

The correct bibliographic citation for this manual is as follows: Blanchard, Robert 2020. Deep Learning for Computer
Vision with SAS®: An Introduction. Cary, NC: SAS Institute Inc.

Deep Learning for Computer Vision with SAS®: An Introduction

Copyright © 2020, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-64295-972-7 (Hardcover)
ISBN 978-1-64295-915-4 (Paperback)
ISBN 978-1-64295-916-1 (PDF)
ISBN 978-1-64295-917-8 (EPUB)
ISBN 978-1-64295-918-5 (Kindle)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of
the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor
at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in
or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer
software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government.
Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this
Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4,
and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC
2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is
required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall
be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

June 2020

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software,
which is licensed under its applicable third-party software license agreement. For license information about third-party
software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Contents

About This Book .. v

About The Author .. vii

Chapter 1: Introduction to Deep Learning ... 1
Introduction to Neural Networks ..1
Biological Neurons ..2
Deep Learning ...4
Traditional Neural Networks versus Deep Learning .. 17
Building a Deep Neural Network ... 19
Demonstration 1: Loading and Modeling Data with Traditional Neural Network Methods 21
Demonstration 2: Building and Training Deep Learning Neural Networks Using CASL Code 28

Chapter 2: Convolutional Neural Networks .. 39
Introduction to Convoluted Neural Networks ... 39
Input Layers .. 40
Convolutional Layers ... 41
Using Filters .. 42
Padding ... 45
Feature Map Dimensions .. 48
Pooling Layers .. 49
Traditional Layers .. 51
Demonstration 1: Loading and Preparing Image Data .. 54
Demonstration 2: Building and Training a Convolutional Neural Network ... 57

Chapter 3: Improving Accuracy ... 71
Introduction ... 71
Architectural Design Strategies ... 72
Image Preprocessing and Data Enrichment .. 81
Transfer Learning Introduction .. 94
Domains and Subdomains .. 95
Types of Transfer Learning ... 96
Transfer Learning Biases .. 97
Transfer Learning Strategies ... 98
Customizations with FCMP ... 99
Tuning a Deep Learning Model ... 100

iv Deep Learning for Computer Vision with SAS: An Introduction

Chapter 4: Object Detection ... 107
Introduction ... 107
Types of Object Detection Algorithms .. 108
Data Preparation and Prediction Overview... 109
Normalized Locations ... 110
Multi-Loss Error Function ... 111
Error Function Scalars .. 113
Anchor Boxes ... 115
Final Convolution Layer .. 117
Demonstration: Using DLPy to Access SAS Deep Learning Technologies: Part 1 .. 117
Demonstration: Using DLPy to Access SAS Deep Learning Technologies: Part 2 .. 119

Chapter 5: Computer Vision Case Study ... 127

References ... 139

About This Book

What Does This Book Cover?
Deep learning is an area of machine learning that has become ubiquitous with artificial intelligence.
The complex, brain-like structure of deep learning models is used to find intricate patterns in large
volumes of data. These models have heavily improved the performance of general supervised
models, time series, speech recognition, object detection and classification, and sentiment analysis.

SAS has a rich set of established and unique capabilities with regard to deep learning. This book
introduces the basics of deep learning with a focus on computer vision. The book details and
demonstrates how to build computer vision models using SAS software. Both the “art” and science
behind model building is covered.

Is This Book for You?
The general audience for this book should be either SAS or Python programmers with knowledge of
traditional machine learning methods.

What Should You Know about the Examples?
This book includes tutorials for you to follow to gain hands-on experience with SAS.

Software Used to Develop the Book's Content
To follow along with the demos in this book, you will need the following software:

• SAS Viya (VDMML)

• SAS Studio

• Python

Example Code and Data
You can access the example code and data for this book by linking to its author page at
https://support.sas.com/blanchard or on GitHub at https://github.com/sassoftware.

https://support.sas.com/blanchard
https://github.com/sassoftware

vi Deep Learning for Computer Vision with SAS: An Introduction

We Want to Hear from You
SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their
development and your feedback on SAS Press books that you are using. Please visit sas.com/books to
do the following:

● Sign up to review a book
● Recommend a topic
● Request information on how to become a SAS Press author
● Provide feedback on a book

Do you have questions about a SAS Press book that you are reading? Contact the author through
saspress@sas.com or https://support.sas.com/author_feedback.

SAS has many resources to help you find answers and expand your knowledge. If you need additional
help, see our list of resources: sas.com/books.

Learn more about this author by visiting his author page https://support.sas.com/blanchard. There
you can download free book excerpts, access example code and data, read the latest reviews, get
updates, and more.

http://www.sas.com/books
mailto:saspress@sas.com
https://support.sas.com/author_feedback
http://www.sas.com/books
https://support.sas.com/blanchard

About The Author
Robert Blanchard is a Senior Data Scientist at SAS where he builds end-
to-end artificial intelligence applications. He also researches, consults,
and teaches machine learning with an emphasis on deep learning and
computer vision for SAS. Robert has authored several professional
courses on topics including neural networks, deep learning, and
optimization modeling. Before joining SAS, Robert worked under the
Senior Vice Provost at North Carolina State University, where he built
models pertaining to student success, faculty development, and

resource management. While working at North Carolina State University, Robert also started a
private analytics company that focused on predicting future home sales. Prior to working in
academia, Robert was a member of the research and development group on the Workforce
Optimization team at Travelers Insurance. His models at Travelers focused on forecasting and
optimizing resources. Robert graduated with a master’s degree in Business Analytics and Project
Management from the University of Connecticut and a master’s degree in Applied and Resource
Economics from East Carolina University.

Learn more about this author by visiting his author page https://support.sas.com/blanchard. There
you can download free book excerpts, access example code and data, read the latest reviews, get
updates, and more.

https://support.sas.com/blanchard

viii

Chapter 1: Introduction to Deep Learning
Introduction to Neural Networks .. 1
Biological Neurons .. 2

Mathematical Neurons .. 2
Deep Learning ... 4

Batch Gradient Descent ... 8
Stochastic Gradient Descent .. 9
Introduction to ADAM Optimization .. 10
Weight Initialization... 11
Regularization .. 13
Batch Normalization .. 15
Batch Normalization with Mini-Batches ... 16

Traditional Neural Networks versus Deep Learning ... 17
Deep Learning Actions ... 18

Building a Deep Neural Network ... 19
Training a Deep Learning CAS Action Model ... 21

Demonstration 1: Loading and Modeling Data with Traditional Neural Network Methods 21
Demonstration 2: Building and Training Deep Learning Neural Networks Using CASL Code 28

Introduction to Neural Networks
Artificial neural networks mimic key aspects of the brain, in particular, the brain’s ability to learn
from experience. In order to understand artificial neural networks, we first must understand
some key concepts of biological neural networks, in other words, our own biological brains.

A biological brain has many features that would be desirable in artificial systems, such as the
ability to learn or adapt easily to new environments. For example, imagine you arrive at a city in
a country that you have never visited. You don't know the culture or the language. Given enough
time, you will learn the culture and familiarize yourself with the language. You will know the
location of streets, restaurants, and museums.

The brain is also highly parallel and therefore very fast. It is not equivalent to one processor, but
instead it is equivalent to a multitude of millions of processors, all running in parallel. Biological
brains can also deal with information that is fuzzy, probabilistic, noisy, or inconsistent, all while
being robust, fault tolerant, and relatively small. Although inspired by cognitive science (in
particular, neurophysiology), neural networks largely draw their methods from statistical physics
(Hertz et al. 1991). There are dozens, if not hundreds, of neural network algorithms.

2 Deep Learning for Computer Vision with SAS: An Introduction

Biological Neurons
In order to imitate neurons in artificial systems, first their mechanisms needed to be understood.
There is still much to be learned, but the key functional aspects of neurons, and even small
systems (networks) of neurons, are now known.

Neurons are the fundamental units of cognition, and they are responsible for sending
information from the brain to the rest of the body. Neurons have three parts: a cell body,
dendrites, and axons. Inputs arrive in the dendrites (short branched structures) and are
transmitted to the next neuron in the chain via the axons (a long, thin fiber). Neurons do not
actually touch each other but communicate across the gap (called a synaptic gap) using
neurotransmitters. These chemicals either excite the receiving neuron, making it more likely to
“fire,” or they inhibit the neuron, making it less likely to become active. The amount of
neurotransmitter released across the gap determines the relative strength of each dendrite’s
connection to the receiving neuron. In essence, each synapse “weights” the relative strength of
its arriving input. The synaptically weighted inputs are summed. If the sum exceeds an adaptable
threshold (or bias) value, the neuron sends a pulse down its axon to the other neurons in the
network to which it connects.

A key discovery of modern neurophysiology is that synaptic connections are adaptable; they
change with experience. The more active the synapse, the stronger the connection becomes.
Conversely, synapses with little or no activity fade and, eventually, die off (atrophy). This is
thought to be the basis of learning. For example, a study from the University of Wisconsin in
2015 showed that people could begin to "see" with their tongue. Attached to the electric grid
was a camera that was fastened to the subject's forehead. The subject was blindfolded.
However, within 30 minutes, as their neurons adapted, subjects began to "see" with their
tongue. Amazing!

Although there are branches of neural network research that attempt to mimic the underlying
biological processes in detail, most neural networks do not try to be biologically realistic.

Mathematical Neurons
In a seminal paper with the rather understated title “A logical calculus of the ideas immanent in
nervous activity,” McCulloch and Pitts (1943) gave birth to the field of artificial neural networks.
The fundamental element of a McCulloch-Pitts network is called, unsurprisingly, a McCulloch-
Pitts neuron. As in real neurons, each input (xi) is first weighted (wi) and then summed. To mimic
a neuron’s threshold functionality, a bias value (w0) is added to the weighted sum, predisposing
the neuron to either a positive or negative output value. The result is known as the neuron’s net
input:

∑
=

+=
k

i
ii xwwnet

1
0

Notice that this is the classic linear regression equation, where the bias term is the y-intercept
and the weight associated with each input is the input’s slope parameter.

Chapter 1: Introduction to Deep Learning 3

The original McCulloch-Pitts neuron’s final output was determined by passing its net input value
through a step function (a function that converts a continuous value into a binary output 0 or 1,
or a bipolar output -1 or 1), turning each neuron into a linear classifier/discriminator. Modern
neurons replace the discontinuous step function used in the McCulloch-Pitts neuron with a
continuous function. The continuous nature permits the use of derivatives to explore the
parameter space.

0
1

d

i i
i

H f w w x
=

 = +

∑

The mathematical neuron is considered the cornerstone of a neural network. There are three
layers in the basic multilayer perceptron (MLP) neural network:

1. An input layer containing a neuron/unit for each input variable. The input layer neurons
have no adjustable parameters (weights). They simply pass the positive or negative
input to the next layer.

2. A hidden layer with hidden units (mathematical neurons) that perform a nonlinear
transformation of the weighted and summed input activations.

3. An output layer that shapes and combines the nonlinear hidden layer activation values.

A single hidden-layer multilayer perceptron constructs a limited extent region, or bump, of large
values surrounded by smaller values (Principe et al. 2000). The intersection of the hyper-planes
created by a hidden layer consisting of three hidden units, for example, forms a triangle-shaped
bump.

