32 0.0010
Horsepower*Type Hybrid 0.00000000 B
Parameter 95% ConfTidence Limits
Type Wagon -75.28709693 -35.27555284
Type Hybrid . .
Horsepower -0.62710512 -0.20379867
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Horsepower*Type SUV 0.16243668  0.58652063
Horsepower*Type Sedan 0.15196801 0.57541550
Horsepower*Type Sports 0.17839563  0.60205328
Horsepower*Type Truck 0.15675543  0.58170915
Horsepower*Type Wagon 0.14627590 0.57081088
Horsepower*Type Hybrid
The GLM Procegure
Least Squares Means at Horzepower=215.8855
Adjustment for Multiple Comparisons: Tukey-Kramer
MPG_Higmway LSMEAN
Type LSMEAN Number
sUV 21 3166445 1
Sedan 27.8032754 2
Sports 272122700 a
Truck 21.4135653 2
Wagon 266545200 5
Hybrid 4.5315343 &
Least Squares Means for effect Type
Pr > |t| for HO: LSMean[i)=LSMean(])
Dependent Varisble: MPG_Highway
isj 1 2 3 a 5 &
1 ~.0001 0001 1.0000 . 0001 0.5125
2 0.7370 <. 0001 0.2596 0.5072
3 0.7370 «.0001 0.9750 0.5414
4 «.0001 ©.0001 «.0001 0.6091
5 0.2596 0.9750 <. 0001 0.5682
3 0.5072 0.5414 0.8001 0.5692
MPG_Hignway
Type LSMEAN 95% Confidence Limits
suv 21316645 20 556637 22 076652
Sedan 27.893275 27.542081 25.244470
sports 27212270 26.225452  26.195088
Truck 21.413565 20.260704  22.857427
Wagon 26654520 25 5B25TS  27.726483
Hybrid 4.531534 -21.8B3843  30.946912
Least Squares Means for Effect Type
pirterence simultaneous 95%
Between ConTidence Limits for
i Mzans LeMean(i)-LsMean(j)
1 2 -6.576631 -7.795069  -5.357193
103 -5.895626 -7.709809  -4.081442
1 4 -0.005521 -2.087200 1.003358
1 5 -5.337684 -7.251807  -3.423962
1 3 16.785110 -21.705315  55.27553§
Least Squares Means at Horsepower=-215.5885
Adjustment for Multiple Comparisons: Tukey-Kramer
Least Squares Means Tor ETTect Type
Differsnce simultaneous 95%
Between Confidence Limits for
i j Means LsMean (i)-LSMean(j)
2 3 0.681005 -0.844623 2.206633
2 4 6.479710 4.736897 5.222523
2 5 1.238746 -0.404232 2.881725
2 6 23 361741 -15.116163  61.839645
3 4 5.708705 3.598335 7.509075
3 5 0.557741 -1.564430 2679912
3 6 22 680736 -15.820606  61.182078
4 5 -5.240064 -7.524265  -2.957662
4 & 16852031 -21 6285280 55392591
5 6 22.122995 -16.363176  60.629165
ThE GLW Frocedurs
Dependent Variable: MPG_Highway MPG (Highway)
Standard
Parameter Estimate Error t Value Pr = [t] 95% Confidence Limits
SW vs Truck -0.09692078 0.69665201 -0.14 0.8597  -1.47024909  1.27640754

5. Fitting a Logistic Regression Model

The Safety data set is created by an insurance company that wants to relate the safety of vehicles to
various features. The data set consists of the following variables:

Unsafe 1=Yes, 0=No

Size Size of vehicle (1, 2, or 3)

Weight Weight of Vehicle (1, 2, 3, 4, 5, or 6)

Region Asia or North America

Type Vehicle type (Large, Medium, Small, Sport/Utility, or Sports)
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a.

Use PROC FREQ to create a table of each variable. What percentage of vehicles in the sample are

rated as safe?

proc freq data=spédr.safety;

run;
The FREQ Procedure
Cumulative Cumulative
Unsafe Frequency Percent Frequency Percent
o 66 68.75 66 68.75
1 a0 31.25 96 100.00
Cumulative Cumulative
8ize Frequency Percent Frequency Percent
1 a5 36.46 35 36.46
2 29 30.21 64 66.67
3 az 33.33 96 100.00
Cumulative Cumulative
Weight Frequency Percent Frequency Percent
1 1 1.04 1 1.04
2 ia! 11.46 12 12.50
3 53 55.21 65 67.71
4 26 27.08 a1 94,79
5 3 3.13 94 97.92
6 2 2.08 96 100.00
Cumulative Cumulative
Region Frequency Percent Frequency Percent
Asia 35 36.46 35 36.46
N America 61 63.54 96 100.00
Cumulative Cumulative
Type Frequency Percent Frequency Percent
Large 16 16.67 16 16.67
Medium 29 30.21 45 46.88
Small 20 20.83 65 67.71
Sport/Utility 16 16.67 a1 84.38
Sports 15 15.63 96 100.00

Use PROC LOGISTIC to model the unsafety of a vehicle with independent variables Weight,
Region, and Size. Specify Region and Size as categorical variables with reference categories Asia
and 3 respectively. Request only the effect plot for the analysis and use the CLODDS=WALD
option in the MODEL statement. Use the ESTIMATE statement to estimate the probability of a
vehicle from North America with Weight=4 and Size=1 as unsafe.

proc logistic data=spdr.safety plots(only)=effect;
class region(ref='Asia') size(ref='3') / param=ref;
model unsafe (event='l') = weight region size /
clodds=wald;
estimate 'My Estimate' intercept 1 weight 4 region 1
size 1 0 / e alpha=.05 ilink;
run;

The LOGISTIC Procedure

Model Information

Data Set WORK . SAFETY
Response Variable Unsafe
Number of Response Levels 2

Model
Optimization Technique

binary logit
Fisher's scoring

Number of Observations Read a6
Number of Observations Used a6

Response Profile

Ordered Total
Value Unsafe Frequency
1 a 66

2 1 30
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Probability modeled is Unsafe=1.

Class Level Information

Design
Class Value Variables
Region Asia 0
N America 1
Size 1 1 0
2 0 )
3 0 0

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and
Criterion Only Covariates
AIC 121.249 94.004
sC 123.813 106.826
-2 Log L 119.249 84.004
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 35.2441 4 <.0001
Score 32.8219 4 <.0001
Wald 23.9864 4 <.0001
Type 3 Analysis of Effects
Wald
Effect DF Chi-Square Pr = Chisq
Weight 1 2.1176 0.1456
Region 1 0.4506 0.5020
Size 2 15.3370 0.0005
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 0.0500 1.8008 0.0008 0.9778
Weight 1 -0.6678 0.4589 2.1176 0.1456
Region N America 1 -0.3775 0.5624 0.4506 0.5020
Size 1 1 2.6783 0.8810 9.2422 0.0024
Size 2 1 0.6582 0.9231 0.5085 0.4758

Association of Predicted

Percent Concordant
Percent Discordant
Percent Tied

Pairs

Probabilities and Observed Responses

81.9 Somers' D 0.696
12.3 Gamma 0.739
5.8 Tau-a 0.302
1980 [ 0.848
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Odds Ratio Estimates and Wald Confidence Intervals

Effect unit Estimate 95% Confidence Limits
Weight 1.0000 0.513 0.209 1.261
Region N America vs Asia 1.0000 0.686 0.228 2.064
Size 1 ws 3 1.0000 14.560 2.590 81.857
Size 2 ws 3 1.0000 1.931 0.316 11.793

Estimate Coefficients

Parameter Region Size Rowl
Intercept: Unsafe=0 1
Weight 4
Region N America N America 1
8ize 1 1 1
Size 2 2
Estimate
Error of
Label Estimate Error z Value Pr = |z| Alpha Lower Upper Mean Mean
My Estimate -0.3204 0.6916 -0.46 0.6432 0.05 -1.6759 1.0352 0.4206 0.1685
Estimate
Lower Upper
Label Mean Mean
My Estimate 0.1576 0.7379
Predicted Probabilities for Unsafe=1
1.00
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Waight
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Asia1 Asia2 " Asia 3
N America 1 N America 2 N America 3

Because the significance of the parameter estimates was weak for the model above, conduct
backward selection with a significance level to stay in the model of 0.05. Use ODS SELECT to
request only the ModelBuildingSummary, ModelAnova, and ParameterEstimates values of the
final model. Which variables were removed from the model?

ods select modelbuildingsummary modelanova
parameterestimates;
proc logistic data=spér.safety;
class region (ref='Asia') size(ref='3') / param=ref;
model unsafe(event='1l') = weight region size /
selection=backward sls=.05 clodds=wald;
run;

The LOGISTIC Procedure

Summary of Backward Elimination

Effect Number Wald
Step Removed DF In Chi-8quare Pr > ChiSq
1 Region 1 2 0.4506 0.5020
2 Weight 1 1 2.1565 0.1420

Type 3 Analysis of Effects

Wald
Effect DF  Chi-Square  Pr > ChiSg
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Size 2 24,2875 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr = ChiSq
Intercept 1 -2.7080 0.7303 13.7505 0.0002
Size 1 1 3.3585 0.8125 17.0880 <.0001
Size 2 1 1.1393 0.8803 1.6751 0.1956

6. Fitting a Generalized Linear Model
A Survey was undertaken to examine which factors are related to ear infections among swimmers.
The response variable is the number of self-diagnosed ear infections reported by the participant. The
data are stored in the Earinfection data set. The data set consists of the following variables:

Infections
Swimmer
Location
Age
Gender

Number of self-diagnosed ear infections
Frequent or Occasional swimmer

Typical swimming location (NonBeach or Beach)
Age in years

Gender of swimmer (Male or Female)

The data were obtained with permission from the OZDATA website. This website is a collection of data
sets and is maintained in Australia.

a. Create a frequency table for the variables Swimmer, Location, Age, Gender, and Infections.
What is the range of the number of infections for swimmers in this sample?

run;

proc freq data=spédr.earinfection;

tables swimmer location age gender infections;

The FREQ Procedure

Cumulative

Cumulative

Swimmer Frequency Percent Frequency Percent
Freq 143 49.83 143 49.83
Occas 144 50.17 287 100.00
Cumulative Cumulative

Location Frequency Percent Frequency Percent
Beach 147 51.22 147 51.22
MonBeach 140 48.78 287 100.00
Cumulative Cumulative

Age Frequency Percent Frequency Percent

15 28 9.76 28 9.76

16 26 9.06 54 18.82

17 28 9.76 82 28.57

11.15

39.72
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19 26 9.06 140 48.78
20 16 5.57 156 54.36
21 15 5.23 171 50.58
22 16 5.57 187 65.16
23 16 5.57 203 70.73
24 16 5.57 219 76.31
25 12 4.18 231 80.49
26 14 4.88 245 85.37
27 14 4.88 259 a0.24
28 15 5.23 274 95.47
29 13 4.53 287 100.00
Cumulative Cumulative
Gender Frequency Percent Frequency Percent
Female a9 34.49 a9 34.48
Male 188 65.51 287 100.00
Cumulative Cumulative
Infections Freguency Percent Frequency Percent
0 151 52.61 151 52.61
1 40 13.94 191 66.55
2 39 13.59 230 80.14
3 26 9.06 256 89.20
4 13 4.53 269 93.73
5 5 1.74 274 95.47
6 4 1.39 278 96.86
9 3 1.05 281 97.91
10 3 1.05 284 98.95
" 1 0.35 285 99.30
16 1 0.35 286 99.65
17 1 0.35 287 100.00

b. Request only the BasicMeasures table and a histogram with a normal density estimate from
PROC UNIVARIATE for the Infections variable. Does this variable appear to be normally
distributed?

ods select basicmeasures histogram;
proc univariate data=spér.earinfection;
var infections;
histogram infections / normal;

run;
The UNIVARIATE Procedure
Variable: Infections
Basic Statistical Measures
Location Variability
Mean 1.386760 5td Deviation 2.33854
Median  0.000000 Variance 5.46878
Mode 0.000000 Range 17.00000
Interquartile Range 2.00000
Distribution of Infections
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Create a Poisson regression model with Infections as the dependent variable and Swimmer,
Location, Age, and Gender as the independent variables. For the variables Swimmer, Location,
and Gender use the reference categories Occas, NonBeach, and Female respectively. Be sure to
use the STORE statement to predict the number of Infections using PROC PLM. Which variables
are statistically significant?

proc genmod data=spédr.earinfection;
class swimmer (ref='Occas') location(ref='NonBeach')
gender (ref="'Female') / param=ref;
model infections = swimmer location age gender /
dist=poisson type3;
store mymod;

run;
The GENMOD Procedure
Model Information
Data Set WORK.EARINFECTION
Distributien Poisson
Link Function Log
Dependent Variable Infections
Number of Observations Read 287
Number of Observations Used 287
Class Level Information
Design
Class Value Variables
Swimmer Freq 1
Occas o
Location Beach 1
NonBeach 0
Gender Female o
Male 1
Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 282 760.0060 2.6951
Scaled Deviance 282 760.0060 2.6951
Pearson Chi-Square 282 963.5838 3.4170
Scaled Pearson X2 282 963.5838 3.4170
Log Likelihood -235.6148
Full Log Likelihood -566.2004
AIC (smaller is better) 1142.4008
AICC (smaller is better) 1142.6143
BIC (smaller is better) 1160.6982
Algorithm converged.
Analysis OT Maximum Likelihood Parameter Estimates
Standard Wald 95% ConTidence Wald
Parameter DF  Estimate Error Limits Chi-Square Pr = ChiSq
Intercept 1 1.3586 0.2736 0.8224 1.8948 24.66 <.0001
Swimmer Freq 1 -0.6086 0.1050 -0.8145 -0.4028 33.59 <.0001
Location Beach 1 -0.4896 0.1048 -0.6951 -0.2841 21.81 <.0001
Age 1 -0.0261 0.0122 -0.0500 -0.0021 4.55 0.0330
Gender Male 1 -0.0294 0.1092 -0.2433 0.1846 0.07 0.7878
Scale o 1.0000 0.0000 1.0000 1.0000
NOTE: The scale parameter was held fixed.
LR Statistics For Type 3 Analysis
Chi-
Source DF Sgquare Pr = ChiSq
Swimmer 1 35.16 <.0001
Location 1 22.35 <. 0001
Age 1 4.64 0.0312
Gender 1 0.07 0.7881
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d. Create a new data set with the following observations:

Freq NonBeach 25 Female

Occas Beach 15 Male

data spdr.newdata inf;
input Swimmer $ Location $ Age Gender $;
datalines;

Freq NonBeach 25 Female

Occas Beach 15 Male

;run;

e. Use PROC PLM to score the new data set and predict the number of Infections on the original
data scale. Finally, print the predicted values from the PROC PLM output data set.

proc plm restore=mymod;

score data=spd4r.newdata inf out=sp4r.scores / ilink;
run;

The PLM Procedure

Store Information

Item Store

Data Set Created From
Created By

Date Created

Response Variable
Link Function
Distribution

Class Variables

Model Effects

WORK.EARPRED

WORK.EARINFECTION

PROC Genmod

130CT15:09:52:16

Infections

Log

Poisson

Swimmer Location Gender

Intercept Swimmer Location Age Gender

proc print data=sp4r.scores;

runy;
0bs Swimmer Location Age Gender Predicted
1 Freq NonBeach 25 Female 1.10338
2 Occas Beach 15 Male 1.56621
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Introduction

This chapter is all about SAS Interactive Matrix Language (SAS IML). Because R is a matrix language, it is
important to know how to accomplish similar matrix-based tasks in SAS. The IML procedure enables you to
completely customize analyses and run code interactively.

We will start with the basics of working in the IML procedure, such as creating and printing matrices. Then, we
will practice using built-in SAS modules and creating our own. Next, we will explore more of the nuances of
working with SAS IML from an R user's perspective. In particular, you will learn how to read in SAS data sets to
an IML matrix to run customized analyses and how to save those results in a SAS data set. Finally, we will learn
how to run Monte Carlo simulations.

The Basics of IML

In this section, we will review the basics of working in the interactive matrix language. We want to use matrix
algebra to customize our statistical analyses, so in the equation below, for example, we have a hypothesized
model.

Y=0+BX +. . +BX, +¢
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We could pass the model to PROC REG or PROC GLM. But instead, in this chapter, we will do all the matrix
algebra to find our parameter estimates. In the equation below, the beta hat vector is x transpose x inverse, x
transpose y, where x is the design matrix and y is the vector of observed values.

B=X"X) XY

PROC IML

In this section, we will create a matrix manually. We will do some elementwise operations, matrix operations.
We will access and pull out elements of matrices, and finally, we will talk about some reduction operators, so
how to use basic functions like MAX, SUM, and COLMEANS.

Here is the general form of the PROC IML step:

PROC IML;
IML syntax
QUIT;

To save space, the examples in this chapter tend to omit the PROC IML; and QUIT; lines.

We start with the PROC IML statement, and then we have all of our IML syntax. This could be many, many,
many lines of code. Once we are done working in the interactive matrix language, we run a single QUIT
statement to get out, but everything between PROC IML and QUIT is going to be a matrix. Very different from
what we have seen in the previous chapters.

PROC IML can be used interactively or in batch mode. Using IML in batch mode entails submitting the PROC
IML call, a set of IML statements, and finally a QUIT statement. PROC IML does not require a RUN statement.
To use IML in interactive mode, submit the PROC IML call. IML statements can then be submitted one at a
time or in groups. When IML is no longer needed, submit the QUIT statement to exit IML.

Brackets, braces, and parentheses have distinct uses in SAS/IML.

® Brackets { } are used for making a matrix from literal values.
® Braces [ ] are used to pull elements out of a matrix.

® Parentheses () are used to specify the order of operations, or as part of a built-in or user-defined
function.

To create a matrix by hand, we will simply specify a matrix as shown in Program 7.1. Call it x and set it equal to
the following using the brackets. Specify the first row of the matrix (1, 2, 3), followed by a comma to go to the
second row of the matrix (4, 5, 6). Now, x is a 2-by-3 matrix.

Program 7.1: Matrix with Numerical Data

PROC IML;
x = {12 3,
4 5 6}

QUIT;

We can also enter in character data as well. In Program 7.2, we have a vector that is 3-by-1, which is all
character data: Jordan, Baker, and finally Man. The only thing to remember about character data is the size is
the number of characters for the longest word, in this case six characters.

Program 7.2: Matrix with Character Data

PROC IML;

x = {“Jordan”,
“Baker”,
“Man}

QUIT;
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SAS/IML matrices must contain either character or numeric elements. A matrix cannot contain both types of
elements. Numeric elements are stored in double-precision floating point-format using eight bytes. Elements
of character matrices can be from 1 to 32,767 bytes long. Matrices are referenced by valid SAS names. Names
can be from 1 to 32 characters long, beginning with a letter or an underscore and continuing with any
combination of letters, underscores, or digits.

If you assigned character values to a matrix, and then you assign an element, the value 2 not enclosed in
guotation marks, the element contains the character '2', not the floating point numeric representation of 2,
because matrices cannot be of mixed type.

The length of each element in a character matrix is determined dynamically to be the length of the longest
element. For example, if you assign the value dog to element 1 of a matrix and the value horse to element 2,
then the first element is five bytes long, and the last two bytes are blank characters. If you later change
element 2 to cat, the length of elements remains five unless a longer element was assigned. The LENGTH
statement can be used to determine the length of each element in a character matrix.

If you want to view a matrix, use the PRINT statement because, remember, SAS does not have a command-
line interpreter. In Program 7.3, we have the x equal to the 2-by-3 matrix from Program 7.1. If we want to
print it to the results page, we just say PRINT X. There are lots of other options that you can use in the PRINT
statement.

Program 7.3: PRINT Statement

PROC IML;
x = {12 3,

4 5 6}
print x;
QUIT;

If you don't want to use an assignment statement, meaning you don't want to set your matrix equal to a
variable (in this case, x), and you just want to print something, use parentheses in your PRINT statement as
shown in Program 7.4.

Program 7.4: Alternative PRINT Statement

print ( {1 2 3,
45 6});

Everything between the parentheses in your PRINT statement will be printed to the results page. It doesn't
have to just be a matrix. You can also do mathematical operations, for example, but again, you have to use
parentheses if you are not assigning it to a variable.

Accessing Matrix Elements

Figure 7.1 shows how to create and access matrices in R. SAS has a few similarities to R in the way it accesses
elements.

Figure 7.1: R Script

[=] [ Source on Save Q A+ il =9 2% | _Source
#Create matrices
X = matri 2,3,4) ,nrow=2,ncol=2, byrow=T)

'5,6,7,8),nrow=2,ncol=2,byrow=T)

#Matrix operations
X %%y

#accessing elements
x[1,]
yl[1,1:2]

#Reduction operators
max (x)

sum(x)
colMeans (x)
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In SAS, we also have our X matrix, which we created and is 2 by 3.

123
X =
{456}

To access matrix elements, we use the following syntax:
matrix-name[row,column;
For example, X[2,1] goes to matrix X and pulls out the second row, first column element, which is 4.

If we leave the COLUMN or ROW argument open, it simply takes out all the columns or rows, as shown in the
following syntax:

matrix[row,];
matrix[,column];

For example, X[2, ] goes into the second row and pulls out the entire row (4, 5, 6).
Finally, to find dimensions, use NROW and NCOL on the matrix, as shown in the following syntax:

nrow(matrix);
ncol(matrix);

In practice, we need to use an assignment statement such as D1=nrow(X) or D1=ncol(X). Otherwise, we would

have to use a PRINT statement followed by the parentheses.

Tip: SAS/IML does not have a dim() function.

Creating a Sequence
The index operator in SAS is identical to R, as shown in the following syntax:

value1:valuez,

X =1:5; creates a sequence from 1 to 5 using the colon, and it simply creates the row vector.
You can also use the DO function with following syntax:

vector = DO(start,stop,increment);

X =do(2, 10, 2); goes from 2 to 10, by an increment of 2 to create a row vector [2 4 6 8 10].

Basic Operators
Table 7.1 shows a comparison of basic operators that are used in both SAS and R.

Table 7.1: Basic Operators

Elementwise +, - #, 1 H#HE 500
Matrix Multiplication * %*%
Matrix Exponentiation >

Transpose t() or” t()

Horizontal Concatenation || rbind()
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Vertical Concatenation I cbind()

The first thing you should notice in Table 7.1 is the star operator in red. In R, the star does elementwise
multiplication, but SAS uses the hashtag. R uses the double hashtag to exponentiate a matrix, but SAS uses
the single star operator to do matrix multiplication. You need to be very conscious of which software language
you are working in because if you are in R and you use the star, it's elementwise operations. If you use the
star in SAS, it's matrix multiplication.

Comparison Operators

Comparison operators perform elementwise comparisons and produce a new matrix that contains only Os and
1s. If an element comparison is true, the corresponding element of the new matrix is 1. If the comparison is
not true, the corresponding element is 0. Unlike in Base SAS, in IML, you cannot use the mnemonic
equivalents (GT, LT, GE, LE, NE, EQ). Table 7.2 shows comparison operators in both SAS and R.

Table 7.2: Comparison Operators

Less than < <
Less than or equal to <= <=
Equal to = ==
Not equal to A= 1=
Greater than > >
Greater than or equal to >= >=

As you can see in Table 7.2, the comparison operators in SAS are similar to R, specifically the less than, less or
equal to, greater than, or greater than or equal to. Again, just like we saw in Chapter 2, we do not use the
double equal sign, and we do not use the exclamation point for not equal to. Here, we just have the up caret
for not equal to.

Using these comparison operators is very similar to R. See the following example:

Z=1{2 7, 3 5} > {4 6, 5 8}

2.7 4 6 0 1

> =
3 5 5 8 0 0

Here, we are specifying a matrix Z, and saying, "Is this matrix greater than the following matrix?" Each
element of the matrix is compared and returns a binary result. Because two is not greater than four, it returns
a zero. Seven is greater than six, so it returns a one, and so on.

Implicit Looping
Some matrix operations can be performed on matrices that are not conformable to the operation. We have
actually been doing matrix and scalar operations in R all along. For example, see the following operation:
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2 6 59
+3=
59 8 12

In this case, if we add a scalar to a matrix, it is simply going to add 3 to every element of the matrix.

The next two operations are new if you have never worked in SAS. The first is matrix and row vector, an
example of which is shown in the following operation:

2 6 -3 4
-[5 2]=
59 0 7
Here we have a 2 by 2 matrix and a 1 by 2 row vector. Notice that we have the same number of columns in
each. We can do a matrix in row vector operation, meaning we are going to apply the operation to each row

of the matrix. So 2 minus 5 is minus 3, 6 minus 2 is 4, and then we apply the same row vector operation to the
next row in the matrix.

If X is an m-by-n matrix, and Y is a 1-by-n row vector, then the expression X+Y evaluates to the addition of Y to
each row of X. This change was introduced to reduce the need for explicit loops and increase the efficiency of
this type of calculation.

The second type of operation is matrix and column vector. It works similarly to matrix and row vector, as you
can see in the following example:

2 6 / 2 1 3
5 9|14 1.25 2.25
Notice in this case that we have the same number of rows, so we are going to apply this operation to each

column in the matrix. 2 divided by 2 is 1, 5 divided by 4 is 1.25, and then moving on to the second column in
the matrix.

Subscript Reduction Operators

Subscript reduction operators are a good way to find some summary statistics quickly on a matrix. The
operators are listed in Table 7.3.

Table 7.3: Subscript Reduction Operators

+ Sum

# Product

<> Maximum

>< Minimum

<:> Index of maximum

>:< Index of minimum
Mean

## Sum of squares
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Let's use the following 3 by 3 matrix as an example:

I
= o =
o W N
A~ O W

To help you decide whether to specify an operator in the row or column dimension, remember that if a
dimension's subscript is missing, that dimension remains unchanged in the new matrix. In the example below,
the subscript for the column dimension is missing, so the resulting matrix has the same number of columns,
three.

You can use reduction operators to reduce either rows or columns or both. When both rows and columns are
reduced, row reduction is done first.

Let’s look at a few examples of operations on the example matrix:

® Y=X[+,] produces Y=[14 15 16]
® Y=X[,<>] produces Y=[3, 9, 8]
o Y=X[#,] produces Y=[42 80 108]
® Y=X[;,] produces Y=[14/3 5 16/3]
In the first example operation, the first argument for the rows is the plus symbol followed by a comma, which

means we are leaving the column argument open. This is saying we want to sum each row for all columns. So
1 plus 6 plus 7 is 14, 2 plus 5 plus 8 is 15, and so on.

The next example uses the maximum operator, so we want to take the maximum of the columns for each
row. The max for the first row is 3, the second row is 9, and so on.

Modules and Subroutines

In this section, we will learn how to apply a SAS module, or user-defined module, to a matrix and bring back a
result. We will also see how to simulate random numbers from probability distributions. We can create
random matrices or vectors, just like in R, as shown in Figure 7.2. Then we will use some base R functions like
SOLVE, which solves a linear system of equations, or SVD, to do the singular value decomposition. Finally, at
the end of the section, you will learn how to create a user-defined function.

Figure 7.2: R Script

Source on Save '::\ i - ~= | ‘b | = Spource
#random numbers

X matrix(rnorm(100),nrow=10,ncol=10,byrow=T
y = rnorm(1000,mean=10,sd=10)

#Base R functior
vec = solve(A,b)
svd(C

#User-defined functions
add = function(a,b){
c=a+b
returnic)

Modules

In SAS, the term module is more of an umbrella term that refers to either a function or subroutine, but they
both perform a specific task, just like a function in R. IML functions and subroutines perform common
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operations that would otherwise require many lines of IML code. There are a few differences, though,
between a function and a subroutine.

® General form of an IML function:
result = function-name(argument-1, argument-2, ...);

® General form of an IML subroutine:
CALL subroutine-name<(argument-1, argument-2, ...)>;

Function

First, notice that a function uses an assignment statement. IML functions are not valid without an assignment
statement. We need to specify a new variable name (in this case, the result), and set it equal to the function
that we are using, and then supply the arguments to actually use the function. Whereas with the subroutine,
we do not use the assignment statement. We just run it with a CALL statement.

More importantly, there is a subtle distinction. Functions return matrices. Subroutines create matrices. We
will see the difference going forward.

Again, function modules return only a single matrix. They must have at least one argument and require an
assignment statement. Here is an example of a function module:

X = {3 4 5/
2 4 9};
numberRows = nrow (X) ;

numberCols = ncols (X);

We have the X matrix, which is 2 by 3, and we are using the NROW and NCOLS functions. In order for this to
be valid, to actually use the built-in function, we are setting it equal to new matrices that we are calling
numberRows and numberCols.

Subroutine

Subroutine modules, on the other hand, do not return a matrix. They create or alter a matrix. They can have
no arguments, and they cannot be called in an assighment statement, so you cannot set it equal to a new
variable. In the example below, we use the SORT subroutine and call it with the CALL statement.

call sort(X);

Here we supply the single argument X. It's going to re-sort the matrix X, so the new matrix willbe 234,45 9.

Some subroutines create matrices without an assignment statement. Let’s look at an example of using the
EIGEN subroutine to create a matrix with the following syntax:

CALL EIGEN (eigenvalues, eigenvectors, matrix);

Notice that the syntax has three arguments: the eigenvalues, eigenvectors, and matrix. In Program 7.5, we
have a 2-by-2 matrix x, and we will run the Eigen subroutine with the CALL statement. Notice that we are only
passing it one argument x. The other two arguments, evals and evecs, are the matrices being created.

Program 7.5: EIGEN Subroutine

x = {1 2,3 4};
call eigen(evals,evecs,x);
print evals evecs;

Output 7.5: Results of Program 7.5

evals evecs

5.3722813 0 -0.415974 -0.824565
-0.372281 0 -0.909377 0.5657675
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When we do the eigenvalue decomposition, it creates the evals matrix and evecs matrix, which are the
eigenvalues and eigenvectors. Then when we run that subroutine, we have access to use them in SAS. Output
7.5 shows the results of printing those new matrices, evals and evecs.

Random Number Generation Functions

In Chapter 4, we talked about simulating random numbers in a DATA step. Notice in Table 7.4 that the PDF,
CDF, and QUANTILE functions are exactly the same. (This table is the same as Table 4.2 in Chapter 4.)

Table 7.4: PDF, CDF, and QUANTILE Functions with R Counterparts

dnorm(g,mean, sd) PDF('Normal',q,mean,sd)
pnorm(g,mean,sd) CDF('Normal',g,mean,sd)
gnorm(p,mean,sd) QUANTILE('Normal',p,mean,sd)

We specify a distribution, either the quantile or the cumulative density, followed by the parameters. The
point here is that some of the functions we have already used in DATA steps, you can use directly in IML as
well, but be sure to check the documentation.