The hidden and output layers must not be connected by a strictly linear function in order to act
as separate layers. Otherwise, the multilayer perceptron collapses into a linear perceptron. More
formally, if matrix A is the set of weights that transforms input matrix X into the hidden layer
output values, and matrix B is the set of weights that transforms the hidden unit output into the
final estimates Y, then the linearly connected multilayer network can be represented as
Y=B[A(X)]. However, if a single-layer weight matrix C=BA is created, exactly the same output can
be obtained from the single-layer network—that is, Y=C(X).

In a two-layer perceptron with k inputs, h1 hidden units in the first hidden layer, and h2 hidden
units in the second hidden layer, the number of parameters to be learned is ℎ1(𝑘𝑘 + 1) +
ℎ2(ℎ1 + 1) = ℎ2 = 1.

The number 1 represents the biased weight W0 in the combination function of each neuron.

4 Deep Learning for Computer Vision with SAS: An Introduction

Figure 1.1: Multilayer Perceptron

Note: The “number of parameters” equations in this book assume that the inputs are
interval or ratio level. Each nominal or ordinal input increases k by the number of classes in
the variable, minus 1.

Deep Learning
The term deep learning refers to the numerous hidden layers used in a neural network.
However, the true essence of deep learning is the methods that enable the increased extraction
of information derived from a neural network with more than one hidden layer. Adding more
hidden layers to a neural network provides little benefit without deep learning methods that
underpin the efficient extraction of information. For example, SAS software has had the
capability to build neural networks with many hidden layers using the NEURAL procedure for
several decades. However, a case can be made to suggest that SAS has not had deep learning
because the key elements that enable learning to persist in the presence of many hidden layers
had not been discovered. These elements include the use of the following:

● activation functions that are more resistant to saturation than conventional activation
functions

● fast moving gradient-based optimizations such as Stochastic Gradient Descent and
ADAM

● weight initializations that consider the amount of incoming information

● new regularization techniques such as dropout and batch normalization

● innovations in distributed computing.

The elements outlined above are included in today’s SAS software and are described below.
Needless to say, deep learning has shown impressive promise in solving problems that were
previously considered infeasible to solve.

Chapter 1: Introduction to Deep Learning 5

The process of deep learning is to formulate an outcome from engineering new glimpses of the
input space, and then reengineering these engineered projections with the next hidden layer.
This process is repeated for each hidden layer until the output layers are reached. The output
layers reconcile the final layer of incoming hidden unit information to produce a set of outputs.
The classic example of this process is facial recognition. The first hidden layer captures shades of
the image. The next hidden layer combines the shades to formulate edges. The next hidden layer
combines these edges to create projections of ears, mouths, noses, and other distinct aspects
that define a human face. The next layer combines these distinct formulations to create a
projection of a more complete human face. And so on. A brief comparison of traditional neural
networks and deep learning is shown in Table 1.1.

Table 1.1: Traditional Neural Networks versus Deep Learning

Aspect Traditional Deep Learning

Hidden activation
function(s)

Hyperbolic Tangent (tanh)
Rectified Linear (ReLU)
and other variants

Gradient-based
learning

Batch GD and
BFGS

Stochastic GD,
Adam, and LBFGS

Weight initialization Constant Variance Normalized Variance

Regularization
Early Stopping, L1,
and L2

Early Stopping, L1, L2,
Dropout, and Batch
Normalization

Processor CPU CPU or GPU

Deep learning incorporates activation functions that are more resistant to neuron saturation
than conventional activation functions. One of the classic characteristics of traditional neural
networks was the infamous use of sigmoidal transformations in hidden units. Sigmoidal
transformations are problematic for gradient-based learning because the sigmoid has two
asymptotic regions that can saturate (that is, gradient of the output is near zero). The red or
deeper shaded outer areas represent areas of saturation. See Figure 1.2.

6 Deep Learning for Computer Vision with SAS: An Introduction

Figure 1.2: Hyperbolic Tangent Function

On the other hand, a linear transformation such as an identity poses little issue for gradient-
based learning because the gradient is a constant. However, the use of linear transformations
negates the benefits provided by nonlinear transformations (that is, approximate nonlinear
relationships).

Rectified linear transformation (or ReLU) consists of piecewise linear transformations that, when
combined, can approximate nonlinear functions. (See Figure 1.3.)

Figure 1.3: Rectified Linear Function

In the case of ReLU, the derivative for the active region output by the transformation is 1 and 0
for the inactive region. The inactive region of the ReLU transformation can be viewed as a
weakness of the transformation because it inhibits the unit from contributing to gradient-based
learning.

The saturation of ReLU could be somewhat mitigated by cleverly initializing the weights to avoid
negative output values. For example, consider a business scenario of modeling image data. Each
unstandardized input pixel value ranges between 0 and 255. In this case, the weights could be

Chapter 1: Introduction to Deep Learning 7

initialized and constrained to be strictly positive to avoid negative output values, avoiding the
non-active output region of the ReLU.

Other variants of the rectified linear transformation exist that permit learning to continue when
the combination function resolves to a negative value. Most notable of these is the exponential
linear activation transformation (ELU) as shown in Figure 1.4.

Figure 1.4: Exponential Linear Function

SAS researchers have observed better performance when ELU is used instead of ReLU in
convolutional neural networks in some cases. SAS includes other, popular activation functions
that are not shown here, such as softplus and leaky. Additionally, you can create your own
activation functions in SAS using the SAS Function Compiler (or FCMP).

Note: Convolutional neural networks (CNNs) are a class of artificial neural networks. CNNs
are widely used in image recognition and classification. Like regular neural networks, a CNN
consists of multiple layers and a number of neurons. CNNs are well suited for image data,
but they can also be used for other problems such as natural language processing. CNNs are
detailed in Chapter 2.

The error function defines a surface in the parameter space. If it is a linear model fit by least
squares, the error surface is convex with a unique minimum. However, in a nonlinear model, this
error surface is often a complex landscape consisting of numerous deep valleys, steep cliffs, and
long-reaching plateaus.

To efficiently search this landscape for an error minimum, optimization must be used. The
optimization methods use local features of the error surface to guide their descent. Specifically,
the parameters associated with a given error minimum are located using the following
procedure:

1. Initialize the weight vector to small random values, w(0).
2. Use an optimization method to determine the update vector, δ(t).

8 Deep Learning for Computer Vision with SAS: An Introduction

3. Add the update vector to the weight values from the previous iteration to generate new
estimates:

)()()1(δww ttt +=+)()()1(δww ttt +=+

4. If none of the specified convergence criteria have been achieved, then go back to step
2.

Here are the three conditions under which convergence is declared:

1. when the specified error function stops improving
2. if the gradient has no slope (implying that a minimum has been reached)
3. if the magnitude of the parameters stops changing substantially

Batch Gradient Descent
Re-invented several times, the back propagation (backprop) algorithm initially just used gradient

descent to determine an appropriate set of weights. The gradient,
)(tg∇ , is the vector of partial

derivatives of the error function with respect to the weights. It points in the steepest direction
uphill. (See Figure 1.5.)

Figure 1.5: Batch Gradient Descent

By negating the step size (that is, learning rate) parameter,η, a step is made in the direction that
is locally steepest downhill:

)()(tt gδ ∇−= η

Chapter 1: Introduction to Deep Learning 9

The parameters associated with a given error minimum are located using the following
procedure:

1. Initialize the weight vector to small random values, w(0).
2. Use an optimization method to determine the update vector, δ(t).
3. Add the update vector to the weight values from the previous iteration to generate new

estimates:
)()()1(δww ttt +=+)()()1(δww ttt +=+

5. If none of the specified convergence criteria has been achieved, then back go to step 2.

Unfortunately, as gradient descent approaches the desired weights, it exhibits numerous back-
and-forth movements known as hemstitching. To control the training iterations wasted in this
hemstitching, later versions of back propagation included a momentum term, yielding the
modern update rule:

)1()()(−+∇−= ttt δgδ αη

The momentum term retains the last update vector, δ(t-1), using this information to “dampen”
potentially oscillating search paths. The cost is an extra learning rate parameter (0 ≤ α ≤ 1) that
must be set. This updated rule uses all the training observations (t) to calculate the exact
gradient on each descent step. This results in a smooth progression to the gradient minima.

Stochastic Gradient Descent
In the batch variant of the gradient descent algorithm, generation of the weight update vector is
determined by using all of the examples in the training set. That is, the exact gradient is
calculated, ensuring a relatively smooth progression to the error minima.

However, when the training data set is large, computing the exact gradient is computationally
expensive. The entire training data set must be assessed on each step down the gradient.
Moreover, if the data are redundant, the error gradient on the second half of the data will be
almost identical to the gradient on the first half. In this event, it would be a waste of time to
compute the gradient on the whole data set. You would be better off computing the gradient on
a subset of the weights, updating the weights, and then repeating on a new subset. In this case,
each weight update is based on an approximation to the true gradient. But as long as it points in
approximately the same direction as the exact gradient, the approximate gradient is a useful
alternative to computing the exact gradient (Hinton 2007).

Taken to extremes, calculation of the approximate gradient can be based on a single training
case. The weights are then updated, and the gradient is calculated on the next case. This is
known as stochastic gradient descent (also known as online learning). (See Figure 1.6.)

10 Deep Learning for Computer Vision with SAS: An Introduction

Figure 1.6: Stochastic Gradient Descent

Stochastic gradient descent is very effective, particularly when combined with a momentum
term, δ(t-1):

)1()()(−+∇−= ttt δgδ αη

Because stochastic gradient descent does not need to consider the entire training data set when
calculating each descent step’s gradient, it is usually faster than batch gradient descent.
However, because each iteration is trying to better fit a single observation, some of the gradients
might actually point away from the minima. This means that, although stochastic gradient
descent generally moves the parameters in the direction of an error minima, it might not do so
on each iteration. The result is a more circuitous path. In fact, stochastic gradient descent does
not actually converge in the same sense as batch gradient descent does. Instead, it wanders
around continuously in some region that is close to the minima (Ng, 2013).

Introduction to ADAM Optimization
The ADAM method applies adjustments to the learned gradients for each individual model
parameter in an adaptive manner by approximating second-order information about the
objective function based on previously observed mini-batch gradients. The “adaptive
movement” nature of the algorithm’s movement is where the name ADAM comes from (Kingma
and Ba, 2014).

The ADAM method introduces two new hyperparameters to the mix, (
1
tβ) and (

2
tβ) where t

represents the iteration count. A learning rate that controls the originating step size is also
included. The adjustable beta terms are used to approximate a signal-to-noise ratio that is used
to scale the step size. When the approximated single-to-noise ratio is large, the step size is closer
to the originating step size (that of traditional stochastic gradient descent).

Chapter 1: Introduction to Deep Learning 11

When the approximated single-to-noise ratio is small, the step size is near zero. This is a nice
feature because a lower single-to-noise ratio is an indication of higher uncertainty. Thus, more
cautious steps should be taken in the parameter space (Kingma and Ba 2014).