J Function

Let’s take a closer look at a function. The J function creates a matrix with n rows and p columns, and it fills
every element of the new matrix with the same value using the following syntax:

J(nrows,ncols,<value>)

In Program 7.6, we are creating matrix X with the J function. Of course, it's not case sensitive, so we could use
a little j. In parentheses, specify the number of rows 2, the number of columns 3, and fill every element with
the value 0. If we leave off the optional value, it will simply fill the matrix with a default value of 1.

Program 7.6: J Function
X =J(2,3,0)

On the surface, the J function might not seem like it is extremely helpful, but in combination with the
RANDGEN subroutine, it is very useful.

RANDGEN Subroutine
The RANDGEN subroutine can be used to fill a matrix with random numbers using the following syntax:

CALL RANDGEN(result, dist-name<,parm1><,parm2><,parm3>);

The result matrix must be created by the user before calling RANDGEN. RANDGEN produces the number of
samples required to fill each cell in the matrix. The result matrix must be numeric and should have a number
of cells equal to the desired number of samples. The number of parameters that are specified is dependent on
the distribution. For example, specifying the Cauchy distribution does not require any parameters whereas
specifying a normal mixture distribution requires three parameters.

To create a matrix with simulated random values, first initialize a matrix with the J function as shown in
Program 7.7.

Program 7.7: RANDGEN Subroutine

X = J(2,3,0);
call randgen (X, "Normal",10,2);
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You can see that Program 7.7 creates a new matrix X, which is 2 by 3, using the J function. We then pass that
matrix to the RANDGEN subroutine as its first argument and fill every element of that matrix with simulated
values by specifying the distribution name, Normal, and its parameters, 10 and 2. This has a very similar
syntax to the RAND function that we learned about in Chapter 4.

There are lots of different distributions that you can use with the RANDGEN subroutine. Table 7.5 lists the
univariate probability distributions, and of course, you want to check the online documentation to make sure
you know how to use the parameters, what order they should be in, and to see the multivariate distributions
as well.

Table 7.5: Univariate Distributions

Bernoulli Beta Binomial

Cauchy Chi-Square Erlang
Exponential | F Gamma
Geometric Hypergeometric | Laplace

Logistic Lognormal Negative Binomial
Normal Normal Mixture | Pareto

Poisson T Table

Triangle Tweedie Uniform

Wald Weibull

RANDFUN Function

If you want to vectorize your code, just like you would in R, for example, using RNORM, you can use the
RANDFUN function to simulate random vectors using the following syntax:

result = RANDFUN(n, dist-name<,parm1><,parm2><,parm3>);

In Program 7.8, we want a vector that is 10 by 1, so we pass it the argument 10, and the same arguments as
before on the RANDGEN subroutine (the distribution name and its parameters).

Program 7.8: RANDFUN function
X = randfun (10, "Normal",10,2);

Notice that because this is a function, we have to use an assignment statement with the RANDFUN function,
unlike the RANDGEN module, which is a subroutine.

Tip: Inside loops, it is more efficient to use the RANDGEN subroutine.

Common IML Modules

In this section, we will discuss some other useful modules that you might want to be aware of. Most modules

are intuitive and identical to R. For example, the ABS() function returns the absolute value for each element in
a matrix and is identical to R syntax. EXPonentiate, LOG, SQuare RooT, MAX, MIN, PROD, and SUM all operate
the exact same way as R. Table 7.6 lists some useful modules to know.

Table 7.6: IML Modules

Mathematical ABS, EXP, LOG, SQRT

Reduction MAX, MIN, PROD, SUM

Matrix Inquiry ALL, ANY, LOC, COUNTN

Matrix Reshaping VECDIAG, REPEAT, SHAPE
Random Number Generation | CALL RANDGEN, CALL RANDSEED
Statistical CORR, COV, MEAN, CALL QNTL
Numerical Analysis CALL SPLINE, BSPLINE

Linear Algebra DET, TRACE, INV, CALL EIGEN,

SOLVE, CALL SVD, CALL QR, ROOT
Optimization CALL NLPNRA
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You should see some familiar modules in Table 7.6. We have already talked about random number
generation, some statistical functions, and how find the correlation and covariance. You can use the MEAN
function (the same as colMeans in R), which takes the mean of each column of your matrix. You can find any
quantile that you want using the QNTL subroutine.

You can do some numerical analysis with splines, lots of modules for linear algebra like the DETerminant,
TRACE, INVerse, the Eigen subroutine, and solve a linear system of equations. You can do QR decomposition
or the Cholesky root. And there are lots and lots of optimization subroutines as well, with many more listed in
the documentation.

Matrix Reshaping

REPEAT Function

This section covers some very simple but useful modules. The REPEAT function is similar to RET function in R,
and uses the following syntax:

result = REPEAT (matrix, nrow, ncol);
or

result = REPEAT (matrix, freq);

In the following code, we have a matrix X, which is 2 by 2. We create a new matrix Y using the first form of the
REPEAT function, and are repeating X as if it were a 2-by-2 matrix.

Y = repeat (X,2,2);

1 2
3 4

£ - NI S\

1
3
1
3

|

|
W = W =
EENE S N\

The first form of the REPEAT function creates a new matrix by repeating the values of matrix nrow times
across the rows and ncol times across the columns. Repeating that matrix gives us the 4-by-4 matrix. Notice
each 2-by-2 cell is the same X matrix.

Likewise, we can repeat each element of the matrix using the alternative syntax. The second form of the
REPEAT function returns a row vector with each value in matrix repeated the number of times specified in
freq.

Y = repeat (X, {2 2 3 3});
I 2

X = Y=[1 1 2 23 3 3 4 4 4]
3 4

Here we are repeating the first element two times, the second element two times, the third and fourth
element three times each, and that simply returns a row vector.
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CONCAT Function

If you are working with character data in IML and you need to concatenate vectors, you are going to use the
CONCAT function using the following syntax:

result = CONCAT(matrix1, matrix2,...);

This function is helpful when you are creating column or row headers. Program 7.9 shows an example of using
the CONCAT function.

Program 7.9: CONCAT Function

pre = j(1,3,"data");
post = char(1:3);
result = concat (pre,post);

In the first line of Program 7.9, we create a vector, pre, which is a 1-by-3 vector where every element is the
word, data. Then we use the sequence 1 to 3, using the CHAR function to say it is character data. Finally, we
concatenate these two character vectors, pre and post. The result is the following vector, which can be used a
column or row header:

result = [data 1 data2 data 3]

Matrix Inquiry

Matrix inquiry functions are extremely useful when you are doing conditional processing. We will look at five
matrix inquiry functions: ANY(), ALL(), ISEMPTY(), SAMPLE(), and UNIQUE(). Let’s look at how the first three
functions work using the 2 by 2 matrix X.

3 4

ANY Function
The ANY function says, "Is any element in X greater than 3?" using the following syntax:

A = any(X>3); — A=1

Because it’s true that there is an element in matrix X that is greater than 3, it returns the binary result 1.

ALL Function
Are all elements of the matrix X greater than 3?

B = all(x>3); — B=0
No, all elements of matrix X are not greater than 3, so it returns the element 0.

ISEMPTY Function
The ISEMPTY function checks to see whether a matrix is empty, that is, if it has no rows or columns.

c = isempty(X); — C=0

Of course, we have already made X, so it's not empty. Therefore, it returns a value of 0.
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SAMPLE and UNIQUE Functions
The SAMPLE and UNIQUE functions are identical to R. They use the following syntax:

result= SAMPLE(matrix, n, <method>,<prob>);
result= UNIQUE(matrix);

The SAMPLE function generates a random sample of the elements of the matrix. The SAMPLE function
method can be “REPLACE”, “NOREPLACE”, or “WOR”. The method of “WOR” specifies a simple random
sampling without replacement. After the elements are randomly selected, their order is randomly permuted.
The prob argument is a vector with the same number of elements as the matrix. The vector specifies the
sampling probability for the elements of the matrix. The SAMPLE function scales the elements of prob so that
they do not need to sum to 1.

The UNIQUE function returns a row vector with the sorted set of all elements in the matrix without duplicates.
The matrix can be either numeric or character.

The COUNTUNIQUE function returns the number of unique values in a matrix, or the length of the returned
matrix from the UNIQUE function.

Linear Algebra Modules

Table 7.7 shows the general form of some useful linear algebra modules in SAS. There are many more
modules available on the documentation page.

Table 7.7: Linear Algebra Modules

INV(X) Computes the inverse of a square nonsingular matrix.

SOLVE(A,B) | Solves a system of linear equations.

ROOT(X) Performs the Cholesky decomposition of a symmetric positive definite
matrix.
GINV(X) Computes the Moore-Penrose generalized inverse of a matrix.
SVD(X) Computes the singular value decomposition
of a matrix.

You can use the INV for inverse and SOLVE to solve a linear system of equations the same way as in R. For
example, you can just replace the inverse of x transpose x with the INV function, as opposed to doing the
singular value decomposition if you wanted.

The SAS documentation lists all the IML functions and subroutines. Another great resource is the SAS/IML blog
at blogs.sas.com/content/iml. Finally, if you are not too comfortable with IML or simply matrix language
operations in general, another helpful resource is the book Statistical Programming with SAS/IML® Software
by Rick Wicklin.

Create a Module

SAS is not going to have all the built-in modules that you're going to want to use, so now you'll learn how to
create your own modules to implement analyses from a journal article or implement a proprietary algorithm
developed at your company. Creating a module can assist in creating any type of IML script.
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A module always begins with the START statement and ends with the FINISH statement. The START statement
instructs IML to enter a module-collect mode. In this mode, IML gathers the statements of a module rather
than executing them immediately. The FINISH statement signals the end of a module, as shown in the
following syntax:

START name <(argument1, argument2,...)>
<GLOBAL(argument1, argument2,...)>;
statements;
<RETURN(matrix);>

FINISH;

Name is the user-defined module name. Arguments are input or output matrices (or both) that are used or
created by the module.

Create a Function Module

Let's first create a SAS function module. Remember, function modules return only a single matrix. They
require the RETURN statement and are executed using an ASSIGNMENT statement. Program 7.10 is an
example of a function module.

Program 7.10: Function Module

start add(a,b):;
c =a + b;
return(c);
finish;

x = {12, 3 4};
y = {56, 7 8};
z add (x,vy) s

In Program 7.10, we start with the START statement and create a new function called ADD. We have two
arguments, a and b. Inside the module creation, we create a new variable, c, which is equal to a plus b, and
because this is a function, we have to use the RETURN statement, so we are returning c, and then finishing
with the FINISH statement.

Recall that in R, all matrices outside of the function are global but are also pulled into the local symbol table.
For example, in R as shown in Figure 7.3, we have a function called ADD with one argument, a, and you will
notice we are adding a to the variable y. This was created outside the function, but R automatically pulls it
into the function and uses it.

Figure 7.3: R Script

b Source on Save 4 S v L Source
x matrix(c(l,2,3,4),nrow=2,ncol=2,byrow=1
y = matrix(c(5,6,7,8),nrow=2,ncol=2, byrow=T

add funcrion{a
C=a+y
returnic

To do the same thing in SAS, we just have to use the GLOBAL option in the START statement. The GLOBAL
clause is used to specify variables that are used in the module but not specified as inputs. In Program 7.11, we
have two matrices in IML, x and y, which are both 2 by 2. We create a new matrix z, set that equal to the new
ADD function, and specify the arguments x and y. Then we have access to use the z matrix.

Program 7.11: GLOBAL Option

x = {1 2, 3 4};
y = {56, 7 8};
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start add(a) global (y);
c=a+y;
return(c);

finish;

z = add(x) ;

In Program 7.10, we are creating the ADD function, but only one argument, a. We are pulling y into the local
symbol table, and have c equal to a plus y, returning that new variable c.

Create a Subroutine Module

Subroutine modules are used to output multiple matrices. This is similar to returning a list in R. The symbols X,
Y, A, and B are local symbols, meaning that they are not recognized outside of the user-defined module. As a
result, you can specify any symbol as the output matrices in the CALL statement.

If you create a module without any arguments, all the matrices defined outside the creation of the module are
pulled into the local symbol table. In Program 7.12, we create x and y. We have module ADD with no
arguments, and are adding x plus y, which was defined outside the module c. Notice that this is the first
instance of a subroutine, so we are executing it with a CALL statement, and don't have the RETURN
statement.

Program 7.12: Subroutine Module

x = {1 2, 3 4};
y = {56, 7 8};

start add;
c =X+ vy;
finish;

call add;

Recall that subroutine modules do not return a matrix. They create matrices—a very subtle distinction, but
important for the programming. When you are creating a subroutine, you do not use the RETURN statement,
nor do you use an ASSIGNMENT statement to call it. You use the CALL or the RUN statement.

Program 7.13 shows an earlier subroutine that we covered, the EIGEN subroutine. We have a 2-by-2 matrix
and are using the EIGEN subroutine in the CALL statement. We are passing it one argument, x, and creating
two matrices, evals and evecs, which represent the eigenvalue decomposition. Then we will have access to
actually use them.

Program 7.13: Eigen Subroutine

x = {1 2,3 4};
call eigen(evals,evecs, x);
print evals evecs;

Remember that if you want more than one matrix, you can return only one in a function, but you can create
several in a subroutine. In Program 7.14, we will create the subroutine called ADDSUB. The output matrices
are on the left of the arguments, x and y, and then the input matrices are on the right, a and b. It's completely
fine to mismatch these, but it is the syntax used on the online doc page, so you might want to use the same
syntax to avoid any confusion.

Program 7.14: ADDSUB Subroutine

start addsub(x,y,a,b);
x = a + b;
y = a - b;

finish;
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matOne = {1 2, 3 4};
matTwo 7 8%};

I
—~
o
&)
~

call addsub (add, sub,matOne, matTwo) ;

Notice that the output matrices have to be the same exact name as the matrices inside the module, so x
corresponds to x and y corresponds to y. After you call the subroutine, then you can change the created
matrices' names. We are creating ADD and SUB and passing in the arguments matOne and matTwo, which are
both 2-by-2 matrices.

Storage Techniques

Just like we save SAS data sets on disk, we can also save modules and matrices on disk for later retrieval. We
can store and reload IML modules and matrices, save work for a later session, and conserve memory by saving
large intermediate results for later use.

SAS/IML storage catalogs are specially structured SAS files that are located in a SAS library. A SAS/IML catalog
contains entries that are either matrices or modules. Like other SAS files, SAS/IML catalogs have two-level
names in the form libref.catalog. The first-level name, libref, is a name assigned to the SAS library to which the
catalog belongs. The second-level name, catalog, is the name of the catalog file.

When you store a matrix, IML automatically stores the matrix name, its type, its dimension, and its current
values. Modules are stored in the form of their compiled code. After modules are loaded, they do not need to
be parsed again, making their use very efficient.

The default libref is initially work, and the default catalog is imlstor. Thus, the default storage catalog is called
work.imlstor. You can change the storage catalog (or both the library reference and catalog) with the RESET
STORAGE command. You can list all modules and matrices in the current storage catalog using the SHOW
STORAGE command.

To create a new catalog to save modules or matrices, use the RESET STORAGE statement. Set that statement
equal to a library (work or another library), followed by a period and then the catalog name using the
following syntax:

RESET STORAGE = <libref.>catalog;
This statement saves everything in a catalog as specially structured SAS files, located in your SAS library.

You can also use the RESET STORAGE statement to tell SAS what existing catalog you are pointing to. After you
create a catalog and you want to load a matrix back into IML, run the same RESET STORAGE statement. The
name RESET is a bit unfortunate in that regard because it’s not actually resetting anything in that instance.

If you want to see everything in your catalog, you can just run the SHOW STORAGE statement on its own line
as follows:

SHOW STORAGE;

Catalog Management Statements

In addition to the RESET STORAGE and SHOW STORAGE catalog managements, Table 7.8 shows three
additional keywords that you should know—LOAD, REMOVE, and STORE.

Table 7.8: Catalog Management Keywords

LOAD recalls entries back into the IML workspace.
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Keyword Description

REMOVE deletes entries from the catalog.

places IML modules, matrices, or both into catalog
STORE storage

For example, if you are working with the STORE keyword, you can say STORE and then list your matrices. You
can also say STORE, specify the keyword MODULE, set that equal to in parentheses a list of modules, or you
can do both. You can say STORE MODULE equal to, list the modules, and then after, specify the matrices.

Notice the following:

® A statement with no operands acts on all modules and matrices.

® The special operand _ALL_ can be used to specify all modules, all matrices, or all modules and
matrices.

® [f only one module is specified, then the parentheses around the module name are not required.
Table 7.9 shows a few more specific examples of how to use statements.

Table 7.9: STORE Statement Examples

Statement Description

=spdr. 1; o .. .
reset storage=sper.cat Specifies the storage catalog to be in libref sp4r with the

catalog name catl

store expense;

Saves the matrix EXPENSE onto disk, in sp4r.catl

store module=impute;

Saves the user-defined module IMPUTE in sp4r.catl

store module= all ; . . .
- = Saves all modules in the current IML session in sp4r.catl

store module=(impute) x y; Saves the module IMPUTE and the matrices x and y in

spdr.catl

store; . . .
Saves all matrices and modules in the current IML session

in spdr.catl. This can help you save your complete IML
environment before exiting an IML session. Then you can
use the LOAD statement in a subsequent session to
restore the environment and resume your work.

load; .
Can be used to restore matrices and modules from

storage back into the IML active workspace

remove; .
Can be used to remove modules or matrices that are no

longer needed from the catalog. The REMOVE command
has the same form as the STORE command and the LOAD
command.
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Tip: The keyword STORE can be replaced with either LOAD or REMOVE, and the syntax still holds.

Remember that IML is in RAM. SAS data sets are on disk. You need to be a little bit more conscious of how
much memory you are using in IML. Here are a few tips to reduce memory use for computers that have less
than 8GB of RAM:

® Use the FREE statement to free matrices that are no longer needed.

® Use the STORE statement to store matrices on disk and then use the FREE statement to free their
values. Restore the matrices later using the LOAD statement.

® Reformulate your approach to use smaller matrices (for example, by using VAR and WHERE clauses
where applicable).

The FREE statement frees matrix storage spaces to make room for more data (matrices) in the workspace. The
FREE statement is used mostly in large applications or under tight memory constraints using the following
syntax:

FREE matrices;
FREE / <matrices>;

The FREE statements are very easy to use. If you wanted to get rid of the matrices x and y, you would say the
following:

FREE X Y;

If you wanted to free all the matrices in your IML workspace, use the forward slash:

Free /;

If you want to free everything except matrix a and b, just list those matrices after the forward slash like so:

FREE / A B;

Notice that the STORE statement stores only matrices and modules. It does not free them from memory, so
you can still reference them later in the same IML session. If you also issued the FREE statement afterward,
the matrices are no longer in the memory, and you must use the LOAD statement to restore them.

Call SAS Data Sets and Procedures

In this section, you will learn how to create a matrix using a SAS data set, export a matrix to a SAS data set, or
add data to an existing SAS data set by stacking it underneath. First, we have to talk about Open data sets. An
Open data set is one that is ready for Read or Write access or both. You can use one of the following three
statements to open a data set:

® USE enables Read access. That lets us open our SAS data set and read values into an IML matrix.
® EDIT enables Read and Write access to an existing data set.

® CREATE gives both Read and Write access. It simply creates a new data set.

Regardless of which of these three statements you use, you want to use the CLOSE statement immediately
following it. That will simply close the Open data set. If you do not close, you might not have access to either
use it or open it with your mouse. If you forget to use the CLOSE statement, SAS closes the open data set
when you exit SAS/IML with the QUIT statement.
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If you open a data set with the USE statement, you can still open the data set manually to view the table.
However, opening a data set with the EDIT statement does not permit you to open and view the data table
manually.

Create a Matrix Using a SAS Data Set

To create a matrix using a SAS data set, we will use the USE, READ, and CLOSE statements. Program 7.15 uses
a data set called CLASS. We read in the data with the READ statement and close the Open data set with the
CLOSE statement.

Program 7.15: Create a Matrix using Class Data Set

use class;
read all var {height weight}

where (sex='M') into imlClass;
close class;

Let’s talk more about the READ statement. This is where all the action happens. There are lots of different
options, as you can see in the following syntax:

READ <range> <VAR operand> <WHERE(expression)>
<INTO name <[ROWNAME=row-name COLNAME=col-name]>>;

In Program 7.15, we want to read in a specified range, read in all observations, and only read in the variables
with the VAR option. We give it a character vector and read in only the variables height and weight from that
CLASS data set. Then we use a WHERE option to read in observations conditionally where sex is equal to M.
Finally, we use the keyword INTO to throw all of that data into a new matrix called IMLClass. You can also use
ROWNAME and COLNAME options to create new ROWNAME and COLNAMES to be printed using the PRINT
statement in IML.

Save a Matrix as a SAS Data Set

If you have a matrix that you want to save as a SAS data set, we will use the CREATE statement to do that. If
you want to add data to an existing SAS data set, we will use the EDIT statement.

CREATE Statement

There are two forms of the CREATE statement, depending on the data you are writing to a SAS data set. The
first form uses the following syntax:

CREATE SAS-data-set <VAR {operand}>;

We run the CREATE statement and specify the new SAS data set we are creating. And if we are writing vectors
to the new SAS data set, use the VAR option and specify the names of the vectors as a row vector. The good
thing about this option is that the names of the vectors will be used as the SAS data set variable names. If the
VAR option is not used, a variable is created for every SAS/IML matrix that is in scope,and the matrix names
are used as variable names in the new data set.

Each matrix used to create the data set corresponds to a single variable in the data set. If a matrix with
multiple rows and multiple columns is used as a data set variable, its contents are written to the data set in
row-major order.

The second form of the CREATE statement appends a matrix to a SAS data set, using the following syntax:

CREATE SAS-data-set FROM matrix-name
<[ROWNAME=row-name
COLNAME=column-name]>;

When the FROM keyword is used in the CREATE statement, each column in the source matrix is treated as a
distinct variable in the newly created data set. As a best practice, you should use the COLNAME option. That
will let you set the SAS data set variable names directly in the CREATE statement. This way, you don't have to
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use a DATA step to change the names. Why? Because if you append a matrix to a data set, the default names
will be coll, col2, col3, and so on.

APPEND Statement

The CREATE statement opens a data set only for input or output. You need to use the APPEND statement to
write to the data set.

There are three different forms of the APPEND statement, but they depend on the CREATE statement that
you are using. Let's look at the syntax of the three different forms below:

APPEND;
APPEND VAR matrix-list;
APPEND FROM append_matrix <ROWNAME=row-name]>;

To create a SAS data set using an IML matrix, use the statements CREATE, APPEND, and CLOSE. Here is an
example of creating a SAS data set using the first form of the APPEND Statement:

create datal var{name age};
append;
close datal;

In the example above, we are creating a new data set called datal, and writing two vectors to that data set
with a VAR option, name and age. Then we have to explicitly tell SAS to append that data with the APPEND
statement, and finally, close the open data set.

The VAR option can be used in either the CREATE statement or the APPEND statement but not both. The VAR
option specifies which vectors to pass to a SAS data set. The VAR option is not used to pass a matrix to a SAS
data set. Here is an example of the APPEND statement using the VAR option:

create data?;
append var{name age};
close data2;

The only difference from the previous example is that we have brought the VAR option down into the APPEND
statement.

In the third example, we are creating a new data set called data3 from a matrix called matrix3. To change the
SAS data set variable names right in the CREATE statement, use the COLNAME option as shown below:

create data3 from matrix3[colname={weekl, week2, week3, weekd}];
append from matrix3;
close data3;

Set the COLNAME option equal to a vector of the variable names week1 through week4. Use the APPEND
FROM statement to append a matrix and list the same matrix from the CREATE statement. Again, close the
open data set.

EDIT Statement

If a data set already exists, you can open the data set with the EDIT statement, add data, and then close the
data set as shown in the following example:

edit data2;
append from matrix4;
close data2;

In the example, we are editing the SAS data set, data2, and using the APPEND FROM statement to stack the
matrix4 matrix underneath the existing SAS data set. The important thing to remember is that the matrix has
to have the same number of columns as the existing SAS data set.
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Call SAS Procedures

Now that we know how to put matrices into a SAS data set, how do we run procedures on those SAS data sets
without exiting IML? Remember, once we exit IML, everything in that workspace that is not saved is deleted.

Here are a few benefits of calling SAS procedures directly from IML:

®  You can call SAS procedures without exiting IML.
® SAS procedures can be used within IML modules.
®  Matrix values can be used as parameters for SAS procedures.
®  You can execute SAS procedures conditionally or within loops.
To call SAS procedures from IML, we will use the SUBMIT and ENDSUBMIT statements. In the SUBMIT

statement, we can pass it parameters, specifically, matrices that are in IML. And then we can refer to those
matrices as arguments with the following syntax:

SUBMIT <parameters> | <options>;
statements;
ENDSUBMIT;

The statements between the SUBMIT and ENDSUBMIT statements are referred to as a SUBMIT block. The
parameters value specifies one or more option matrices whose values are substituted into language
statements in the SUBMIT block. SUBMIT blocks can contain the following:

®  SAS procedures
® DATA steps
® ODS commands

® Other SAS statements

A SUBMIT block executes only after the ENDSUBMIT; line is run.

Statistical Graphics in SAS/IML

In R, when we generate data, we can plot it with a PLOT function. In SAS/IML, we cannot directly plot data.
We have to export that matrix to a SAS data set and then run the SGPLOT procedure to create a graphic.

SAS/IML provides subroutines that enable you to create statistical graphics. The following subroutines use the
SUBMIT and ENDBUSMIT statements to call PROC SGPLOT:

® BARcall

® BOXcall

® HISTOGRAM call

®  SERIES call

® HEATMAPCONT call

® HEATMAPDISC call
This is going to create a new SAS data set, and then pass that data set to the SGPLOT procedure. All you have
to do is use the single subroutine. Go to the following web page to see an overview of statistical graphics in
SAS/IML:

http://support.sas.com/documentation/cdl/en/imlug/68150/HTML/default/viewer.htm#imlug graphics sect
001.htm.

Let’s look at an example using the SCATTER subroutine. Imagine we have read the Cars data set into IML and
we want to quickly create a scatter plot directly in IML. We will use the SCATTER subroutine s shown in
Program 7.16.
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Program 7.16: SCATTER Subroutine

title "Scatter Plot with Default Properties";
call Scatter (MPG City, MPG Highway)
label={"MPG City" "MPG Highway"};

Output 7.16: Results of Program 7.16

Seatter Plot with Dedault Propsries

WFG_ Ty

In Program 7.16, we assign MPG_City as the x-axis variable and MPG_Highway as the y-axis variable. Notice
that we are also passing the subroutine the label and title option. You can pass the subroutine whatever
options that you would use in the SGPLOT procedure. It creates a SAS data set behind the scenes and then
uses SGPLOT to create the graphic shown in Output 7.16. You can use whatever SGPLOT options you want
directly in the IML subroutine, all of which can be found in the documentation.

Simulations

In this section, we want to use Monte Carlo Simulation and SAS/IML to do the following—obtain an
approximate solution to a problem or evaluate statistic methods. By the end of this section, you should be
able to create your own function or subroutine and then use it inside a simulation in some type of loop and
save the data for each iteration then analyze all the data you have saved.

Conditional Processing Syntax

IF, ELSE IF, and ELSE Statements

The good thing about the IML simulations is that we already have all the syntax requirements. Recall that we
can use IF, ELSE IF, and ELSE statements directly in IML using the following syntax:

IF expression THEN statement;
<ELSE IF expression THEN statement;>
<ELSE statement;>

In Program 7.16, we use conditional processing statements in IML that are identical to the statements used in
a DATA step. As in a DATA step, the ELSE IF and ELSE statements are completely optional for conditional
processing. In addition, the user can specify multiple ELSE IF statements.

Program 7.17: Conditional Processing
X = {12, 3 4};

miss = loc(x=.);

flag = isempty (miss);

if flag=0 then print x;
else print "empty matrix!";
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In Program 7.17, we are saying that if the matrix flag is equal to zero, then print x. Otherwise, the catchall
ELSE statement prints the empty matrix.

DO Loops

The DO loop will be our main tool for doing simulation. To execute multiple statements conditionally, use a
DO statement with the following syntax:

DO;
statements;
END;

The DO statement specifies that the statements following the DO statement are executed as a group until a
matching END statement appears. DO statements often appear with clauses invoking iterative execution or in
IF-THEN/ELSE statements so that the group of statements is executed only when the IF condition is satisfied.

The DO loop in IML is identical to the FOR loop in R. In Program 7.18, DO i equals 1 to 10 with the specified
increment of 1. Then we print i every iteration, and use the END statement to end the DO group.

Program 7.18: DO Loop

do i=1 to 10 by 1;
print i;
end;

Remember when we talked about the DO loop in Chapter 4, we said use an OUTPUT statement to write all the
data from those iterations to a data set? In IML and in a simulation, we are not going to use the OUTPUT
statement. You will have to tell SAS explicitly what data from the iteration you want to save, just like in R.

SUBMIT Blocks with Loops and Conditions

SUBMIT blocks can be combined with IF statements to execute SAS procedures and DATA steps conditionally.
SUBMIT blocks can be combined with loops to execute SAS procedures and DATA steps repeatedly.

Let’s look at an example in Program 7.19.

Program 7.19: SUBMIT Block
proc iml;
do i =1 to 1000;
if i <= 500 then do;
submit block;
end;
else do;
submit block;
end;
end;
quit;

In Program 7.19, do i equals 1 to 1,000. If i is less than or equal to 500, then do the following— execute
multiple statements. Otherwise, when the iteration value is 501 or greater, do something else. So we simply
combine all these ideas for a simulation.

DO WHILE Loops
A DO WHILE statement duplicates the while() function in R using the following syntax:
DO WHILE(expression);

statements;
END;
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In Program 7.20, we pass the DO WHILE statement an expression. While x is less than 5, we want to print x.
Don't forget to increment your expression-- x is equal to x plus 1. This way, it actually turns off eventually.
Don't forget your END statement.

Program 7.20: DO WHILE Loop
x=1;
do while (x<5);
print x;
x = x+1;
end;

Example: Monty Hall Problem

Let's do a fun simulation with an example that you are probably familiar with: the Monty Hall problem. You
are a guest on a game show, and the host presents you with three doors. One door hides a car; the other two
doors hide goats.