To use ADAM, specify 'ADAM' in the METHOD= suboption of the ALGORITHM= option in the
OPTIMIZER parameter. The suboptions for β1 and β2, as well as the α and other options, also
need to be specified. In the example code below, β1 = .9, β2 = .999 and α = .001.

optimizer={algorithm={method='ADAM',
 beta1=0.9,
 beta2=0.999,
 learningrate=.001,
 lrpolicy='Step',
 gamma=0.5},
 minibatchsize=100,
 maxepochs=200}

Note: The authors of ADAM recommend a β1 value of .9, a β2 value of .999, and an α
(learning rate) of .001.

Weight Initialization
Deep learning uses different methods of weight initialization than traditional neural networks
do. In neural networks, the hidden unit weights are randomly initialized to ensure that each
hidden unit is approximating different areas of relationship between the inputs and the output.
Otherwise, each hidden unit would be approximating the same relational variations if the
weights across hidden units were identical, or even symmetric. The hidden unit weights are
usually randomly initialized to some specified distribution, commonly Gaussian or Uniform.

Traditional neural networks use a standard variance for the randomly initialized hidden unit
weights. This can become problematic when there is a large amount of incoming information
(that is, a large number of incoming connections) because the variance of the hidden unit will
likely increase as the amount of incoming connections increases. This means that the output of
the combination function could be more extreme, resulting in a saturated hidden unit (Daniely et
al. 2017).

Deep learning methods use a normalized initialization in which the variance of the hidden
weights is a function of the amount of incoming information and outgoing information. SAS
offers several methods for reducing the variance of the hidden weights. Xavier initialization is
one of the most common weight initialization methods used in deep learning. The initialization
method is random uniform with variance

,
6 6~ (,)i jw U

m n m n
−

+ +

where m is the number of input connections (fan-in) and n is the number of output connections
(fan-out) (hidden units in current layer).

12 Deep Learning for Computer Vision with SAS: An Introduction

One potential flaw of the Xavier initialization is that the initialization method assumes a linear
activation function, which is typically not the case in hidden units. MSRA was designed with the
ReLU activation function in mind because MSRA operates under the assumption of a nonzero
mean output by the activation, which is exhibited by ReLU (He et al. 2015). The MSRA
initialization method is random Gaussian distribution with a standardization of

2
()avg m n+

SAS includes a second variant of the MSRA, called MSRA2. Similar to the MSRA initialization, the
MSRA2 method is a random Gaussian distribution with a standardization of

2
n

And it penalizes only for outgoing (fan-out) information.

Note: Weight initializations have less impact over model performance if batch
normalization is used because batch normalization standardizes information passed
between hidden layers. Batch normalization is discussed later in this chapter.

Consider the following simple example where unit y is being derived from 25 randomly initialized
weights. The variance of unit y is larger when the standard deviation is held constant at 1. This
means that the values for y are more likely to venture into a saturation region when a nonlinear
activation function is incorporated. On the other hand, Xavier’s initialization penalizes the
variance for the incoming and outgoing connections, constraining the value of y to less
treacherous regions of the activation. See Figures 1.7 and 1.8, noting that these examples
assume that there are 25 incoming and outgoing connections.

Chapter 1: Introduction to Deep Learning 13

Figure 1.7: Constant Variance (Standard Deviation = 1)

Figure 1.8: Constant Variance (Standard Deviation =� 𝟔𝟔
𝟐𝟐𝟐𝟐+𝟐𝟐𝟐𝟐

≈.𝟑𝟑𝟑𝟑)

Regularization
Regularization is a process of introducing or removing information to stabilize an algorithm’s
understanding of data. Regularizations such as early stopping, L1, and L2 have been used
extensively in neural networks for many years. These regularizations are still widely used in deep
learning, as well. However, there have been advancements in the area of regularization that

14 Deep Learning for Computer Vision with SAS: An Introduction

work particularly well when combined with multi-hidden layer neural networks. Two of these
advancements, dropout and batch normalization, have shown significant promise in deep
learning models. Let’s begin with a discussion of dropout and then examine batch normalization.

Dropout adds noise to the learning process so that the model is more generalizable. Training an
ensemble of deep neural networks with several hundred thousand parameters each might be
infeasible. As seen in Figure 1.9, dropout adds noise to the learning process so that the model is
more generalizable.

Figure 1.9: Regularization Techniques

The goal of dropout is to approximate an ensemble of many possible model structures through a
process that perturbs the learning in an attempt to prevent weights from co-adapting. For
example, imagine we are training a neural network to identify human faces, and one of the
hidden units used in the model sufficiently captures the mouth. All other hidden units are now
relying, at least in some part, on this hidden unit to help identify a face through the presence of
the mouth. Removing the hidden unit that captures the mouth forces the remaining hidden units
to adjust and compensate. This process pushes each hidden unit to be more of a “generalist”
than a “specialist” because each hidden unit must reduce its reliance on other hidden units in
the model.

During the process of dropout, hidden units or inputs (or both) are randomly removed from
training for a period of weight updates. Removing the hidden unit from the model is as simple as
multiplying the unit’s output by zero. The removed unit’s weights are not lost but rather frozen.
Each time that units are removed, the resulting network is referred to as a thinned network.
After several weight updates, all hidden and input units are returned to the network. Afterward,
a new subset of hidden or input units (or both) are randomly selected and removed for several
weight updates. The process is repeated until the maximum training iterations are reached or
the optimization procedure converges.

In SAS Viya, you can specify the DROPOUT= option in an ADDLAYER statement to implement
dropout. DROPOUT=ratio specifies the dropout ratio of the layer.

Chapter 1: Introduction to Deep Learning 15

Below is an example of dropout implementation in an ADDLAYER statement.

AddLayer/model='DLNN' name="HLayer1" layer={type='FULLCONNECT' n=30
 act='ELU' init='xavier' dropout=.05} srcLayers={"data"};

Note: The ADDLAYER syntax is described shortly and further expanded upon throughout
this book.

Batch Normalization
The batch normalization (Ioffe and Szegedy, 2015) operation normalizes information passed
between hidden layers per mini-batch by performing a standardizing calculation to each piece of
input data. The standardizing calculation subtracts the mean of the data and then divides by the
standard deviation. It then follows this calculation by multiplying the data by the value of a
learned constant and then adding the value of another learned constant.

Thus, the normalization formula is

*()iX µγ β
σ
−

+

where gamma ()γ and beta ()β are learnable parameters.

Some deep learning practitioners have dismissed the use of sigmoidal activations in the hidden
units. Their dismissal might have been premature, however, with the discovery of batch
normalization. Without batch normalization, each hidden layer is, in essence, learning from
information that is constantly changing when multiple hidden layers are present in a neural
network. That is, a weight update is reliant on second-order, third-order (and so on) effects
(weights in the other layers). This phenomenon is known as the internal covariance shift (ICS)
(Ioffe and Szegedy, 2015).

There are two schools of thought as to why batch normalization improves the learning process.
The first comes from Ioffe and Szegedy who believe batch normalization reduces ICS. The second
comes from Santurkar, Tsipras, Ilyas, and Madry who argue that batch normalization is not really
reducing ICS but is instead smoothing the error landscape (Santurkar, Tsipras, Ilyas, and Madry
2018). Regardless of which thought prevails, batch normalization has empirically shown to
improve the learning process and reduce neuron saturation.

In the SAS deep learning actions, batch normalization is implemented as a separate layer type
and can be placed anywhere after the input layer and before the output layer.

Note: With regard to convolutional neural networks, the batch normalization layer is
typically inserted after a convolution or pooling layer.

16 Deep Learning for Computer Vision with SAS: An Introduction

Batch Normalization with Mini-Batches
In the case where the source layer to a batch normalization layer contains feature maps, the
batch normalization layer computes statistics based on all of the pixels in each feature map, over
all of the observations in a mini-batch. For example, suppose that your network is configured for
a mini-batch size of 3, and the input to the batch normalization layer consists of two 5 x 5
feature maps. In this case, the batch normalization layer computes two means and two standard
deviations. The first mean would be the mean of all the pixels in the first feature map for the
first observation, the first feature map of the second observation, and the first feature map of
the third observation. The second mean would be the mean of all of the pixels in the second
feature map of the first observation, the second feature map of the second observation, and the
second feature map of the third observation, and so on. Numerically, each mean would be the
mean of (3 x 5 x 5) = 75 values.

In the case where the source layer to a batch normalization layer does not contain feature maps
(for example, a fully connected layer), then the batch normalization layer computes statistics for
each neuron in the input, rather than for each feature map in the input. For example, suppose
that your network has a mini-batch size of 3, and the input to the batch normalization layer
contains 50 neurons. In this case, the batch normalization layer would compute 50 means and 50
standard deviations. The first mean would be the mean of the first neuron of the first
observation, the first neuron of the second observation, and the first neuron of the third
observation. The second mean would be the mean of the second neuron of the first observation,
the second neuron of the second observation, and the second neuron of the third observation,
and so on. Numerically, each mean would be the mean of three values. NVIDIA refers to this
calculation as per activation mode.

In order for the batch normalization computations to conform to those described in Sergey Ioffe
and Christian Szegedy’s batch normalization research (Ioffe and Szegedy, 2015), the source layer
should have settings of ACT=IDENTITY and INCLUDEBIAS=FALSE. The activation function that
would normally have been specified in the source layer should instead be specified on the batch
normalization layer. If you do not configure your model to follow these option settings, the
computation will still work, but it will not match the computation as described by Ioffe and
Szegedy.

When using multiple GPUs, efficient calculation of the batch normalization transform requires a
modification to the original algorithm specified by Ioffe and Szegedy. The algorithm specifies
that during training, you must calculate the mean and standard deviation of the pixel values in
each feature map, over all of the observations in a mini-batch.

However, when using multiple GPUs, the observations in the mini-batch are distributed over the
GPUs. It would be very inefficient to try to synchronize each GPU’s batch normalization
calculations for each batch normalization layer. Instead, each GPU calculates the required
statistics using a subset of available observations and uses those statistics to perform the
transformation on those observations.

Research communities are still debating whether small or large minibatch sizes yield better
performance. However, when a minibatch of observations is distributed across multiple GPUs,
and the model contains batch normalization layers, the deep learning team at SAS recommends

Chapter 1: Introduction to Deep Learning 17

that you use reasonably large-sized mini-batches on each GPU so that the statistics will be
stable.

In addition to calculating feature map statistics on each mini-batch, the batch normalization
algorithm also needs to calculate statistics over the entire training data set before saving the
training weights. These statistics are the ones used for scoring (whereas the mini-batch statistics
are used for training). Rather than perform an extra epoch at the end of training, the statistics
from each mini-batch are averaged over the course of the last training epoch to create the epoch
statistics.

The statistics computed in this way are a close approximation to the more complicated
computation that uses an extra epoch with fixed weights (as long as the weights in the last
epoch do not change much) after each mini-batch of the epoch. (This is usually the case for the
last training epoch.) When using multiple GPUs, this calculation is performed exactly the same
way as when using a single GPU. That is, the statistics for each mini-batch on each GPU are
averaged after each mini-batch to compute the final epoch statistics for scoring.

Traditional Neural Networks versus Deep Learning
Recall the differences between traditional neural networks and deep learning are shown in Table
1.2. Traditional neural networks leveraged the computation of a single central processing unit
(CPU) to train the model. However, graphical processing units (GPUs) have a design that
naturally fits well with the structure and learning process of neural networks. There have been
promising developments in the use of CPUs grouped together that use a fixed-point architecture
as opposed to a floating-point architecture (Vanhoucke et al. 2011). The details of the
distribution of computation is a deeply complex topic and remains outside the scope of this
book, although this brief comparison of CPUs to GPUs is provided in Table 1.2.