The host asks you to pick a door. You pick door number 1. The host, who knows what is behind each door,
opens one of the two doors that you did not pick and always reveals a goat. The host will never show you the
car. Then, the host gives you the option of staying with your initial choice or switching to the remaining closed
door. What should you do, stay or switch?

If we were to solve this problem analytically, we would find that switching yields a 2/3 chance of winning the
car and staying with the initial choice yields a 1/3 chance of winning a car. But maybe we don't want to solve
the analytical method, or maybe we are working on a much harder problem, so let's do a simulation to find an
empirical result for this problem.

Tip: Make your simulations more efficient by removing DO loops when possible.

1. Let the number of simulations be 10,000 and set the random number seed to 802.

proc iml;
numberIterations=10000;
call randseed(802);

2. Start the simulation loop, which runs the number of times equal to numberlterations. The first
step in simulating the Monty Hall problem is to choose which of the three doors hides the car.
Use the SAMPLE function to draw a random door, {1 2 3}.

*Begin simulation;

do iteration=1 to numberIterations;
doors = {1 2 3};
carDoor=sample (doors, 1) ;

3. For the sake of simplicity, always choose door 1. Monty Hall never opens the chosen door and
never opens the door hiding the car. If the chosen door (door 1) hides the car, Monty randomly
chooses between doors 2 and 3 (represented by a draw from a Bernoulli distribution with
probability .5). If the car is hidden behind door 2, Monty Hall must open door 3. (He cannot open
the door hiding the car or the door that you chose). If the car is hidden behind door 3, Monty
Hall must open door 2.

*Pick door for Monty Hall to open;
if carDoor=1 then openDoor=randfun(l,"Bernoulli",.5) + 2;
else if carDoor=2 then openDoor=3;
else if carDoor=3 then openDoor=2;




Chapter 7: Interactive Matrix Language (IML) 219

Using a switching strategy requires switching to the unopened door that was not previously
chosen. If Monty Hall opened door 2, switch to door 3. If Monty Hall opened door 3, switch to
door 2.

*Determine door for switching strategy;
if openDoor=2 then switchDoor=3;
else if openDoor=3 then switchDoor=2;

If the car is behind door number 1, then the staying strategy wins because door number 1 was
initially chosen. If the car is behind the door that would be chosen based on the switching
strategy, then the switching strategy wins.

*Determine which strategy wins;

if carDoor=1 then stayWin=1;

else stayWin=0;

if carDoor=switchDoor then switchWin=1;
else switchWin=0;
/*switchWin=carDoor=switchDoor;*/

Append the results for the current iteration to a matrix called results and end the simulation
loop.

*Collect results to a single matrix;

results=results // (iteration || carDoor || openDoor || stayWin
|| switchWin) ;

end;

Print the first 10 rows of the results matrix to show the outcome for every iteration. Calculate
and print the percentage of iterations for which each strategy won.

reset noname;

resultsSubset = results[1:10,];

print resultsSubset [colname={iteration carDoor openDoor
stayWin switchWin}];

percentageWins=results[:,{4 5}];

print percentageWins [colname={stay switch}

ITERATION  CARDOOR OPENDOOR  STAYWIN SWITCHWIN
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STAY SWITCH

0.3297 0.6703
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IML Simulations

There are three simulation methods in IML.

1. The first method is to simulate entirely in IML and ignore SAS procedures. Just code everything
yourself.

2. The second method is to iteratively call SAS procedures. This is most similar to using R functions in
your simulation, but it is the most inefficient method in SAS.

3. Finally, you can use a SAS procedure and a BY statement to avoid any type of looping. That tells SAS
to analyze each data set independently. First output all simulated data to a single SAS data set with a
variable indicating the iteration number. Analyze the data using a SAS procedure (for example, PROC
GLM) with a BY statement, and output the results to a SAS data set. Separate results are output for
each iteration.

Analyzing each simulated data set one at a time is very inefficient. If you have to use a SAS procedure, the
third method is the most efficient method.

For example, if each SAS data set is 20 observations, and you are doing 1,000 simulations, you want to output
all 20,000 observations, and an index variable specifying which observation comes from which data set. The
first 20 observations should have a variable indicating the number one. The second 20 should have a variable
indicating the number two, and so on. Then, you pass all this data to a single procedure like PROC GLM and
pass to the BY statement the index variable iteration number. When you do that, SAS is going to analyze each
one of those data sets independently. And SAS will output the results for each data set to a single SAS data
set. So separate results are output for each iteration.
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Exercises

Multiple Choice

1. Suppose you want to print your salary for the week. Assume that you worked 40 hours and earn
$9.35 per hour. Which of the following show the correct syntax for printing your salary? Keep in mind
that brackets are not required to assign a scalar. Select all that apply.

a. Y=40%*9.35; Print Y;
b. 40%9.35;

c. Print (40*9.35);

d. Print 40*9.35;

2. Let X be an m-by-n matrix. How would you use a SAS reduction operator to reproduce the
rowMeans() and min() functions in R?

a. X[,:]and X[><,]

b. X[:]and X(>:<,>:<)
c. X{,:}and X[><,><]
d. X[,:] and X[><,><]

3. The PROC IML code below prints the 0.75 quantile from matrix X.

Q = call gntl (X, {0.75});

print Q;
a. True
b. False

4. Which of the following statements about SAS modules are true? Select all that apply.
a. Modules are defined by START and FINISH keywords.
b. Functions use the RETURN statement
c. The RETURN statement can handle multiple arguments.
d. Subroutines can be executed by the CALL statement.

5. How do you recall the module rock and the matrix pony into a new SAS/IML session from the mycat
catalog in the Work directory?

a. RESET STORAGE; LOAD module=(rock) pony;

b. RESET STORAGE=mycat; LOAD module=(rock) pony;
c. STORAGE=mycat; LOAD module=(rock) pony;

d. RESET STORAGE=mycat; LOAD rock pony;

6. Which statements are true regarding importing SAS data sets and exporting IML matrices? Select all
that apply.

a. The statements USE, READ, and CLOSE are used to pass a SAS data set into IML.

b. The statements CREATE, APPEND, and CLOSE are used to pass an IML matrix to a SAS data set.
c. Names of IML vectors are passed to the SAS data set as variable names.

d. The user must specify the column names when creating a SAS data set from an IML matrix.

Short Answer

1. Navigate to the SAS/IML documentation and peruse the statements, functions, and subroutines.
Choose a few that look familiar to you and see what they do. Next, find the LOC function and see
what it does.
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Programming Exercises
1. Practicing with Basic Operations

In this exercise, you perform operations on the data used in the previous demonstration. Use the
code below at the beginning of the exercise program.

proc iml;

items = {'Groceries', 'Utilities', 'Rent', 'Car Expenses',
'Fun Money', 'Personal Expenses'};

weeks = {'Week 1', 'Week 2', "Week 3', 'Week 4'};

amounts = { 96 78 82 93,

61 77 62 68,
300 300 300 300,
25 27 98 18,
55 34 16 53,
110 85 96 118};
weeklyIncome ={900 850 1050 950};
weeklyExpenses=amounts [+, ];

a. Create a 1 x 4 matrix named proportionincomeSpent whose elements are the proportion of
each week’s income that went to expenses. Use the RESET statement to suppress the automatic
printing of matrix names. Print the proportionincomeSpent matrix with the values of weeks
used as column labels and PERCENT7.2 used as a format.

PROC IML Output

Proportion of income spent each week

Week 1 Week 2 Week 3 Week 4

71.9% 70.7% 62.3% 68.4%

b. Create a 1 x 4 matrix named proportionincomeSaved whose elements are equal to the
proportion of each week’s income that did not go to expenses. That is, use an implicit loop to
subtract the values of proportionlncomeSpent from one. Print the proportionincomeSaved
matrix with the values of weeks used as column labels and PERCENT7.2 used as a format.

PROC IML Output
Proportion of income saved each week

Week 1 Week 2 Week 3 Week 4

28.1% 29.3% 37.7% 31.6%

c. Create a 6 x 4 matrix named proportionSpentPerltem whose elements are the proportion of
each week’s income spent on each item, by week. That is, use an implicit loop to divide the
amounts matrix by the weeklylncome matrix. Print the proportionSpentPerltem matrix with the
values of items used as row labels, the values of weeks used as column labels, and PERCENT7.2
used as a format.

Percentage of income spent on each item, by week
Week 1 Week 2 Week 3 Week 4

Groceries 10.7% 9.18% 7.81% 9.79%
Utilities 6.78% 9.06% 5.90% 7.16%
Rent 33.3% 35.3% 28.6% 31.6%
Car Expenses 2.78%  3.18%  9.33% 1.89%
Fun Money 6.11% 4.00% 1.52% 5.58%

Personal Expenses 12.2% 10.0% 9.14% 12.4%
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d. Create a matrix named weeklyExpenseChange with the same number of rows as amounts but
with one less column than amounts (in other words, a 6 x 3 matrix). Fill it with missing numeric
values. This should be done with a matrix literal. Fill each column of weeklyExpenseChange with
each column of amounts minus the previous column of amounts. That is, column 1 of
weeklyExpenseChange should equal column 2 of amounts minus column 1 of amounts, and so
on. Print a title and print the matrix. Use columns 2 through 4 of weeks as column labels and use
items as row labels.

Change in spending from previous week, by item

Week 2 Week 3 Week 4
Groceries -18 4 11
Utilities 16 -15 6
Rent 0 0 0
Car Expenses 2 71 -80
Fun Money -21 -18 37
Personal Expenses -25 11 22

Generating a Multiple Regression Data Matrix and Computing Parameter Estimates
This exercise extends the ideas from the previous demonstration.

a. Generate data from a multiple regression model, ¥, = 3, + Bx,; + B,X,; + &, , with 20
sampleswhere 3, =3, B, =2, B, =—1,and &, ~ N(0,0 =5) . Let
x,; ~ Uniform(0,20) and x,, ~ Uniform(10,30) . Use the seed 27606 to duplicate your

results. Generate the random numbers using the RANDFUN function. Print the generated values.

y betal betai beta2 xvalsi xvals2 error
2.3890519 3 2 -1 15.535752 25.086444 -6.596008
27 .055082 19.109842 16.336432 2.1718106
-4.292507 8.7436082 21.76381 -3.015913
11.835473 12.034105 20.732286 5.4995483
18.823426 12.89481 16.240074 6.2738806

-26.1453 1.948081 23.511204 -9.530258

27.55394 19.206666 15.207025 1.3476321
15.761662 14.474217 17.647193 1.460422
12.815418 12.986986 18.152577 1.9940234
19.421855 18.214594 25.124106 5.1167724
16.696806 15.184676 29.289954 12.617408
-15.492862 2.9719555 27.424333 2.9878057
6.7790585 15.249747 20.255948 -6.464489
31.024149 19.654065 11.005698 -0.278282
6.8295732 9.9692864 27.152395 11.043396

-8.10431 0.0501745 11.999825 0.795166
-10.70045 1.934529 16.587159 -0.982352
28.096877 19.974169 10.011983 -4.839478
5.1143731 9.217379 13.189886 -3.130499
6.3452045 16.397849 27.952028 -1.498465
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3.

b. Create the design matrix and compute [§ = (XTX)fXTY using the INV function. Print your

results.

X

6.9833149
11.619663
14.863959
17.563605
0.0771578
16.60792
14.251058
14.773279
1.6650986
11.628301
14.12347
1.5470275
19.547
12.918223
1.3057261
8.558932
6.7389815
0.425611
0.1731237
13.190648

ek b bk b ek ek ok b ek b b b b b ek b ek b

betaHat

4.5087508
2.0297133
-1.0402286

26.419994

13.11864
25.720417

14.31566
24.440131
26.879481
18.034902
12.525219
29.064125
10.744335
19.860202
20.552019
25.236564
29.589143

18.96901
16.789311
20.715758
20.222944
10.720545
22.985184

n

~2 ~ ~2 Z(yi_yi)

i=1

c. Compute and print the estimates & and O where o = —l Recall that SAS does
n p—

not use the ” operator to exponentiate matrix elements.

sigma2Hat sigmaHat

33.790635 5.8129713

Creating User-Defined Functions and Subroutines

Standardized values are computed as

where std(x) =

std (x

a. Create a function, STANDARDIZE, that takes a matrix as an input and returns the matrix with

each column standardized.

b. Create a 10 x 3 matrix of random numbers where the first column is 123, the second column is
123, and the third column is 123. Use the seed 802 to duplicate your results. Print the matrix and
then use the STANDARDIZE function to create and print the standardized matrix.

mymat

11.608944 11.863687
5.2331384 13.862579
5.0699716 13.325589
9.2352147 12.471574
7.5553052 13.356539
6.7021899 12.096431
-1.018837 14.853318
6.0402131 13.289878
2.9340508 12.488342
11.963293 12.219451

stand

1.297565 -1.205853
-0.332141 0.9480863
-0.373861 0.369444

0.691142 -0.550814
0.2616091 0.4027946
0.0434776 -0.955056
-1.930697 2.0156739
-0.125782 0.3309627
-0.919991 -0.532745
1.3886794 -0.822494

18.710933
8.2257589
13.889108
4.3133361
1.1156816
14.181072
1.4487006
10.497412
1.2435366
4.9053748

1.7341685
0.0595209

0.964047
-0.565355
-1.076071
1.0106784
-1.022882
0.4223396

-1.05565
-0.470797
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Alter the STANDARDIZE function and create the subroutine STANDSUB. Let the subroutine take a
matrix as input and output the standardized matrix, as well as the column means and standard

deviations.

Generate the same data matrix and use the subroutine to create and print the three matrices.

m

5

standardized

-0.373861 0.369444

-0.919991 -0.532745

6.5321484 12.982739 7.8530913

3.9110141 0.9280167 6.2611224

1.297565 -1.205853 1.7341685
-0.332141 0.9480863 0.0595209

0.964047

0.691142 -0.550814 -0.565355
0.2616091 0.4027946 -1.076071
0.0434776 -0.955056 1.0106784
-1.930697 2.0156739 -1.022882
-0.125782 0.3309627 0.4223396

-1.05565

1.3886794 -0.822494 -0.470797

Using a SAS Data Set, Creating an IML Module, and Exporting Results to a New Data Table

Print the govtDemand data set and notice that each continuous variable has missing values.

Read the govtDemand data set into an IML matrix named govt.

Create a function that takes a vector as input and imputes all missing values with the mean of

the vector and returns the imputed vector.

Impute columns 2 through 4 and create a new SAS data set named govtimputed, with the same
names as govtDemand, which contains the imputed matrix. Because a matrix is being exported
to a SAS data set, be sure to use the COLNAME= option in the CREATE statement.

Finally, print the SAS data set and also run PROC CORR on the variables agric, manu, and labor.

submit;

proc print data=sp4r.newGovt;run;
proc corr data=spdr.newGovt;
var agric manu labor;

run;
endsubmit;

quit;

Obs  YEAR AGRIC MANU LABOR
1 1982 600.00 1000.00 £00.00
2 1983 1100.00 1200.00 792.00
3 1984 1100.00 1350.00 800.00
4 1985 1150.00 1547.31 825.00
5 1986 1200.00 1475.00 850.00
8 1987 1272.92 1500.00 900.00
7 1988 1400.00 1650.00 920.00
8 1989 1420.00 1650.00 886.69
9 1990 1272.92 1680.00 940.00
10 1991 1450.00 1700.00 950.00
11 1992 1450.00 1720.00 975.00
12 1993 1460.00 1720.00 975.00
13 1994 1470.00 1730.00 1000.00
14 1995 1475.00 1740.00 1000.00
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5.

The CORR Procedure
3 Variables: AGRIC MANU LABOR

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
AGRIC 14 1273 239.90750 17821 600.00000 1475
MANU 14 1547 225.10353 21662 1000 1740
LABOR 14 886.69231 108.56999 12414 800.00000 1000

Pearson Correlation Coefficients, N = 14
Prob > |r| under HO: Rho=0

AGRIC MANU LABOR

AGRIC 1.00000 0.94119 0.96682

<.0001 <.0001

MANU 0.94119 1.00000 0.95092

<.0001 <.0001

LABOR 0.96682 0.95092 1.00000
<.0001 <.0001

Calling Statistical Graphics from SAS/IML

a.

Read the variables saleprice, overall_qual, gr_liv_area, garage_area, basement_area,
deck_porch_area, and age_sold from the AmesHousing data set into an IML matrix named
imlAmes.

Create a correlation matrix from imlAmes named corrAmes and print it.

corrAmes

1 0.7345057 0.8504636 0.5789207 0.6895635 0.439889 -0.615425
0.7345057 1 0.5787329 0.3859067 0.4564424 0.2795069 -0.442376
0.6504636 0.5787329 1 0.3328336 0.4398542 0.2805839 -0.192722
0.5789207 0.3859067 0.3328336 1 0.3562982 0.2498748 -0.413458
0.6895635 0.4564424 0.4398542 0.3562982 1 0.3368862 -0.39529

0.439889 0.2795069 0.2805839 0.2498748 0.3368862 1 -0.205836
-0.615425 -0.442376 -0.192722 -0.413458 -0.39529 -0.205836 1

Navigate to the SAS/IML documentation and review the HEATMAP subroutine. Create a heat
map of the correlation matrix. Use the XVALUES= and YVALUES= options to set appropriate
labels for the rows and columns of the plot. Also, provide the map with a title. Finally, change
the color coding of the heat map to "Temperature".

Heatmap for Ames Data

Go to the Work directory and open the _heatmap data set. SAS/IML exported the data set
required to be used by the SGPLOT procedure to create the heat map.
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6. Simulating the Birthday Problem

a.

Use simulation to calculate the empirical probability of two people sharing the same birthdate in
a group of 23 people. Use 1000 iterations. Assume that none of the people is born on Leap Day
and every birthdate is equally likely.

Invoke PROC IML, set the random seed, and begin a DO loop with 1000 simulations. Create a
vector named pair to hold the results of each iteration.

Draw 23 birthdates using the SAMPLE function. (Dates can be represented as the numbers 1
through 365.)

Check whether any two birthdates are the same. (Hint: Use the UNIQUE function.)
If at least two birthdates are the same, set the variable pair to 1. Otherwise, set pair to zero.
Calculate the proportion of iterations in which a pair was found.

proportion

0.506

How can you avoid using the DO loop for this simulation?
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Solutions

Multiple Choice

1.

a and c. There are two options for printing in SAS. First, you can assign a value to a matrix and then
print the matrix. Second, if you do not want to create a new variable, you can use parentheses in the
PRINT statement to print the specified value.

d. To find the mean of each row use the : operator in the second argument of the braces. To find the
minimum of all elements of a matrix, you can use the >< symbol in each argument of the braces or
simply use one >< symbol and ignore the comma.

b. A SAS/IML subroutine cannot be used in an assignment statement.

a, b, and d. To create a user-defined module, use the START and FINISH statement. Functions require
the RETURN statement and can only return a single matrix. Subroutines on the other hand do not use
the RETURN statement and can create multiple matrices. Also, functions require an assignment
statement and subroutines cannot be used with an assignment statement. They are executed with
either the CALL or RUN statements.

b. To specify the catalog that we want to create or call from, use the RESET STORAGE statement. To
load a module and matrix back into your IML session use the LOAD statement and set the keyword
MODULE equal to the desired modules in parentheses followed by your matrices.

a, b, and c. For answers A and B remember to use all three statements to do each task. Names of IML
vectors are passed to the SAS data set as variable names. On the other hand, the user must set the
names as an option in the CREATE statement to specify the data set variable names when passing a
matrix to a data set. Otherwise, the SAS data set names default to COL1, COL2, COL3, and so on.

Short Answer

1.

In general, the LOC function returns a row vector containing indices of the elements in a matrix that
satisfy a criterion. If an expression is not specified, the LOC function finds elements that are nonzero
and nonmissing.

Programming Exercises

1.

Practicing with Basic Operations

In this exercise, you perform operations on the data used in the previous demonstration. Use the
code below at the beginning of the exercise program.

proc iml;

items = {'Groceries', 'Utilities', 'Rent', 'Car Expenses',
'Fun Money', 'Personal Expenses'};

weeks = {'Week 1', "Week 2', "Week 3', 'Week 4'};

amounts = { 96 78 82 93,

61 77 62 68,
300 300 300 300,
25 27 98 18,
55 34 16 53,
110 85 96 118};
weeklyIncome ={900 850 1050 950};
weeklyExpenses=amounts [+, ];

a. Create a 1 x4 matrix named proportionincomeSpent whose elements are the proportion of
each week’s income that went to expenses. Use the RESET statement to suppress the automatic
printing of matrix names. Print the proportionincomeSpent matrix with the values of weeks
used as column labels and PERCENT7.2 used as a format.

proportionIncomeSpent=weeklyExpenses / weeklyIncome;

reset noname;

print "Proportion of income spent each week",
proportionIncomeSpent [colname=weeks format=percent7.2];
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PROC IML Output

Proportion of income spent each week

Week 1 Week 2 Week 3 Week 4

71.9% 70.7% 62.3% 68.4%

Create a 1 x 4 matrix named proportionincomeSaved whose elements are equal to the
proportion of each week’s income that did not go to expenses. That is, use an implicit loop to
subtract the values of proportionlncomeSpent from one. Print the proportionincomeSaved
matrix with the values of weeks used as column labels and PERCENT7.2 used as a format.

proportionIncomeSaved=1 - proportionIncomeSpent;
print "Proportion of income saved each week",
proportionIncomeSaved[colname=weeks format=percent77.2];

PROC IML Output
Proportion of income saved each week

Week 1 Week 2 Week 3 Week 4

28.1% 29.3% 37.7% 31.6%

Create a 6 x 4 matrix named proportionSpentPerltem whose elements are the proportion of
each week’s income spent on each item, by week. That is, use an implicit loop to divide the
amounts matrix by the weeklylncome matrix. Print the proportionSpentPerltem matrix with the
values of items used as row labels, the values of weeks used as column labels, and PERCENT7.2
used as a format.

proportionSpentPerItem=amounts/weeklyIncome;

print "Percentage of income spent on each item, by week",
proportionSpentPerItem [rowname=items
colname=weeks format=percent7.2];

Percentage of income spent on each item, by week
Week 1 Week 2 Week 3 Week 4

Groceries 10.7% 9.18% 7.81%  9.79%
Utrilities 6.78% 9.06% 5.90% 7.16%
Rent 33.3% 35.3% 28.6% 31.6%
Car Expenses 2.78% 3.18% 9.33% 1.89%
Fun Money 6.11% 4.00% 1.52% 5.58%

Personal Expenses 12.2% 10.0%  9.14% 12.4%

Create a matrix named weeklyExpenseChange with the same number of rows as amounts but
with one less column than amounts (in other words, a 6 x 3 matrix). Fill it with missing numeric
values. This should be done with a matrix literal. Fill each column of weeklyExpenseChange with
each column of amounts minus the previous column of amounts. That is, column 1 of
weeklyExpenseChange should equal column 2 of amounts minus column 1 of amounts, and so
on. Print a title and print the matrix. Use columns 2 through 4 of weeks as column labels and use
items as row labels.

weeklyExpenseChange={. . .,

PO
weeklyExpenseChange [, l]=amounts[,2] - amounts[,1];
weeklyExpenseChange [,2]=amounts[,3] - amounts[,2];
weeklyExpenseChange [,3]=amounts[,4] - amounts([,3];

print "Change in spending from previous week, by item",
weeklyExpenseChange [rowname=items
colname={"Week 2", "Week 3", "Week 4"}];

quit;
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Change in spending fTrom previous week, by item

Week 2 Week 3 Week 4
Groceries -18 4 11
Utilities 16 -15 6
Rent 0 0 0
Car Expenses 2 71 -80
Fun Money -21 -18 37
Personal Expenses -25 11 22

2. Generating a Multiple Regression Data Matrix and Computing Parameter Estimates

This exercise extends the ideas from the previous demonstration.

a. Generate data from a multiple regression model, y, = 3, + B,x,, + B,X,, + & , with 20

samples where 3, =3, f,=2, ,=-1,and &, ~ N(0,0 =5) . Let

x,; ~ Uniform(0,20) and x,, ~ Uniform(10,30) . Use the seed 27606 to duplicate your

results. Generate the random numbers using the RANDFUN function. Print the generated values.

proc iml;
call randseed(27606) ;
n = 20;
betal = 3;
betal = 2;
beta2 = -1;
xvalsl = randfun (n,"Uniform");
xvalsl = xvalsl*20;
xvals2 = randfun (n,"Uniform");
xvals2 = (xvals2*20) + 10;
error = randfun (n, "Normal",0,5);
y = betal + betal*xvalsl + beta2*xvals2 + error;
print y betal betal beta2 xvalsl xvals2 error;

¥ betal betal beta2 xvalsl xvals2 arror
2.3880518 3 2 1 15.535752 25.086444 -6.586008
27.055082 19.1089842 18.336432 2.1718108
-4.292507 B.7436082 21.76381 -3.015913
11.835473 12.034105 20.732288 5.4885482
18.823426 12.89481 16.240074 &
«26.1453 1.948081 23.511204 .9.530258
27.55394 19.2068866 15.207025 1.3476321
15.761662 14, 474217 17.647193  1.460422
12815418 12.986986 18152577 1.9940234
19.421855 18.214594 25124106 51167724
16. 696806 15.184676 20.280054 12.617408
15.49262 2.9719555 27.424333 2.9878057
6. 7790505 15.245747 20.255040 -6.464409
31.024140 19.654065 11.005608 -0.2768282
6.8295732 9.9692864 27.15239% 11.043396
B.10421 0.0501745 11.558025 0.793166
-10.70045 1.934529 16.587M159 -0.982352
28096877 19.974169 10.011983 -4.839478
5.11437T31 8.217379 13.188886 -3.130488
6.3452045 16.397849 27.952028 -1.498485

b. Create the design matrix and compute [§ = (XTX)_XTY using the INV function. Print your

results.
x = J(n,1,1)]||xvalsl||xvals2;
betaHat = inv(x *x)* (x *y);

print x, betaHat;

*Alternative SAS Function;
*betaHat = solve( (x *x)*(x *y) );
*print betaHat;
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X

1 6.9833149 28.419994
1 11.619663 13.11864
1 14.863959 25.720417
1 17.563605 14.31566
1 0.0771578 24.440131
1 16.60792 26.879481
1 14.251058 18.034902
1 14.773279 12.525219
1 1.6650986 29.064125
1 11.628301 10.744335
1 14.12347 19.860202
1 1.5470275 20.552019
1 19.547 25.236564
1 12.918223 29.589143
1 1.3057261 18.96901
1 8.558932 16.789311
1 6.7389815 20.715758
1 0.425611 20.222944
1 0.1731237 10.720545
1 13.190648 22.985184

betaHat
4.5097508

2.0297133
-1.040226

n

~2 ~ ~2 Z(yi_yi)

1

c. Compute and print the estimates 0 and 0 where 0 = :—1 . Recall that SAS does
n —

—_

not use the » operator to exponentiate matrix elements.

pred = x*betaHat;

sse = sum( (y-pred)##2 );

sigma2Hat = sse / (n-1);

sigmaHat = sqgrt(sigma2Hat) ;

print sigma2Hat sigmaHat;
quit;

sigma2Hat sigmaHat

33.790635 5.8129713

Creating User-Defined Functions and Subroutines

X—X
Standardized values are computed as ——— where std(x) =
std(x)

a. Create a function, STANDARDIZE, that takes a matrix as an input and returns the matrix with
each column standardized.

proc iml;
start standardize (x);
n=nrow (x) ;
mean=x[:,]; /* means for all columns */
xbar=repeat (mean,n,1l); /* n rows of means */
x=x-xbar; /* center x to mean zero */
stdv=std (x) ; /* standard deviations for columns */
x=x/stdv; /* scale to std dev 1 */
return (x) ;
finish;

The mean of each column here is computed using the reduction operator [ :, 1.

b. Create a 10 x 3 matrix of random numbers where the first column is 123, the second column is
123, and the third column is 123. Use the seed 802 to duplicate your results. Print the matrix and
then use the STANDARDIZE function to create and print the standardized matrix.

n = 10;

call randseed(802);

mymat = randfun(n,"Normal",5,5)

| | randfun (n, "Uniform",10,15)
| | randfun (n, "Exponential",7) ;




232 SAS Programming for R Users

print mymat;
stand = standardize (mymat) ;
print stand;

quit;

mymat

11.606944 11.863687 18.710933
.2331384 13.862579 8.2257589
.0699716 13.325589 13.889108
.2352147 12.471574 4.3133361
.5553052 13.356539 1.1156816
6.7021899 12.096431 14.181072
-1.018837 14.853318 1.4487006
6.0402131 13.289878 10.497412
2.9340508 12.488342 1.2435366
11.963293 12.219451 4.8053748

~N © O,

stand

1.297565 -1.205853 1.7341685
-0.332141 0.9480863 0.0595209
-0.373861 0.369444 0.964047
0.691142 -0.550814 -0.565355
0.2616091 0.4027946 -1.076071
0.0434776 -0.955056 1.0106784
-1.930697 2.0156739 -1.022882
-0.125782 0.3309627 0.4223396
-0.919991 -0.532745 -1.05565
1.3886794 -0.822494 -0.470797

c. Alter the STANDARDIZE function and create the subroutine STANDSUB. Let the subroutine take a
matrix as input and output the standardized matrix, as well as the column means and standard
deviations.

proc iml;
start standsub (stand,mean, stdv, x) ;
n=nrow (x) ;

mean=x[:,]; /* means for all columns */
xbar=repeat (mean,n,1l); /* n rows of means */
x=x-xbar; /* center x to mean zero */
stdv=std (x) ; /* standard deviations for columns */
stand=x/stdv; /* scale to std dev 1 */
finish;

d. Generate the same data matrix and use the subroutine to create and print the three matrices.

n = 10;
call randseed(802);
mymat = randfun(n,"Normal",5,5)
| | randfun (n, "Uniform",10,15)
| | randfun (n, "Exponential",7) ;
call standsub (standardized,m,s,mymat) ;
print m, s, standardized;
quit;

6.5321484 12.982739 7.8530913

3.9110141 0.9280167 6.2611224

standardized

1.297565 -1.205853 1.7341685
-0.332141 0.9480863 0.0595208
-0.373861 0.369444 0.964047

0.691142 -0.550814 -0.565355
0.2616091 0.4027946 -1.076071
0.0434776 -0.955056 1.0106784
-1.930697 2.0156739 -1.022882
-0.125782 0.3309627 0.4223396
-0.919991 -0.532745 -1.05565
1.3886794 -0.822494 -0.470797
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4. Using a SAS Data Set, Creating an IML Module, and Exporting Results to a New Data Table
a. Print the govtDemand data set and notice that each continuous variable has missing values.

proc print data=sp4r.govtDemand;

run;

Obs year agric manu labor
1 1982 600 1000 600
2 1983 1100 1200 792
3 1984 1100 1350 800
4 1985 1150 . 825
5 1986 1200 1475 850
6 1987 . 1500 900
7 1988 1400 1650 920
8 1989 1420 1650 -
g 1990 . 1680 940

10 1991 1450 1700 950

1" 1992 1450 1720 975

12 1993 1460 1720 975

13 1994 1470 1730 1000

14 1985 1475 1740 1000

b. Read the govtDemand data set into an IML matrix named govt.

proc iml;
use spédr.govtDemand;
read all into govt;
close spédr.govtDemand;

c. Create a function that takes a vector as input and imputes all missing values with the mean of
the vector and returns the imputed vector.

start impute (colvec);
colvec[loc(colvec=.)] = mean (colvec);
return (colvec) ;

finish impute;

The LOC function is to find the index of all missing values in the vector.

d. Impute columns 2 through 4 and create a new SAS data set named govtimputed, with the same
names as govtDemand, which contains the imputed matrix. Because a matrix is being exported
to a SAS data set, be sure to use the COLNAME-= option in the CREATE statement.

govtImputed = govt[,1l] ]| |impute (govt[,2])
| | impute (govt[,3]1) | |impute (govt[,4]);
create sp4r.newGovt from govtImputed
[colname={year, agric, manu, labor}];
append from govtImputed;
close spé4r.newGovt;

e. Finally, print the SAS data set and also run PROC CORR on the variables agric, manu, and labor.

submit;
proc print data=sp4r.newGovt;run;
proc corr data=spér.newGovt;
var agric manu labor;
run;
endsubmit;
quit;
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5.