Table 1.2: Comparison of Central Processing Units and Graphical Processing Units

Central Processing Unit (CPU) Graphical Processing Unit (GPU)

Faster Clock Speed Slower Clock Speed

Fewer Processing Units More Processing Units

More Branching Less Branching

Less Memory Bandwidth More Memory Bandwidth

The optimization techniques used to adjust the weights of a neural network are iterative
processes. However, within each iteration, the weights are updated simultaneously. Therefore,
calculations corresponding to each weight update can be distributed among processing units.

18 Deep Learning for Computer Vision with SAS: An Introduction

GPUs are designed to perform many operations in parallel, which fits nicely with the weight
update process used by neural networks.

The use of GPUs should be reserved for larger neural networks because the difference in
performance between CPUs and GPUs is negligible in neural networks with a small number of
parameters.

Deep Learning Actions
As an integrated part of the SAS Platform, SAS Viya is a cloud-enabled, in-memory analytics
engine that provides quick, accurate, and reliable analytical insights. SAS Viya offers a rich set of
data mining and machine learning capabilities that run on a robust in-memory distributed
computing infrastructure that provides a single environment that is unified, open, powerful, and
cloud ready.

The SAS Cloud Analytic Services actions can be surfaced through SAS Viya on a number of
interfaces, including SAS Studio and Jupyter notebook.

This book highlights three of the deep learning actions in SAS Cloud Analytic Services (CAS):

● deep feed-forward neural network (DNN)

● convolutional neural network (CNN)

● recurrent neural network (RNN)

DNN actions are used to solve more traditional classification problems, such as fraud detection.
CNN actions are commonly used to build more advanced neural networks for either traditional
or computer vision data problems. An RNN is used to solve problems for data that is some
function of a sequence, such as time series or text analyses.

SAS deep learning actions can be called using several programming languages, including SAS, R,
and Python. This book focuses on the use of SAS to call Cloud Analytic Services through the CAS
procedure.

The CAS procedure enables you to interact with SAS Cloud Analytic Services from the SAS client
by providing a programming environment based on the CASL language specification. The
programming environment enables you to run CAS actions and use the results to prepare the
parameters for another action. Code is formatted as

PROC CAS;
 <CASL code>
Quit;

An example of this is

PROC CAS < exc >< noqueue >;
BuildModel/ modeltable={name="<Model table name >"}
 type="DNN";
Quit;

Chapter 1: Introduction to Deep Learning 19

For CNNs and RNNs, replace the type=“DNN” with type=“CNN” and type=“RNN”, respectively.

The CAS procedure has several features that enable you to perform the following operations:

● run any CAS action that is supported by the server, even if the action did not exist at the
time of the release

● use multiple sessions to perform asynchronous execution

● operate on parameters and results as variables using the full function expression parser

● import your own executables that define callable functions

Optional arguments such as those below can be used in the PROC CAS statement.

● EXC: Executes the CASL code as soon as the previous block of code has completed
processing. The default option does not execute CASL code until a RUN statement is
entered.

● NOQUEUE: Forces output to be displayed as soon as output is produced.

Note: Global statements, SAS macro code, and RUN statements do not terminate the CAS
procedure.

Building a Deep Neural Network
Deep neural networks can be created using the following code:

PROC CAS < exc ><noqueue >;
BuildModel/ modeltable={name="<model table name >"} type ="DNN";
AddLayer/
 modeltable="<model table name >"
 name="<name of layer >"
 layer={type="layer type"
 n="< number of hidden units >"
 act="< type of activation transformation >"
 init="< weight initialization method >"}
 srcLayers={"< previous layer name >"};
Quit;

The AddLayer action is used to add a layer to a deep learning neural network. Table 1.3 provides
examples of different types of layers that are used throughout the book.

20 Deep Learning for Computer Vision with SAS: An Introduction

Table 1.3: Layer Types

Type Details Example

INPUT Input Layer layer={type='input'}

CONVO/CONVOLUTION
Convolutional
Layer

layer={type='convolution' nFilters=32
width=5 height=5 stride=1 act='tanh' }

POOLING
Pooling Layer layer={type='pooling' width=2 height=2

stride=2}

FC/FULLCONNECT

Fully connected
Layer

layer={type='fullconnect' n=50
act='sigmoid' }

OUTPUT
Output Layer layer={type='output' act='softmax' }

RESIDUAL
Residual Layer layer={type='residual' }

BATCHNORM
Batch
Normalization

layer={type='batchnorm' act='ELU'}

CONCAT
Concatenation
Layer

layer={type='concat'}

FCMP

FCMP Layer layer={type='FCMP',
forwardFunc='forward_prop',
 backwardFunc='back_prop', height=1,
 width=40, depth=1, nweights=1280}

RECURRENT
Recurrent Layer layer={type='recurrent' n=50 act='sigmoid'

rnnType='gru'}

TRANSCONVO

Transpose
Convolution
Layer

layer={type='transconvon' Filters=32
width=5 height=5 stride=2 act='tanh' }

Chapter 1: Introduction to Deep Learning 21

Note: Many other layers are available but not described in this book including: DETECTION,
PROJECTION, FCMP, CLOSS, NASLAYER, SPLIT, CHANNELSHUFFLE, CLUSTER, FASTRCNN,
GROUPCONVO, LAYERNORM, MASKRCNN, MHATTENTION, REGIONPROPOSAL, ROIALIGN,
ROIPOOLING, SCALE, SEGMENTATION, SURVIVAL, and many others. The DETECTION layer is
used for object detection, and the FCMP layer is used to implement user-designed
activation and error functions. The CLUSTER layer is used for DeepCluster and should be
connected to a fully connected layer. The other layers are described in detail in SAS
documentation.

Training a Deep Learning CAS Action Model
The dlTrain action can be used to train a deep learning model. The parameters of the dlTrain
action can be found in SAS documentation by searching for “Deep Learning Action Set: Syntax”.
Here is some example code with parameters:

PROC CAS;
 dlTrain /
 table=' CAS‐libref.data‐table '
 modeltable= ' model name, specified in buildmodel action '
 bestweights={name= 'Name of output table containing best
 model weights' }
 inputs={' List of ALL input variables '}
 nominals={' List of nominal input variables '}
 validtable={name= ' Name of validation data table' }
 target={' list of target variables'};
Quit;

Note: When training your model, you can use the OPTIMIZER parameter to specify the
settings for the optimization algorithm, optimization mode, and other settings such as a
seed, the maximum number of epochs, and so on.

Demonstration 1: Loading and Modeling Data with
Traditional Neural Network Methods
The following demonstration illustrates using conventional neural network modeling methods to
model data. The neural network will have seven hidden layers but will fail to sufficiently
discriminate between the target events and nonevents in the data. The develop data are used in
this demonstration. The data have been partitioned into three data sets (train, validation, and
test) using a stratified random sample on the target variable and are described below.

A target marketing campaign for a bank was undertaken to identify segments of customers who
are likely to respond to a variable annuity (an insurance product) marketing campaign. Each data
set contains banking customers and 47 inputs that describe each customer. The 47 input
variables represent other product usage in a three-month period and demographics. Two of the
inputs are nominally scaled. The others are interval or binary. A binary target variable, Ins,

22 Deep Learning for Computer Vision with SAS: An Introduction

indicates whether the customer bought the variable annuity product. The variables in the
develop data set are listed below.

Table 1.4: Develop Data Set Variables

Variable Description Role Level

ATM Used ATM service (1=yes, 0=no) Input Binary

ATMAmt ATM withdrawal amount Input Interval

AcctAge Age of oldest account in years Input Interval

Age Age of customer in years Input Interval

Branch Branch of Bank (B1 – B19) Rejected Nominal

CC Has credit card account (1=yes, 0=no) Input Binary

CCBal Credit card balance Input Interval

CCPurc Number of credit card purchases Input Interval

CD Has certificate of deposit (1=yes, 0=no) Input Binary

CDBal Certificate of deposit balance Input Interval

CRScore Credit score Input Interval

CashBk Number of times customer received cash back Input Interval

Checks Number of checks Input Interval

DDA Checking account (1=yes, 0=no) Input Binary

DDABal Checking account balance Input Interval

Dep Number of checking deposits Input Interval

Chapter 1: Introduction to Deep Learning 23

Variable Description Role Level

DepAmt Amount deposited Input Interval

DirDep Direct deposit (1=yes, 0=no) Input Binary

HMOwn Owns home (1=yes, 0=no) Input Binary

HMVal Home value in thousands of dollars Input Interval

ILS Has installment loan (1=yes, 0=no) Input Binary

ILSBal Installment loan balance Input Interval

IRA Has retirement account (1=yes, 0=no) Input Binary

IRABal Retirement account balance Input Interval

InArea Local address (1=yes, 0=no) Input Binary

Income Income in thousands of dollars Input Interval

Ins Purchase variable annuity account (1=yes, 0=no) Target Binary

Inv Has investment account (1=yes, 0=no) Input Binary

InvBal Investment account balance Input Interval

LOC Has line of credit (1=yes, 0=no) Input Binary

LOCBal Line of credit balance Input Interval

LORes Length of residence in years Input Interval

MM Has money market account (1=yes, 0=no) Input Binary

MMBal Money market balance Input Interval

24 Deep Learning for Computer Vision with SAS: An Introduction

Variable Description Role Level

MMCred Number of money market credits Input Interval

MTG Has mortgage account (1=yes, 0=no) Input Binary

MTGBal Mortgage balance Input Interval

Moved Recent address change (1=yes, 0=no) Input Binary

NSF Occurrence of insufficient funds (1=yes, 0=no) Input Binary

NSFAmt Amount of insufficient funds Input Interval

POS Number of point of sale transactions Input Interval

POSAmt Amount in point of sale transactions Input Interval

Phone Number of times customer used telephone banking Input Interval

Res Area classification (R=rural, S=suburb, U=urban) Rejected Nominal

SDB Has a safety deposit box (1=yes, 0=no) Input Binary

Sav Saving account (1=yes, 0=no) Input Binary

SavBal Saving balance Input Interval

Teller Number of teller visits Input Interval

Here are the demonstration steps.

1. Open a browser window, navigate to SAS Studio, and sign in.
2. Expand Server Files and Folders.
3. Open the program titled DLUS01D01a.sas.

The program opens in the code editor window. First, a caslib named mycas is created.
libname mycas cas;

Next, a local library named local is created.
libname local '/home/student/LWDLUS';

Chapter 1: Introduction to Deep Learning 25

Then, three DATA steps are used to create new data sets that are saved in memory.
data mycas.train_develop;
 set local.train_develop;
run;
data mycas.valid_develop;
 set local.valid_develop;
run;
data mycas.test_develop;
 set local.test_develop;
run;

4. Run the program.
5. Open the program titled DLUS01D01b.sas. First, the FREQ procedure is used to explore

the binary outcome distribution in the validation partition of the develop data.
proc freq data=mycas.Valid_develop;
 table ins;
run;

Next, the NNET procedure is used to create a seven hidden-layer, feed-forward neural
network. The limited memory BFGS (L-BFGS) is used to adjust the network’s parameters.
Like the original BFGS, L-BFGS uses an estimation of the inverse Hessian to steer the
search. But whereas BFGS stores an n-by-n approximation to the Hessian (where n is the
number of variables), the L-BFGS variant stores only a few vectors that represent the
approximation implicitly.

proc nnet data=MYCAS.Train_DEVELOP standardize=std;
 target Ins / level=nominal;
 input AcctAge DDABal CashBk
 Checks NSFAmt Phone
 Teller SavBal ATMAmt
 POS POSAmt CDBal
 IRABal LOCBal ILSBal
 MMBal MMCred MTGBal
 CCBal CCPurc Income
 LORes HMVal Age
 CRScore Dep DepAmt InvBal / level=interval;
 input DDA DirDep NSF
 Sav ATM CD
 IRA LOC ILS
 MM MTG CC
 SDB HMOwn Moved
 InArea Inv / level=nominal;
 hidden 30;
 hidden 20;
 hidden 10;
 hidden 5;
 hidden 10;
 hidden 20;
 hidden 30;
 train outmodel=mycas._Nnet_model_
 validation=mycas.valid_develop numtries=1 seed=12345
 stagnation=15;
 optimization algorithm=LBFGS regL1=0.003 regL2=0.002
 seed=12345 maxiter=50;
run;

6. Run the program and examine the results.

26 Deep Learning for Computer Vision with SAS: An Introduction

The results of PROC FREQ reveal that 34.63% of the customers responded to the marketing
campaign.

Figure 1.10: Results of the FREQ Procedure

Next, the NNET procedure’s results are shown. The results begin with a summary of the model
information, followed by an Iteration History table.

Figure 1.11: Results of the NNET Procedure

Chapter 1: Introduction to Deep Learning 27

It appears that the validation error (misclassification rate) in the last several iterations is
equivalent to the empirical prior observed in the data! This shows that our model is not
performing any better than a “coin toss” prediction.

The remaining results confirm the misclassification rate, the number of observations read, and
the number of observations used by the neural network. A note in the output indicates that the
model terminated the learning process on the 10th iteration due to lack of improvement on the
validation assessment criteria.

28 Deep Learning for Computer Vision with SAS: An Introduction

Figure 1.12: Score Information

Demonstration 2: Building and Training Deep Learning
Neural Networks Using CASL Code
This demonstration illustrates building and training two deep learning neural networks. Both
models will consist of the same number of hidden layers and hidden units as the neural network
created in the last demonstration. However, deep learning techniques will be applied to these
two new models.

This demonstration uses CASL code to implement deep learning models. PROC CAS is used to
facilitate the use of CASL code.

1. Open the program titled DLUS01D02a.sas and examine the program’s contents in the
code editor window.
First, the DeepLearn action set is loaded. This action set contains the bulk of SAS deep
learning capabilities, including deep feed-forward (DNN), convolutional (CNN), and
recurrent (RNN) neural networks.

Note: DeepLearn must be loaded before using SAS deep learning actions. The
action set needs to be loaded only once.

proc cas;
 loadactionset 'DeepLearn';
run;

Next, an empty deep learning model is created. The model’s reference name is DLNN
and the deep feed-forward model type is specified.

proc cas;
 BuildModel / modeltable={name='DLNN', replace=1} type =
"DNN";
run;

Chapter 1: Introduction to Deep Learning 29

Nine layers are then added to the model using the AddLayer action, the first of which is
the input layer, as indicated by the TYPE='INPUT' option. Dropout is applied to the input
layer using the DROPOUOT= option.

proc cas;
 AddLayer / model='DLNN' name='data' layer={type='input'
 STD='STD' dropout=.05};

Seven fully connected hidden layers are added. Each hidden layer is given a unique
name in the NAME= option. The activation function used in each of these layers is the
rectified linear (ReLU) activation function, with the exception of the first hidden layer.
The first hidden layer incorporates the exponential linear (ELU) activation because ReLU
is prone to saturation when connected with the input layer (communication with L.
Lewis, SAS 2017). MSRA initialization is combined with the ReLU activation function and
a dropout rate of 5% is included.
Dropout is applied to each of the hidden layers except for the middle hidden layer.
Notice that the SRCLAYERS= option indicates the layer pertaining to the incoming
connections.

AddLayer / model='DLNN' name='HLayer1'
layer={type='FULLCONNECT' n=30 act='ELU' init='xavier'
dropout=.05} srcLayers={'data'};
AddLayer / model='DLNN' name='HLayer2'
layer={type='FULLCONNECT' n=20 act='ReLU' init='MSRA'
dropout=.05} srcLayers={'HLayer1'};
AddLayer / model='DLNN' name='HLayer3'
layer={type='FULLCONNECT' n=10 act='ReLU' init='MSRA'
dropout=.05} srcLayers={'HLayer2'};
AddLayer / model='DLNN' name='HLayer4'
layer={type='FULLCONNECT' n=5 act='ReLU' init='MSRA'}
srcLayers={'HLayer3'};
AddLayer / model='DLNN' name='HLayer5'
layer={type='FULLCONNECT' n=10 act='ReLU' init='MSRA'
dropout=.05} srcLayers={'HLayer4'};
AddLayer / model='DLNN' name='HLayer6'
layer={type='FULLCONNECT' n=20 act='ReLU' init='MSRA'
dropout=.05} srcLayers={'HLayer5'};
AddLayer / model='DLNN' name='HLayer7'
layer={type='FULLCONNECT' n=30 act='ReLU' init='MSRA'
dropout=.05} srcLayers={'HLayer6'};

Last, an output layer is added. The softmax activation function is used because the
target is binary.

AddLayer / model='DLNN' name="outlayer" layer={type='output'
 act='softmax'} srcLayers={"HLayer7"};
run;

Figure 1.13 is an abbreviated transcription of the model architecture constructed
by the CASL code above.

30 Deep Learning for Computer Vision with SAS: An Introduction

Figure 1.13: Transcription of the Model Architecture

The model has now been constructed. However, we have not yet trained the model on
our data. The dlTrain action is used to train the model.
The TABLE= option is populated with the name of the training data set loaded into CAS.
The name of the model that we built is inserted between quotation marks in the
MODEL= option.
The BESTWEIGHTS= option creates a data set that contains the weights corresponding
to the model’s best performance. If a validation data is included, then the best
performing weights are chosen based on the model’s performance on the validation
data. Otherwise, the training data are used.

proc cas;
 dlTrain / table='Train_Develop' model='DLNN'
 bestweights={name='bestdeepweights', replace=1}

The list of inputs is specified in the INPUTS= option.
inputs={ 'AcctAge',
 'DDABal',
 'CashBk',
 'Checks',
 'NSFAmt',
 'Phone',
 'Teller',
 'SavBal',
 'ATMAmt',
 'POS',
 'POSAmt',
 'CDBal',
 'IRABal',
 'LOCBal',
 'ILSBal',
 'MMBal',
 'MMCred',
 'MTGBal',
 'CCBal',
 'CCPurc',
 'Income',

Chapter 1: Introduction to Deep Learning 31

 'LORes',
 'HMVal',
 'Age',
 'CRScore',
 'Dep',
 'DepAmt',
 'InvBal',
 'DDA',
 'DirDep',
 'NSF',
 'Sav',
 'ATM',
 'CD',
 'IRA',
 'LOC',
 'ILS',
 'MM',
 'MTG',
 'CC',
 'SDB',
 'HMOwn',
 'Moved',
 'InArea',
 'Inv'
 }

The nominal inputs are specified in the NOMINAL= option.
 nominals={ 'INS',
 'DDA',
 'DirDep',
 'NSF',
 'Sav',
 'ATM',
 'CD',
 'IRA',
 'LOC',
 'ILS',
 'MM',
 'MTG',
 'CC',
 'SDB',
 'HMOwn',
 'Moved',
 'InArea',
 'Inv'
 }

Note: Notice that the nominal variables must be specified in both the INPUT= and
NOMINAL= options. Also, the target is binary and therefore must be specified in
the nominals list.

The validation data table name is specified in the VALIDTABLE= option, and the INS
target is included in the TARGET= option.

ValidTable='Valid_Develop'
target="INS"

32 Deep Learning for Computer Vision with SAS: An Introduction

Finally, the optimizer options are included. The ADAM method is used with a minibatch
size of 60 and a learning rate of .001. The LRPOLICY= option specifies the learning rate
policy—that is, strategy used to reduce the learning rate throughout the training
process. The STEP policy multiplies the GAMMA= value by the current learning rate
periodically, as indicated in the STEPSIZE= option. If no step size is indicated, then the
learning rate is reduced every 10 epochs.

optimizer= {minibatchsize=60,
 algorithm={method='ADAM',
 lrpolicy='Step',
 gamma=0.5,
 stepsize=10,
 beta1=0.9,beta2=0.999,
 learningrate=.001}
 regL1=0.003,
 regL2=0.002,
 maxepochs=50
 }
seed=12345
;
run;

Note: The MINIBATCHSIZE= option specifies the minibatch size per worker. The
examples in this book were written to be delivered on a machine using 16 CPUs.
Therefore, each total minibatch is actually the minibatch multiplied by the 16
CPUs. Sometimes long tails (fewer observations used in later iterations within an
epoch) can form, which should be mitigated when possible. Include the
LOGLEVEL=3 option of the optimization property to print detailed optimization
information in the log.

2. Run the program and view the results.
The first set of tables contains descriptive information pertaining to the model shell and
layers included in the model.

Chapter 1: Introduction to Deep Learning 33

Figure 1.14: Model Shell and Layer Information

The next table contains the model information.

34 Deep Learning for Computer Vision with SAS: An Introduction

Figure 1.15: Model Information

The model contains 3,747 parameters and nine layers (seven hidden, one input and one
output).
The Optimization History table shows the learning rate, training loss (error function
value), validation loss, validation error (misclassification rate), and training error.

Chapter 1: Introduction to Deep Learning 35

Figure 1.15: Optimization History Table

The neural network using conventional methods failed to discriminate between the
events and nonevents in the data. However, the incorporation of deep learning
methods has drastically improved the model’s discriminate ability. The misclassification
rate has dropped from approximately 34.5% to approximately 26%. The model’s best
performance occurred in the 28th epoch. Perhaps the model can be further improved
with batch normalization.

36 Deep Learning for Computer Vision with SAS: An Introduction

3. Open the program titled DLUS01D02b.sas and examine the program’s contents in the
code editor window.
The next model uses the exact same structure as the previous model, but with two
exceptions. Batch normalization is used in all hidden layers (except for the first hidden
layer) in place of dropout, and the ReLU hidden layer activation functions have been
replaced with the hyperbolic tangent (tanh) activations. The weight initialization has
also been changed from MSRA to Xavier.

Note: In order for the batch normalization computations to conform to those
described in Sergey Ioffe and Christian Szegedy’s Batch Normalization research, the
source layer should have settings of ACT=identity and INCLUDEBIAS=False. The
activation function that would normally have been specified in the source layer
should instead be specified on the batch normalization layer.

Batch normalization is not used on the first hidden layer because the input layer is
already normalized using the z-score standardization method.