The CORR Procedure
3 Variables: AGRIC MANU LABOR

Simple Statistics

Variable N Mean Std Dev sum Minimum Maximum

AGRIC 14 1273 239.90750 17821 600.00000 1475

MANU 14 1547 225.10353 21662 1000 1740

LABOR 14 886.69231 108.56999 12414 600.00000 1000
Pearson Correlation Coefficients, N = 14

Prob > |r| under HO: Rho=0

AGRIC MANU LABOR

AGRIC 1.00000 0.84119 0.96682

<.0001 <.0001

MANU 0.94119 1.00000 0.95092

<.0001 <.0001

LABOR 0.96682 0.95092 1.00000
<.0001 <.0001

Calling Statistical Graphics from SAS/IML

a.

Read the variables saleprice, overall_qual, gr_liv_area, garage_area, basement_area,
deck_porch_area, and age_sold from the AmesHousing data set into an IML matrix named
imlAmes.

proc iml;
use spédr.ameshousing;
read all var {saleprice overall qual gr_liv_area
garage_ area basement area deck porch area age sold}
into imlAmes;
close spédr.ameshousing;

Create a correlation matrix from imlAmes named corrAmes and print it.

corrAmes = corr (imlAmes) ;
print corrAmes;

corrAmes

1 0.7345057 0.6504636 0.5789207 0.6895635 0.439889 -0.615425
0.7345057 1 0.5787329 0.3859067 0.4564424 0.2795089 -0.442376
0.6504636 0.5787329 1 0.3328336 0.4398542 0.2805839 -0.192722
0.5789207 0.3859067 0.3328336 1 0.3562882 0.2498748 -0.413458
0.6895635 0.4584424 0.4398542 0.3562982 1 0.3368862 -0.39529
0.439889 0.2795069 0.2805839 0.2498748 0.3368862 1 -0.205836
-0.615425 -0.442376 -0.182722 -0.413458 -0.38529 -0.205836 1

Navigate to the SAS/IML documentation and review the HEATMAP subroutine. Create a heat
map of the correlation matrix. Use the XVALUES= and YVALUES= options to set appropriate
labels for the rows and columns of the plot. Also, provide the map with a title. Finally, change
the color coding of the heat map to "Temperature".

varNames = {"Sale Price" "Overall Quality"
"Ground Living Area" "Garage Area" "Basement Area"
"Deck Porch Area" "Age Sold (years)" };
call heatmapcont (corrAmes) xvalues=varNames
yvalues=varNames
colorramp="Temperature" title="Heatmap for Ames Data";
quit;

Heztraap for Ames Data
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d. Go to the Work directory and open the _heatmap data set. SAS/IML exported the data set
required to be used by the SGPLOT procedure to create the heat map.

Simulating the Birthday Problem

Use simulation to calculate the empirical probability of two people sharing the same birthdate in a

group of 23 people. Use 1000 iterations. Assume that none of the people is born on Leap Day and

every birthdate is equally likely.

a. Invoke PROC IML, set the random seed, and begin a DO loop with 1000 simulations. Create a
vector named pair to hold the results of each iteration.

proc iml;
n=23;
numberIterations=1000;
call randseed(802);
pair = j(numberIterations,1,.);
do iteration=1 to numberIterations;

b. Draw 23 birthdates using the SAMPLE function. (Dates can be represented as the numbers 1
through 365.)

dates = 1:365;
birthDates=sample (dates,n) ;

c. Check whether any two birthdates are the same. (Hint: Use the UNIQUE function.)

| uniqueDates=unique (birthDates) ;

d. |If at least two birthdates are the same, set the variable pair to 1. Otherwise, set pair to zero.

if ncol (uniqueDates) < n then pair[iteration]=1;
else pair[iteration]=0;
end;

e. Calculate the proportion of iterations in which a pair was found.

proportion=pair[:];
print proportion;
quit;

proportion

0.5086

f.  How can you avoid using the DO loop for this simulation?
Simulate dates in a matrix with dimension (number of iterations) by (number of people).

proc iml;
n=23;
numberIterations=1000;
call randseed(23571113);
prob=j (364,1,1/365);
birthDates=j (numberIterations,n, .);
call randgen (birthDates, "Table",prob) ;

After you enter IML and set the random number seed, this version of the birthday problem
simulation creates a vector of probabilities, prob, to be used as a parameter for the table
distribution. The program then creates a 1000 x 23 matrix of missing values and assigns it to
birthDates. The program then fills the birthDates matrix with values drawn from the table
distribution with parameter prob.

rowUnique=countunique (birthDates, "ROW") ;
proportion=(rowUnique < n) [+] / numberIterations;
print proportion;

quit;
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Specifying the “ROW” option for countunique tells the function to calculate the number of
unique elements in each row of the argument matrix. Then rowUnique is assigned the number
of unique birthdates for each row in birthDates. The syntax (rowUnique < n) [+] counts the
number of rows that contain fewer than 23 unique birthdates. Dividing the number of unique

birthdates by the number of iterations provides the proportion of samples containing at least
two matching birthdates.
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Introduction

SAS views open-source software as a complementary resource, and SAS has been using open-source software
for years. For example, it has used Perl, SQL, and others. R is just the newest open-source software, which
happens to be able to create models as well, but you can assimilate open-source tools into your SAS script to
enjoy the benefits.

Working with R from SAS is incredibly easy. SAS provides a seamless interface between the two languages.
You can write R code directly in the SAS code editor as if you were in R studio, send the code to R, run an
analysis in R, and return the results. You can do all this with a click of a button. Because you know R and now
you are comfortable working with the interactive matrix language, in this chapter you will learn about the four
subroutines that you need to use to move your code and data back and forth between SAS and R. In this
chapter, you will see that you can freely write R code within a SAS script, send it to the open-source software
R, and retrieve the results.

If there is a new package you really want to try in R, SAS gives you a very seamless interface to do that directly
in SAS. You can compare methods, because of course, all algorithms are data dependent. And you can create
a diverse set of plots. You can integrate open-source software into three different SAS environments.

The easiest way to work with R is in the interactive matrix language. You can write open-source code directly
in the SUBMITBLOCK that we saw in Chapter 7; we just have to give it the R option. A second method is to
execute open-source code via a DATA Step in Base SAS. This can be challenging. It requires using Java as an
intermediary tool, which means you pass your code to Java, and then Java is going to pass that code to R.
Another alternative is to use system commands. Finally, if you are familiar with Enterprise Miner, you can
execute open-source code via the Open Source Integration node.
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Calling SAS from IML

Readying Your Machine to Call R

In order to work with R inside SAS, we need to enable R language statements. To see whether RLANG is
enabled on your machine, you can run Program 8.1 and ask the OPTIONS procedure if the option=to RLANG is
on.

Program 8.1: RLANG

proc options option=rlang;
run;

One of two results will be printed to the log. You will either get a NORLANG, meaning you do not have
permission to call R from SAS, or you will get RLANG, meaning you do have permission to call R from SAS.

How do you turn a NORLANG into an RLANG? The easiest way is just to right-click the SAS icon on your
desktop. Notice in the Target field, as shown in Figure 8.1, it provides the location of your SAS configuration
file. Generally, it is at this location: C:\ProgramFiles\SASHome\

SASFoundation\9.4\nls\en\sasv9.cfg".

Figure 8.1: SAS Properties
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Navigate to the SASV9.CFG file and open it. When you are in the configuration file, add -RLANG at the bottom
as shown in Figure 8.2. Save these changes. Make sure that SAS is not open because SAS calls the
configuration file each time it starts.
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Figure 8.2: Configuration File
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~WORK "!TEMP\SAS Temporary Files"

-MEMSIZE 26

-SORTSIZE 1G

-SET SASCFG "C:\Program Files'SaSHome\SASFoundation\9.4'\nls'en"”
-LOCALE en_us

=ENCODING wlatinl

=TEXTURELOC !SASROOTCommon'\Textures

-SET SAS_NO_RANDOM_ACCESS "1"

-MAPS | SASROOT'\maps

-MAPSGFK ! SASROOT \mapsgfk

-MAPSSAS | SASROOT'\maps

-APPLETLOC "C:‘Program Files)SasHome\SASGraphlavaspplers’9.4”

-SET DTI_CLASSPATH "C:\Program Files\SasHome'SaSFoundation\9.4'\dmine\sasmisc\dtj. jar;c
=IMLPACKAGEPRIVATE "7TFOLDERID_Documents'My SAS Files) IMLY Packaqes
-IMLPACKAGEPUBLIC "7FOLDERID_ProgramData)\SAs\IML'\Packages"
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-SET SASAML !SASROOT'Share\sasmacro

=SASSCRIPT (

:\Program Files'SASHo

"€:i\Program Files'SasHome'SasFoundation’9.4%comnect’saslink”
)

I-rLanc | -RLANG 5

Once you have altered your configuration file and enabled R language statements, you can do the following:

® send IML matrices in SAS data sets to R
® submit R code in the IML script

® return R results from analyses as IML matrices or SAS data sets

Tip: To run R with SAS, R must be installed on the same machine as SAS. Because SAS University Edition
installs on a virtual machine where R cannot be installed, R cannot be used with SAS University Edition.

Subroutines

To work with R in SAS, there are four subroutines that you need to be familiar with:

® EXPORTDATASETTOR

® EXPORTMATRIXTOR

® |IMPORTMATRIXFROMR
® MPORTDATASETFROMR

Let’s look at each of these in more detail.

Exporting SAS Data Sets
The first subroutine is EXPORTDATASETTOR, and it does exactly what you would expect from its name. It
exports your SAS data set to R as an R data frame using the following syntax:

CALL EXPORTDATASETTOR(“SAS-data-set", “R-data-frame");

The first argument is the SAS data set. The second is the R data frame that you are going to refer to in code.

The helpful thing about this subroutine is, it exports the SAS data set variables to the R data frame as column
names.
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Exporting IML Matrices

Again, EXPORTMATRIXTOR, does exactly what you would expect given its name. It exports your IML matrix to
an R matrix, and you can choose the name of your R matrix to refer to it in code. As shown in the following
syntax:

CALL EXPORTMATRIXTOR(/ML-matrix, "R-matrix");

Submitting R Syntax

To submit code to R, you are going to use a Submit block, and after the forward slash in the Submit statement,
you are going to use the R option as shown in the following syntax:

SUBMIT / R;
R statements
ENDSUBMIT;

Using this syntax tells SAS to submit this code directly to R. Otherwise, it tries to run it as if it were SAS code.
Program 8.2 gives an example of exporting a matrix and submitting code to R.

Program 8.2: Submit R Code

imlMatrix = {0 1, 1 2, 3 5, 8 13};
call ExportMatrixToR (imlMatrix,"rmatrix");
submit / R;
print (rmatrix)
endsubmit;

In Program 8.2, we are creating a four by two matrix, exporting that matrix to R, and giving it the name
rmatrix. We are submitting only one line of code, just print rmatrix in the R console.

All R command line output is automatically returned to SAS and displayed in the results viewer. The format
that it prints it in is exactly the same as R. So Output 8.2 shows that the matrix printed in R, and it prints the
same thing in the results viewer of SAS.

Output 8.2: Results of Program 8.2

A1 A2
[1,] 0 1
2] 12
[3]35
[4] 813

Importing R Objects into IML Matrices

To get results in R back into SAS to view them, we can use the IMPORTMATRIXFROMR subroutine to import
an R object to a new IML matrix name of your choosing with the following syntax:

CALL IMPORTMATRIXFROMR(/ML-matrix, "R-object");
Program 8.3 is an example of exporting from SAS to R and back again.

Program 8.3: SAS to R and Back

imlMatrix = {0 1, 1 2, 3 5, 8 13};
call ExportMatrixToR (imlMatrix,"rmatrix");
submit / R;

rmatrix = rmatrix + 49
endsubmit;
call ImportMatrixFromR (NewMatrix,"rmatrix");
print NewMatrix;
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In Program 8.3 we have the same four by two matrix that we used in Program 8.2. We export that matrix to R
with the name rmatrix and submit one line of code to add 49 to every element of that R matrix. Then, we
import that matrix from R with the appropriate subroutine with the new IML matrix name, NewMatrix. Now
we have access to use it in SAS and can print it in SAS format as shown in Output 8.3.

Output 8.3: Results of Program 8.3

MNewMatrix
49 80
8
52, 54
5 62

Importing R Objects into SAS Data Sets
Finally, you can return your R data frame as a SAS data set with the IMPORTDATASETFROMR subroutine using
the following syntax:

CALL IMPORTDATASETFROMR("SAS-data-set", "R-object");

You can name your SAS data set whatever you would like. When you work with data sets in this environment,
the R data frame column names are returned as SAS data set variable names so that you don't have to
rename anything.

Calling R from Base SAS Java API

As mentioned in the introduction to this chapter, you can write and submit R code inside a DATA step.
However, the SAS DATA step does not pass an R script directly from SAS to R. JAVA must be used as an
intermediate tool. This path is not inherent. You must manually create

the connection from SAS to Java to R.

Setup

First, Download and extract the project ZIP file SAS_Base_OpenSrcintegration.zip from
https://communities.sas.com/docs/DOC-10746. The download prompts you to save the files on your
computer at C:\SGF2015\OpenSrcintegration. The subsequent steps assume that this is the location of the
Java files.

Connect SASto R

Next, download the Java Development Kit (JDK) from oracle.com. Downloading the Java Development Kit
gives you access to the JAVAC command on the Windows command line. The JAVAC command is used to
compile the extracted Java files, and creates the connection from SAS to R.