Note: DNN-type architectures in SAS do not include batch normalization layers.
However, a CNN-type architecture can implement batch normalization and will be
used in place of
a DNN.

proc cas;
 BuildModel / modeltable={name='BatchDLNN', replace=1}
 type = 'CNN';
/* INPUT Layer */
 AddLayer / model='BatchDLNN' name='data'
layer={type='input'
 STD='STD' dropout=.05};
/* FIRST HIDDEN LAYER */
 AddLayer / model='BatchDLNN' name='HLayer1'
 layer={type='FULLCONNECT' n=30 act='ELU'
init='xavier'
 } srcLayers={'data'};

Notice that each hidden layer after the first hidden layer now consists of two AddLayer
statements. The first ADDLAYER statement in the second hidden layer specifies the
weight initialization method and the number of hidden units. No bias is used in this
layer and the activation function is set to identity. In the second ADDLAYER statement,
the TYPE= option is set to BATCHNORM. Also, notice that the nonlinear transformation
is applied in the second ADDLAYER statement.

/* SECOND HIDDEN LAYER */
AddLayer / model='BatchDLNN' name='HLayer2'
layer={type='FULLCONNECT' n=20 act='identity' init='xavier'
includeBias=False} srcLayers={'HLayer1'};
AddLayer / model='BatchDLNN' name='BatchLayer2'
layer={type='BATCHNORM' act='TANH'} srcLayers={'HLayer2'};
/* THIRD HIDDEN LAYER */

https://arxiv.org/abs/1502.03167

Chapter 1: Introduction to Deep Learning 37

AddLayer / model='BatchDLNN' name='HLayer3'
layer={type='FULLCONNECT' n=10 act='identity' init='xavier'
includeBias=False } srcLayers={'BatchLayer2'};
AddLayer / model='BatchDLNN' name='BatchLayer3'
layer={type='BATCHNORM' act='TANH'} srcLayers={'HLayer3'};

/* FOURTH HIDDEN LAYER */
AddLayer / model='BatchDLNN' name='HLayer4'
layer={type='FULLCONNECT' n=5 act='identity' init='xavier'
includeBias=False } srcLayers={'BatchLayer3'};
AddLayer / model='BatchDLNN' name='BatchLayer4'
layer={type='BATCHNORM' act='TANH'} srcLayers={'HLayer4'};
/* FIFTH HIDDEN LAYER */
AddLayer / model='BatchDLNN' name='HLayer5'
layer={type='FULLCONNECT' n=10 act='identity' init='xavier'
includeBias=False } srcLayers={'BatchLayer4'};
AddLayer / model='BatchDLNN' name='BatchLayer5'
layer={type='BATCHNORM' act='TANH'} srcLayers={'HLayer5'};
/* SIXTH HIDDEN LAYER */
AddLayer / model='BatchDLNN' name='HLayer6'
layer={type='FULLCONNECT' n=20 act='identity' init='xavier'
includeBias=False} srcLayers={'BatchLayer5'};
AddLayer / model='BatchDLNN' name="BatchLayer6"
layer={type='BATCHNORM' act='TANH'} srcLayers={'HLayer6'};
/* SEVENTH HIDDEN LAYER */
AddLayer / model='BatchDLNN' name='HLayer7'
layer={type='FULLCONNECT' n=30 act='identity' init='xavier'
includeBias=False } srcLayers={'BatchLayer6'};
AddLayer / model='BatchDLNN' name="BatchLayer7"
layer={type='BATCHNORM' act='TANH'} srcLayers={'HLayer7'};

AddLayer / model='BatchDLNN' name='outlayer'
layer={type='output' act='LOGISTIC'}
srcLayers={'BatchLayer7'};
run;

The dlTrain code is the same as before, with one exception. The MODEL= option now
directs the action to the new model structure created above, BatchDLNN.

proc cas;
dlTrain / table='Train_Develop' model='BatchDLNN'
…
optimizer= {minibatchsize=60,
 algorithm= {method='ADAM',
 lrpolicy='Step',
 gamma=0.5,
 stepsize=10,
 beta1=0.9,
 beta2=0.999,
 learningrate=.001}
 regL1=0.003,
 regL2=0.002,
 maxepochs=50
 }
seed=54321
;
run;

38 Deep Learning for Computer Vision with SAS: An Introduction

4. Run the program and examine the results.
5. Scroll down in the results window to the Model Information Details table.

The total number of model parameters has increased with batch normalization because
we have added an additional operation with accompanying learnable parameters.

Figure 1.16: Model Information Details

The Optimization History table shows that the memory cost paid off because the model has
improved the validation misclassification rate, further reducing the rate down to approximately
25.9% (observed in the 15th pepoch).

Chapter 2: Convolutional Neural Networks
Introduction to Convoluted Neural Networks .. 39
Input Layers .. 40
Convolutional Layers ... 41
Using Filters .. 42
Padding ... 45
Feature Map Dimensions .. 48
Pooling Layers ... 49
Traditional Layers .. 51

Fully Connected Layer .. 51
Output Layer .. 51
Types of Skip-Layer Connections .. 52

Demonstration 1: Loading and Preparing Image Data .. 54
Demonstration 2: Building and Training a Convolutional Neural Network ... 57

Examining the Image Data and Specifying the Model ... 57
Fitting and Assessing the Model ... 61
Scoring with the Fitted Model .. 64

Introduction to Convoluted Neural Networks
A convolutional neural network (CNN) is a type of neural network that is viewed to be
computationally and statistically efficient (Goodfellow, Bengio, and Courville 2017). CNNs have
popularized the field of computer vision through many successes in image classification, object
detection, and semantic segmentation. CNNs can also be used for natural language processing or
other tasks where information is spatially correlated. A typical CNN consists of five types of
layers: input, convolution, pooling, fully connected, and output. However, other types of layers
are usually incorporated in more advanced structures, including transpose convolutional, region
of interest pooling, segmentation, and many others. Each type of layer has its own specific
properties and functionalities.

Computational efficiency is achieved through the use of convolution and pooling layers. Neurons
in a fully connected layer attach a unique parameter to each incoming column of information.
Conversely, convolution layers require fewer parameters than a fully connected layer because
the parameters are shared across columns. Pooling layers themselves do not contain
parameters, but instead they combine columns with an output summary. Adding convolution
and pooling layers also enhances the model’s ability to capture important points in input
distributions, increasing the model’s statistical efficiency. The details of convolution and pooling
layers are discussed throughout this chapter.

This doc was provided to the VLE, September 2020.

40 Deep Learning for Computer Vision with SAS: An Introduction

Convolutional neural networks have popularized image classification and object detection.
However, CNNs have also been applied to other areas such as natural language processing and
forecasting. Many of the successes in self-driving cars, fault detection, chatbots, and other
applications are in large part built on the foundation of convolutional neural networks.

Input Layers
Convolutional neural networks (CNNs) are a class of artificial neural networks. Like regular neural
networks, a CNN begins with an input layer, consists of multiple layers, and contains a number of
neurons, as seen in Figure 2.1.

Figure 2.1: Convolutional Neural Network

The input layer might consist of the raw pixel values of the image to be classified, while a
grayscale image has only a single channel as seen in Figure 2.2.

Figure 2.2: Grayscale Image Channel

Chapter 2: Convolutional Neural Networks 41

Conversely, a color image has three color channels of blue, green, and red as seen in Figure 2.3.

Figure 2.3: Color Image Channels

For example, each image in the CIFAR-10 data set has a height of 32, width of 32, and three color
channels of blue, green, and red. Each color channel is represented by a matrix of values that
indicate the brightness of the pixel with regard to the respective channel. Pixel values usually
range from 0 to 255. Images are sometimes flattened before being passed to the convolutional
neural network. However, flattening is not required and might even create problems when
scoring with ASTORE. (ASTORE is a transportable form of a model called an analytic store.)
Nonetheless, each pixel becomes a value in a respective column in a data set when an image is
flattened. For example, a standard color image created by a standard 8k photo has more than 33
million pixels per channel. After it is flattened, the resulting table will consist of more than 99
million columns (~33 million * 3 channels).

CNNs in SAS can also contain input layers for the consumption of tabular data. Therefore,
multiple input layers can be used. Quite often they are used when solving more dynamic
problems.

Convolutional Layers
The convolution layer is most commonly used after the input layer. The convolution layer derives
an output (that is, a feature map) from filter kernels that are connected to local regions in the
input (that is, the incoming information). Each filter computes a dot product between their
weights and a small region where they are connected to the input volume. The operation is
formally known as a cross-correlation but might sometimes be referred to as a convolution
without the kernel flipping. An example of single-channel convolution without kernel flipping is
displayed below in Figure 2.4.

42 Deep Learning for Computer Vision with SAS: An Introduction

Figure 2.4: Single-channel Convolution Without Kernel Flipping

A typical convolution layer can consist of many filters. The filters slide across the input surface in
parallel, capturing meaningful characteristics. Therefore, the parameters in each filter are shared
by multiple columns in the data. Parameter sharing decreases the number of parameters needed
to translate the input space. Each filter creates equivariant representations of the input, which
means that changes in the input space are represented in the output.

Adding a convolution layer introduces new hyperparameters to the neural network. These
hyperparameters include width, height, and stride. Here is an example of a convolution layer
with 32 filters created in the SAS Cloud Analytic Services language (CASL):

AddLayer / model='ConVNet'
 name='ConVLayer1'
 layer={type='CONVO'
 nFilters=32
 width=3
 height=3
 stride=1
 }
 srcLayers={'data'};

Using Filters
It is quite common to increase the number of filters as the network becomes deeper. For
example, the first convolutional layer might contain 32 filters, the next convolutional layer has
64 filters, the next has 128 filters, and so on. The number of convolutional filters is increased to
offset the reduction of information that occurs when larger stride values are used (that is, stride
values greater than one).

The following figures walk through the details of an example convolution layer.

During the forward pass of the convolution, the filter is placed in a starting position of the input
space as seen in Figure 2.5.

Chapter 2: Convolutional Neural Networks 43

Figure 2.5: Starting Position of the Filter

The dot products between the entries of the filter and the input at that position are calculated,
as seen in Figure 2.6. For this example, we multiply 1*245 + 1*97 + 1*239 + 0*185 + 0*207 +
0*11 + -1*212 + -1*175 + -1*160 + our bias of 10, which gives us an output of 44 in the feature
map.

Figure 2.6: Products of the Entries Between the Filter and Input

Therefore, the value derived from the dot product between the filter and the localized input
space becomes the first output value. The algorithm then slides each filter across the input
space. The range of movement is determined by the STRIDE hyperparameter, as seen in Figure
2.7. The stride value controls movement across the width of the input space, as well as the
height.

44 Deep Learning for Computer Vision with SAS: An Introduction

Figure 2.7: Range Movement Due to STRIDE Hyperparameter

After the filter has moved, the cross-correlation operation is continued, calculating the next
output value. The process is repeated, and as the filter moves over the width and height of the
input volume, we produce a two-dimensional feature map that gives the responses of that filter
at every spatial position, as seen in Figure 2.8.

Figure 2.8: Feature Map with Filter Response at Every Spatial Position

The filter values are the learnable parameters of the convolution layer (that is, the weights of the
layer), with the bias equal to β.

Each filter will have the same number of channels as the incoming information. However, the
output is always a two-dimensional grid, regardless of the number of channels. In the example
presented in Figure 2.9, a single filter is combined with three channels of information. Each
channel can be thought of as a “piece” of information. This single 3 by 3 filter has 28 weights.
That is, each piece of information is assigned nine weights, which gives us 27 weights total. And

Chapter 2: Convolutional Neural Networks 45

then we have our bias, which gives us our 28th weight. A nonlinear activation ()g ⋅ , such as an
exponential linear, hyperbolic tangent, rectified linear, or other transformation, can be applied
to the output values of the feature map, as seen in Figure 2.9.

Figure 2.9: Filter Weights and Nonlinear Transformation

Padding
Both convolution and pooling increase the pressures of underfitting due in large part to the
reduction in information as more of these layers are added. Padding can be used to offset or
mitigate the loss of information. Padding increases the relevance of pixels existing on the edge of
an image.

Padding is calculated with the goal of producing an output image in a size that will be
“reasonable” based on the original input image size and filter size. The key issues are whether
the input image dimensions are even or odd, whether the filter dimensions are even or odd, and
the value of the user-specified stride.

Here are some of the “reasonable” rules:

● The horizontal and vertical padding sizes are independent of each other. Changing the
horizontal dimension of an image or filter has no effect on the vertical padding size.

● If the stride is 1, then the output image size is the same as the input image size. When
discussing convolutions, this is sometimes referred to as same padding.

● If the stride is 2, then the output image size is about one half the input image size.

● Padding is first added to the right side of the image and then the left. So if padding is
unequal, the right side will have more padding than the left.

● Images are padded with zeros.

Without padding, the feature map might be considerably smaller than the input, depending on
the size of the filter and stride, as seen in Figure 2.10.

46 Deep Learning for Computer Vision with SAS: An Introduction

The shrinkage caused by convolution layers can be mitigated with the use of padding. If the
stride is 1, the output map size is exactly the same as the input map size because the default
behavior in the SAS DEEPLEARN action set is to automatically pad the channels or feature maps.
If the stride is 2, the area of the output map is reduced by approximately 4 times (2*2).

Figure 2.10: Feature Map Without Padding

The shrinkage caused by convolution layers can be mitigated with the use of padding, as seen in
Figure 2.11.

Figure 2.11: Feature Map with Padding

To use padding in SAS with GPUs, the FORCEEQUALPADDING option must be set to True in the
dlTrain action. This means that equal padding is applied to all sides of the feature map. SAS
defaults to FORCEEQUALPADDING=TRUE if the GPU=TRUE option is specified:

ForceEqualPadding=True

Chapter 2: Convolutional Neural Networks 47

Without padding, the output feature map is reduced, as seen in Figure 2.12.

Figure 2.12: Without Padding

The dimension of the feature map is not what SAS produces by default, as shown next in Figure
2.13

Figure 2.13: Automatic Padding with SAS

SAS automatically applies padding with the assumption the stride value equals one to offset the
natural reduction in the feature map size. SAS still automatically applies padding when the stride

48 Deep Learning for Computer Vision with SAS: An Introduction

value is greater than one, but the feature map will be smaller than the input matrix when the
stride value is greater than one. Meaning using a stride value greater than one will decrease the
output feature map size. Additionally, SAS automatically applies additional padding if the
resulting convolution feature map is a noninteger matrix. For example, consider a scenario
where the incoming information is a 12 x 12 matrix. Applying a filter of size 3 x 3 with a stride
value of two yields an output of 6.5 (a noninteger value), as seen in Figure 2.14.

Figure 2.14: SAS Automatically Adjusts for Non-Integer Feature Maps

Feature Map Dimensions
The dimensions of the output are determined by the dimensions of the input, filter, and padding
in combination with the stride size, as seen in Figure 2.15.

Figure 2.15: Feature Map Dimensions

Chapter 2: Convolutional Neural Networks 49

The feature map dimensions can be calculated by the following:

i represents the input dimension, p represents the padding value (padding is discussed
shortly), f represents the filter size, and s represents the stride size.

Pooling Layers
A pooling function provides a summary of some localized region of the incoming information.
Three summary options are available in SAS: Maximum, Average, and Minimum. Similar to the
convolution layer, the pooling layer uses filters, but the filters are used to establish the area to
be summarized and do not contain learnable weights. The hyperparameters associated with the
pooling filters include width, height, and stride. There is no need to specify the number of
pooling filters because the filter count is determined by the number of incoming two-
dimensional grids. It is common to periodically insert a pooling layer between successive
convolution layers in a CNN architecture. Although, Springenberg et al. showed great success
replacing pooling layers with convolution layers and leveraged stride a larger stride to down-
sample the information (Springenberg et al., 2015). For example, a pooling or convolution layer
with filters of size 2 x 2 applied with a stride of 2 reduces the amount of incoming information by
75%. Therefore, stride aggressively shrinks the network.

Generating a summary of each localized region has the added benefit of making the output
approximately invariant to small deviations in the input. That is, the pooling function is useful
when the modeler is more concerned with whether an object exists instead of its exact location.
Conversely, if spatial differences are of great concern, then pooling should be used carefully, if
even at all (Goodfellow, Bengio, and Courville 2017).

Pooling with larger stride values can also be used in situations where the size of your input
information can vary. Consider a scenario where you are classifying images of two different sizes:
128 x 128 and 192 x 192. Each image size would be given its own input layer, and the larger
image size can be down-sampled using pooling layers with stride greater than one to match the
smaller input size. Down-sampling larger information is important because the output layer
requires information to be of the same size.

50 Deep Learning for Computer Vision with SAS: An Introduction

The hyperparameters Width and Height set the size of the neighborhood, as seen in Figure 2.16.

Figure 2.16: Pooling Layers

Each pooling function summarizes the neighborhood under examination. The POOL= option is
used to specify the type of summary to be used by the pooling layer. Here is an example:

layer={type='POOL' width=2 height=2 stride=2 pool="max"

Just as with the convolution layers, the stride parameter controls the movement size of the
neighborhood. The neighborhood continues to move across the input space until the entire
space has been summarized, as seen in Figures 2.17 and 2.18.

Figure 2.17: Feature Map with Stride = 2

Chapter 2: Convolutional Neural Networks 51

Figure 2.18: Completed Feature Map

Traditional Layers

Fully Connected Layer
Neurons in a fully connected layer have full connections to all activations in the previous layer,
as seen in regular neural networks. Their activations can therefore be computed with a matrix
multiplication followed by a bias offset. A fully connected layer incorporates a large number of
parameters and therefore is expensive to train.

Output Layer
The output layer is essentially a fully connected layer that is associated with a particular error
function. In this case of a binary target, the cross entropy error function

1() 2 ln (1) / ln
() 1 ()
y yQ y y

µ µ
 −

= + − −
w

w w

is simplified to an equivalent Bernoulli error function:

ˆ ˆ() 2 [log() (1) log(1)]
n

i
Q p y p= − + − −∑w

52 Deep Learning for Computer Vision with SAS: An Introduction

If the target’s outcome has more than two levels, then the error function resolves to

() ()ˆlog()
n C

c c
true predicted

i c
y p−∑∑

where c is the class label for observation i .

If the target is binary, the logistic activation function is used:

() p
e

net net
ˆ

1
1logistic =

+
=

−
, where ∑

=

+=
d

i
ii xwwnet

1
0

The logistic activation function constrains its output to the range 0:1, making it ideal for
generating probability (p̂) estimates. In statistics, the logistic function is better known as the
logit-link function:

)
ˆ1

ˆln()ˆ(logit
p

pp
−

=
= ln(odds)

If you are fitting a multinomial target, the softmax activation function (see below) is appropriate.
It is the inverse of the generalized logit-link function.

softmax()
i

j

net

i net

j

enet
e

=
∑

Because softmax divides the output activation of each neuron by the sum of the output by all
participating neurons, it ensures that the estimates sum to 1. This produces a distributed effect.

Types of Skip-Layer Connections
Deep convolutional neural networks developed for image classification exploit the ability to
enrich features by increasing the number of stacked layers. However, adding more layers might
sometimes cause information learned early in the network to be forgotten as the gradient
vanishes. Normalization techniques such as batch normalization have been successful in
damping the wild gradient swings, largely addressing the convergence problems. Furthermore,
adding skip-layer connections can help the neural network remember latent features learned
early in the structure. A visualization of a skip-layer connection can be seen in Figure 2.19.

Chapter 2: Convolutional Neural Networks 53

Figure 2.19: Skip-Layer Connection

Concatenation and residual layers can be leveraged to create skip-layer connections.
Concatenation layers can be used to create skip-layer connections (see Figure 2.20), but the
concatenation operation results in “fat” networks, which are expensive to process.

AddLayer / model='ModelName' name='LayerName' layer={type='concat'}
 srcLayers={'A','B','C','D'};

Figure 2.20: Concatenation Layers

Residual layers were introduced by Kaiming He et al. as a means of combining information from
skip-layer connections, as seen in Figure 2.21. Residual layers “thin out” the network because
matching columns of information are summed, as opposed to concatenated. Use TYPE=
'RESIDUAL' to add a residual layer.

AddLayer / model='ModelName' name='LayerName'
 layer={type='residual'} srcLayers={'A','B','C','D'};

54 Deep Learning for Computer Vision with SAS: An Introduction

Figure 2.21: Residual Layers

Demonstration 1: Loading and Preparing Image Data
This demonstration illustrates loading and preparing image data using the SAS Image action set.

1. Open the program titled DLUS02D01.sas and examine the program contents in the code
editor window. First, the Image action set is loaded, and a metadata table describing
the images is created. The loadImages action reads images and associated metadata
into memory. The loadImages action can upload information from a variety of sources,
including these:

◦ photographic image files

◦ biomedical image files, including those in Digital Imaging and Communications in
Medicine (DICOM) format

◦ ZIP files

◦ a directory that contains image files or ZIP files

◦ a directory that contains one or more series of photographic or biomedical images

◦ a directory tree that contains any number of the preceding items

◦ URLs

◦ lists that contain combinations of the sources in the preceding items

Chapter 2: Convolutional Neural Networks 55

The output contains images in a CAS table in encoded or decoded format, depending on
the value of the decode input parameter. When this parameter is set to False (default
value), the output table has the following columns:

◦ _id_ – an integer that is unique for each image

◦ _path_ – the full pathname of the image

◦ _image_ – a binary large object that contains the entire image file

◦ _size_ – the byte length of the binary large object in the _image_ column

◦ _type_ – a three-character string that specifies the format of the image (for
example, jpg for JPG images)

When the decode parameter is set to True, the _image_ column contains
decompressed image data, and the output table has these additional columns:

◦ _dimension_ – number of dimensions of the image (for example, 2 for two-
dimensional images, 3 for three-dimensional images)

◦ _resolution_ – size of the image in each dimension (for example, {100, 200} for an
array for a two-dimensional image that is 100 pixels wide and 200 pixels high)

◦ _imageFormat_ – integer that represents the organization of data in the _image_
column. The most common values are 0, 16, 2, and 18, corresponding to 8-bit gray
scale, 8-bit RGB, 16-bit gray scale, and 16-bit RGB images, respectively.