Once you have downloaded the JDK, follow these steps to compile the Java classes and complete setup:

1. Open the Windows command line.
2. Enter the following
a. cd C:\SGF2015\OpenSrcintegration

b. —"C:\Program Files\Java\jdk1.7.0_25\bin\javac"
src/dev/* -d bin
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3. Add the following location of the compiled Java classes to the SAS configuration file. C:\Program
Files\SASHome\SASFoundation\9.4\nls\en\sasv9.cfg. (This is the same SAS configuration file that is
used to add the RLANG option from the previous section.)

a. -SET CLASSPATH "C:\SGF2015\OpenSrcintegration\bin"
4. Ensure that the Java classes are compiled and that the CLASSPATH is set correctly.
a. Setaworking directory and the Java directory.

$let WORK DIR = C:\SGF2015\OpenSrcIntegration;
$let JAVA BIN DIR = &WORK _DIR.\bin;

b. Validate the Java pipeline.

data null ;
length x1 $ 32767;
~x1 = sysget ('CLASSPATH') ;
%2 = index (upcase (trim( x1)),
supcase ("&JAVA BIN DIR"));
if x2 = 0 then put "ERROR: Invalid Java
Classpath.";
run;

If the Java pipeline is created correctly, the SAS log is empty. Otherwise, the log contains “ERROR: Invalid Java
Classpath.” Now you are ready to submit R code inside a DATA step!

R Command Line

The next step sets the R system location. Right-click the R desktop icon on your computer and select
Properties. Copy the value from the Target field shown in Figure 8.3.

Figure 8.3: R Properties
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Paste the value from the Target field into SAS and create a macro variable. Replace the Rgui text with Rscript,
as shown below:

$let R_EXEC COMMAND =C:\Program Files\R\R-3.2.0\bin\x64\Rscript.exe;

Changing the text to Rscript sets the path to the R command line. This location tells Java where to pass the
DATA step R script.
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DATA Step Syntax
The DATA step in Program 8.4 is used to submit R code. Add your R script to the R SCRIPT field.

Program 8.4: DATA Step to Submit R Code

data NULL ;
length rtn val 8;
length r call $ 32000;

r expr = "-e";
r script = "R SCRIPT";
r call = catt('"', r expr, '™ "', r script, '"');

declare javaobjj ("dev.SASJavaExec", "&R EXEC COMMAND",r call);

j.callIntMethod ("executeProcess", rtn val);
run;

Tip: R command line output is returned to the SAS log in SAS format.

The DATA step method of calling R is unable to do either of the following tasks:

® Send a SAS data setto R.

®  Return a matrix or data frame to a SAS data set.

If you want to send a SAS data set to R, you can use the EXPORT procedure to save data outside of the SAS
environment. Read in the data file using an R statement. If you want to return a matrix or data frame to a SAS
data set, you can save the matrix or data frame in R and use a PROC IMPORT statement to create a SAS data
set.

Writing R Script
When writing R script, you must end each R statement with a semicolon and use single quotation marks only.
Remember that in R, double quotation marks are used to begin and end R script.

Program 8.5 shows an example of writing R script in a DATA step.

Program 8.5: Partial DATA Step Code
data NULL ;

r script = "library(fields);

setwd ('C:/SGF2015/0OpenSrcIntegration') ;
locations = read.csv('locations.csv');

dist mat = rdist(locations);
write.table(dist mat, 'dist mat.csv',
sep = ',',row.names=F);";

run;

The R script is condensed by removing all trailing blanks and is then concatenated with the —e variable. (This is
done using the CATT function.) Thus, the R script sent to Java is as follows:

"-e library(fields);setwd('C:/SGF2015/OpenSrcIntegration') ;.."

The only blank is between the —e and the rest of the script. This is why it is necessary to use a semicolon after
each statement. The R script is passed to R on a single line.

Program 8.5 begins by unpacking the fields R package. The read.csv() function reads in the locations data set
in the directory specified in the setwd() function. PROC EXPORT can be used to export a SAS data set to a CSV
and the directory can be chosen. The rdist() function creates a results matrix of the Euclidean distances
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between each location pair. Finally, the write.table() function exports the R results back to the working
directory set by the setwd() function. Thus, the DATA step runs properly if the results from R are stored in the
desired directory. The results can then be returned to SAS using PROC IMPORT.

Calling R Script

Alternatively, you can use a DATA step to call and run a saved R script. Program 8.6 runs the dist.R file. Add
the DECLARE JAVAOBIJ and J.CALLINTMETHOD statements to the end of the DATA step.

Program 8.6: Partial DATA Step Code

data null ;
length rtn val 8;

r pgm = "&WORK DIR.\dist.R";
r argl = "&WORK DIR";
r_call = cat('"', trim(r_pgm), '" "',trim(r_argl), '"');

run;

The rdist.R file is simply a saved R file. It does not require quoting the R code or using semicolons. The code
from Program 8.6 would be saved as follows:

library(fields)

setwd('C:/SGF2015/OpenSrclntegration')

locations = read.csv('locations.csv')

dist mat = rdist(locations)
write.table(dist mat,'dist mat.csv',sep =',',;row.names=F)

Calling R from SAS Enterprise Miner

The SAS Enterprise Miner interface streamlines and simplifies common tasks associated with applied analysis.
You can freely write R code within SAS Enterprise Miner’s Open Source Integration node, send it to R, and
retrieve the results.

The process flow in Figure 8.4 indicates each step in the analysis from data entry to modeling the data.

Figure 8.4: Enterprise Miner Process Flow
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SAS Enterprise Miner has a point-and-click interface. It offers secure analysis management and provides a
wide variety of tools with a consistent graphical interface. You can customize it by incorporating your choice
of analysis methods and tools. The SAS Enterprise Miner tools that are available to your analysis are contained
in the tools palette. The tools palette is arranged according to a process for data mining, SEMMA. SEMMA is
an acronym for the following words:

® Sample—You sample the data by creating one or more data tables. The samples should be large
enough to contain the significant information, but small enough to process.

® Explore—You explore the data by searching for anticipated relationships, unanticipated trends, and
anomalies in order to gain understanding and ideas.

® Modify—You modify the data by creating, selecting, and transforming the variables to focus the
model selection process.
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® Model—You model the data by using the analytical tools to search for a combination of the data that
reliably predicts a desired outcome.

® Assess—You assess competing predictive models. (You build charts to evaluate the usefulness and
reliability of the findings from the data mining process.)

Figure 8.5 shows the Tools Palette in SAS Enterprise Miner. It has tabs that correspond to each step of the
SEMMA process as well as other tabs, including the Utility tab, that are helpful.

Figure 8.5: Tools Palette
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Additional tools are available in the Utility group. There are also specialized group tools, namely, HPDM (High-
Performance Data Mining), Applications, and Time Series. With additional licensing, Credit Scoring and Text
Mining groups are also available. All tool groups are discussed on the next several pages.

Model Tab

The Model tab is a good starting location for new SAS Enterprise Miner users. The Regression tool enables you
to fit both linear and logistic regression models to your data. You can use continuous, ordinal, and binary
target variables. You can use both continuous and discrete variables as inputs. The tool supports the stepwise,
forward, and backward selection methods. The interface enables you to create higher-order modeling terms
such as polynomial terms and interactions.

Utility Tab

The Open Source Integration tool can be found under the Utility Tab. It enables you to write code in the R
language inside SAS Enterprise Miner by adding an Open Source Integration node to your process flow. The
tool makes SAS Enterprise Miner data and metadata available to your R code and returns R results to SAS
Enterprise Miner. In addition to training and scoring supervised and unsupervised R models, the Open Source
Integration node enables data transformation and data exploration.

The SAS Code tool enables you to incorporate new or existing SAS code into process flow diagrams. The ability
to write SAS code enables you to include additional SAS procedures into your data mining analysis. You can
also use a SAS DATA step to create customized scoring code, to conditionally process data, and to concatenate
or merge existing data sets. The tool provides a macro facility to dynamically reference data sets that are used
for training, validation, testing, or scoring variables, such as input, target, and predict variables. After you run
the SAS Code tool, the results and the data sets can then be exported for use by subsequent tools in the
diagram.
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Open Source Integration Node

The Open Source Integration node enables the writing and use of R code in Enterprise Miner. It transfers data
and results automatically between Enterprise Miner and R. All R packages must be installed in R before using
the Open Source Integration node.

The Open Source Integration node requires you to

® enable R language statements in the SASV9.cfg file
® match the appropriate versions of SAS, R, and the PMML R package.
The Open Source Integration node is verified to work with 64-bit R. (32-bit R is not recommended.) The

SYSCC=10 error indicates that the appropriate versions of SAS, R, and PMML are not being used. The user
should uninstall the PMML package (or R, or both) and download the appropriate version.

Output Mode

The Output mode specifies different ways that the output from the R code is available. Options are PMML,
Merge, or None. Output mode None is used primarily to debug the R code and ensure that it is working
properly. The log provides more detail about errors when output mode None is specified.

PMML

Predictive Modeling Markup Language (PMML) is an open standard that enables certain R models to be
translated into SAS DATA step code.

Here are the currently supported R models:

® linear models (Im)

® multinomial log-linear models (multinom)
® generalized linear models (glm)

® decision trees (rpart)

® neural networks (nnet)

® K-means clustering (kmeans)

Merge

Merging the output mode enables integration with the thousands of R packages that are not supported in the
PMML output mode. Variables created in R are merged with the SAS Enterprise Miner data source by the
user. SAS DATA step code is not created.

The Merge mode is commonly used when applying the predict() function to the R model object. The predict()
function returns results and merges the results to the workflow data set.

Variable Handles

Enterprise Miner variable handles are used to efficiently create an R script. The words NUM and CLASS in a
variable handle refer to numeric or categorical variables. A single INPUT variable handle refers to the entire
set of numeric or categorical variables to be used as inputs.

Here are the variable handles:

® &EMR_MODEL—refers to the R model object.
® &EMR_NUM_TARGET and &EMR_CLASS_TARGET—refer to the response variable.
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® &EMR_NUM_INPUT and &EMR_CLASS_INPUT—refer to the input variables.

® &EMR_IMPORT_DATA—refers to the workflow data set.

Select the Code Editor ellipsis to create the R script as shown in Figure 8.6

Figure 8.6: Code Editor

_aiate:
Code Edkor
Languaze H
Traring Mode supervized
DUt Mode PrML

Program 8.7 shows an example of R script without variable handles, while Program 8.8 shows an example of R
script with variable handles.

Program 8.7: R Script Without Variable Handles

&EMR MODEL <- Im(rY ~ X1 + X2 + X3 +
Cl + C2 + C3, data =&EMR IMPORT DATA)

Program 8.8: R Script With Variable Handles

&EMR MODEL <- 1m(&EMR NUM TARGET ~
&EMR NUM INPUT + &EMR CLASS INPUT,

data=&EMR_IMPORT DATA)

Tip: The &EMR_MODEL and &EMR_IMPORT_DATA variable handles must be used.




248 SAS Programming for R Users

Exercises

Multiple Choice
1. Choose the correct statements. Select all that apply.

a.

b
C.
d

R can be called from Base SAS, SAS/IML, and SAS Enterprise Miner.
-RLANG must be added to the SAS configuration file.

PROC OPTIONS is used to test the SAS and R connection.

You should leave SAS open when altering the configuration file.

2. The code below prints the first column of the data frame in the SAS Results Viewer.

call ExportDataSetToR("dog", "rmatrix");

submit;
rmatrix[,1]

endsubmit;
a. True
b. False

3. Variable handles must be used in SAS Enterprise Miner.

a. True
b. False

Programming Exercise

1. Comparing Multiple Regression Estimates in SAS and R

a.

Begin by invoking PROC IML and exporting the fish data set to R as a data frame with the name
Fish.

Fit a linear model with Weight as the dependent variable and Height and Width as the
independent variables using the Im() function. Store the object and use the summary() function
to print model estimates.

Import the parameter estimates into an IML matrix. Recall that the parameter estimates are
stored under the name Coefficients in the R object.

Run the same analysis in SAS using PROC REG. Output the parameter estimates using the
OUTEST= option in the PROC REG statement.

Import the SAS coefficients into IML using the USE, READ, and CLOSE statements.

Print the SAS coefficients and R coefficients side by side along with the difference between the
estimates.

SAS COEFFICIENTS R_COEFFICIENTS DIFFERENCE

-433.6525 -433.6525 -5.12E-13
5.5068475 5.5068475 -7.66E-13
177.44357 177.44357 1.648BE-12
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Solutions

Multiple Choice

1. a,b,andc. Youcan call R from three separate environments: Base SAS using the DATA step, SAS/IML,
and SAS Enterprise Miner using the Open Source Integration Node. In order for SAS and R to
communicate you must add the —RLANG syntax to your SAS configuration file. Because SAS calls this
file when you open a new session, you should close SAS when you make this change. To ensure SAS
and R are connected you can use the OPTIONS procedure to test your connection.

2. b.Remember to use the / R option in the SUBMIT statement to send all code between the SUBMIT
and ENDSUBMIT statements to R.

3. a. The object must be specified as &EMR_MODEL.

Programming Exercise
1. Comparing Multiple Regression Estimates in SAS and R

a. Begin by invoking PROC IML and exporting the fish data set to R as a data frame with the name
Fish.

proc iml;
call ExportDataSetToR ("spdr.fish","fish");

b. Fit a linear model with Weight as the dependent variable and Height and Width as the
independent variables using the Im() function. Store the object and use the summary() function
to print model estimates.

submit / r;
fit <- Im(Weight ~ Height + Width, data=fish)
summary (fit)

endsubmit;

Call:
lm(formula = Weight ~ Height + Width, data = fish)

Residuals:
Min 1@ Median 30 Max
-249.90 -98.50 -46.03 57.34 890.57

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -433.653 37.020 -11.714 <2e-16 ===
Height 5.507 5.086 1.083 0.281
Width 177.444 12.884 13.773 <2e-16 ***
Signif. codes: 0 '***=' Q.001 '**=' Q.01 '*' 0,05 '.' 0.1 ' ' 1

Residual standard error: 166 on 155 degrees of freedom

(1 observation deleted due to missingness)
Multiple R-squared: 0.7891, Adjusted R-squared: 0.7864
F-statistic: 290 on 2 and 155 DF, p-value: < 2.2e-16

c. Import the parameter estimates into an IML matrix. Recall that the parameter estimates are
stored under the name Coefficients in the R object.

| call ImportMatrixFromR (r Coefficients,"fit$coefficients");

d. Run the same analysis in SAS using PROC REG. Output the parameter estimates using the
OUTEST= option in the PROC REG statement.

submit;
ods select none;
proc reg data=sp4r.fish outest=spdr.betas;
model weight = height width;
run; quit;
ods select default;
endsubmit;
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e. Import the SAS coefficients into IML using the USE, READ, and CLOSE statements.

use spédr.betas;
read all var {intercept height width} into sas Coefficients;
close spédr.betas;

f.  Print the SAS coefficients and R coefficients side by side along with the difference between the
estimates.

coefficients = sas coefficients’ || r coefficients |
(sas_coefficients’® - r coefficients);

reset noname;
coefficientNames = {SAS Coefficients R Coefficients
Difference};
print coefficients[colname=coefficientNames];
quit;

SAS_COEFFICIENTS R_COEFFICIENTS DIFFERENCE

-433.6525 -433.6525 -5.12E-13
5.5068475 5.5068475 -7.66E-13
177.44357 177.44357 1.648E-12
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