The LargetrainData and SmalltrainData folders located in the Image Data folder both
contain 10 subfolders. Each of the 10 subfolders contains images of a specific class. For
example, the truck folder contains images of only trucks. The RECURSE=TRUE option
specifies the action to read in all the images from the 10 directories. The
LABELLEVELS=1 option tells the action to assign the label based on the name of the
folder where the image is stored. For example, all of the images in the truck folder will
be assigned the label truck.
proc cas;
 loadactionset 'image';
 loadactionset 'table';
 table.addCaslib / name='imagelib'
 path='/home/student/LWDLUS/Image Data'
 subdirectories=true;

 image.loadimages / caslib='imagelib' path='LargetrainData'
 decode=true recurse=true labellevels=1
 addcolumns={'CHANNELCOUNT'}
 casout={name='LargetrainData', replace=true};

 image.loadimages / caslib='imagelib' path='SmalltrainData'
 decode=true recurse=true labellevels=1
 addcolumns={'CHANNELCOUNT'}
 casout={name='SmalltrainData', replace=true};
run;
quit;

56 Deep Learning for Computer Vision with SAS: An Introduction

Next, SAS Component Language is used to resize to a width and height of 120, and view
images from several folders.
/***************/
/* View Images */
/***************/
data _NULL_;
/*AIRPLANES*/
 dcl odsout obj1();
 obj1.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/airplane/img3.png',
 width: "120",
 height: "120");
 obj1.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/airplane/img10.png',
 width: "120",
 height: "120");
 obj1.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/airplane/img21.png',
 width: "120",
 height: "120");
 /*AUTOMOBILES*/
 dcl odsout obj2();
 obj2.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/automobile/img6.png',
 width: "120",
 height: "120");
 obj2.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/automobile/img9.png',
 width: "120",
 height: "120");
 obj2.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/automobile/img37.png',
 width: "120",
 height: "120");
 /*BIRDS*/
 dcl odsout obj3();
 obj3.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/bird/img25.png',
 width: "120",
 height: "120");
 obj3.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/bird/img35.png',
 width: "120",
 height: "120");
 obj3.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/bird/img65.png',
 width: "120",
 height: "120");
 /*CATS*/
 dcl odsout obj4();
 obj4.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/cat/img0.png',
 width: "120",
 height: "120");
 obj4.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/cat/img8.png',
 width: "120",
 height: "120");

Chapter 2: Convolutional Neural Networks 57

 obj4.image(file:'/home/student/LWDLUS/Image
Data/SmalltrainData/cat/img46.png',
 width: "120",
 height: "120");

run;

Demonstration 2: Building and Training a Convolutional
Neural Network
In this demonstration, a convolutional neural network is built and trained to classify images of 10
possible classes. A subset of the famous CIFAR-10 data is used. The data consist of 32 x 32 color
images.

Open the program titled DLMS02D02a.sas and examine the program contents in the code editor
window.

Examining the Image Data and Specifying the Model
1. First, the image data are summarized. The summary provides an average intensity for

each color channel: blue, green, and red.
proc cas;
 image.summarizeimages / table={name='LargeImageDatashuffled',
 where='_PartInd_=1'};
run;

The summarized values are subtracted from the values in each input channel using the
OFFSETS= option.

2. Second, the BuildModel action is specified, and an empty deep learning convolutional
model is created.
proc cas;
 BuildModel / modeltable={name='ConVNN', replace=1} type = 'CNN';

a. The first layer added is an input layer. The number of channels is set to 3 in the
NCHANNELS= option. The width and height of the image is also specified in the
input layer. The offsets are also applied.
AddLayer / model='ConVNN' name='data' layer={type='input'
 nchannels=3 width=32 height=32 offsets={113.852228,
123.021097,125.294747}};

58 Deep Learning for Computer Vision with SAS: An Introduction

b. Next, a convolutional layer is added to the data. The convolutional layer contains
six filters, each of a different size (1x1, 3x3, 5x5, 7x7, 4x4, and 6x6). The odd-value-
sized filters use a stride of 1, the 4x4-sized filters use a stride of 2, and the 6x6-sized
filters use a stride of 4. The 4x4 and 6x6 sets include two extra filters. In addition,
dropout is applied to both the 4x4 and 6x6 sets of filters.
AddLayer / model='ConVNN' name='ConVLayer1a'
layer={type='CONVO'
 nFilters=8 width=1 height=1 stride=1}
 srcLayers={'data'};

AddLayer / model='ConVNN' name='ConVLayer1b'
layer={type='CONVO'
 nFilters=8 width=3 height=3 stride=1}
 srcLayers={'data'};

AddLayer / model='ConVNN' name='ConVLayer1c'
layer={type='CONVO'
 nFilters=8 width=5 height=5 stride=1}
 srcLayers={'data'};

AddLayer / model='ConVNN' name='ConVLayer1d'
layer={type='CONVO'
 nFilters=8 width=7 height=7 stride=1}
 srcLayers={'data'};

AddLayer / model='ConVNN' name='ConVLayer1e'
layer={type='CONVO'
 nFilters=10 width=4 height=4 stride=2 dropout=.2}
 srcLayers={'data'};

AddLayer / model='ConVNN' name='ConVLayer1f'
layer={type='CONVO'
 nFilters=10 width=6 height=6 stride=4 dropout=.2}
 srcLayers={'data'};

c. A concatenation layer is used to combine the four paths into a single path in
preparation for the next layer. Specifically, the convolutions that use a stride of 1
are combined and connected to the next layer. The other convolutions will be
connected to later layers.
AddLayer / model='ConVNN' name='concatlayer1a'
 layer={type='concat'}

srcLayers={'ConVLayer1a','ConVLayer1b','ConVLayer1c',
 'ConVLayer1d'};

d. The concatenation layer is connected to a pooling layer that is set to extract the
maximum value from each neighborhood. The pooling layer creates a 2 x 2
neighborhood that moves across columns with a stride of 2.
AddLayer / model='ConVNN' name='PoolLayer1max'
layer={type='POOL'
 width=2 height=2 stride=2 pool='max'}
 srcLayers={'concatlayer1a'};

e. A concatenation layer is used to combine the pooling layer with the convolutional
layer that is connected to the input layer and uses a 4 x 4 filter.

Chapter 2: Convolutional Neural Networks 59

Note: Concatenation layers require that the incoming feature maps be the
same size. It is a common practice to use pooling layers to down-sample larger
feature maps when combining feature maps of varying sizes.

AddLayer / model='ConVNN' name='concatlayer2'
 layer={type='concat'}
 srcLayers={'PoolLayer1max','ConVLayer1e'};

f. The concatenation layer is then connected to another 2 x 2 pooling layer with a
stride of 2, max pooling layer.
AddLayer / model='ConVNN' name='PoolLayer2max'
layer={type='POOL'
 width=2 height=2 stride=2 pool='max'}
 srcLayers={'concatlayer2'};

g. A concatenation layer is used to combine the pooling layer with the convolutional
layer that is connected to the input layer and uses a 6 x 6 filter.
AddLayer / model='ConVNN' name='concatlayer3'
 layer={type='concat'}
 srcLayers={'PoolLayer2max','ConVLayer1f'};

h. The concatenation layer is then connected to another 2 x 2 pooling layer with a
stride of 2, max pooling layer.
AddLayer / model='ConVNN' name='PoolLayer3max'
layer={type='POOL'
 width=2 height=2 stride=2 pool='max'}
 srcLayers={'concatlayer3'};

i. The pooling layer is then connected to a convolution layer with 64 filters. The
convolution layer includes 3 x 3 filters that move across the input columns using a
stride of 1. The MSRA2 is used to initialize the weights. A dropout rate of 20% is
also applied to the convolution layer. Typically, the hidden bias would be removed,
and the activation function would be set to Identity before applying batch
normalization. However, in an attempt to show the flexibility of SAS, we have
decided to not follow conventional methods.
AddLayer / model='ConVNN' name='ConVLayer1g'
layer={type='CONVO'
 nFilters=64 width=3 height=3 stride=1 init='msra2'
 dropout=.2} srcLayers={'concatlayer3'};

AddLayer / model='ConVNN' name='BatchLayer1'
 layer={type='BATCHNORM' act='ELU'}
 srcLayers={'ConVLayer1g'};

j. The normalized values are then passed to another convolution layer with 128
filters. The convolution layer includes 3 x 3 filters that move across the input
columns using a stride of 2. MSRA2, batch normalization, and dropout are also used
in this convolution layer.
AddLayer / model='ConVNN' name='ConVLayer1h'
layer={type='CONVO'
 nFilters=128 width=3 height=3 stride=2 init='msra2'
 dropout=.2} srcLayers={'BatchLayer1'};

60 Deep Learning for Computer Vision with SAS: An Introduction

AddLayer / model='ConVNN' name='BatchLayer2'
 layer={type='BATCHNORM' act='ELU'}
 srcLayers={'ConVLayer1h'};

k. A concatenation layer is then used to concatenate the convolutional layer with the
last applied pooling layer.
AddLayer / model='ConVNN' name='concatlayer4'
 layer={type='concat'}
 srcLayers={'PoolLayer3max','BatchLayer2'};

l. A fully connected layer is then added with 240 neurons. Batch normalization and a
dropout rate of 65% are applied to the fully connected layer.
AddLayer / model='ConVNN' name='FCLayer2'
 layer={type='FULLCONNECT' n=240 act='Identity'
 init='msra2' dropout=.65 includeBias=False}
 srcLayers={'concatlayer4'};

AddLayer / model='ConVNN' name='BatchLayer3'
 layer={type='BATCHNORM' act='ELU'}
 srcLayers={'FCLayer2'};

m. Finally, the normalized values are passed to the output layer from the previous fully
connected layer.
AddLayer / model='ConVNN' name='outlayer' layer={type='output'
 act='SOFTMAX'} srcLayers={'BatchLayer3'};
run;

Note: The model generated by the code above resembles Figure 2.22 below.

Figure 2.22: Model Generated by Code

Chapter 2: Convolutional Neural Networks 61

Fitting and Assessing the Model
1. The dlTrain action is called to train the model. The best weights are stored in a data set

named ConVbestweights. The model will also be trained using a GPU instead of a CPU
because of the large number of weights in the specified model. In addition, the table
containing the model’s performance for each epoch is saved in a table named
ObjectModeliter. This table is used to create an iteration plot.
ods output OptIterHistory=ObjectModeliter;
proc cas;
 dlTrain / table={name='LargeImageDatashuffled',
 where='_PartInd_=1'} model='ConVNN'
 modelWeights={name='ConVTrainedWeights_d', replace=1}
 bestweights={name='ConVbestweights', replace=1}
 inputs='_image_'
 target='_label_' nominal={'_label_'}
 GPU=True
 ValidTable={name='LargeImageDatashuffled',
 where='_PartInd_=2'}

 optimizer={minibatchsize=60,algorithm={method='ADAM',
 lrpolicy='Step', gamma=0.6, stepsize=5, beta1=0.9, beta2=0.999,
 learningrate=.01}maxepochs=60}
 seed=12345
;
run;

The remaining code creates two macro variables that store the lowest misclassification
values for the training and validation data, respectively. PROC SGPLOT is called to plot
out the iteration history for the validation and training misclassification rates, and
macro variables containing the lowest misclassification values are used to label each
curve.
proc sql noprint;
select min(FitError)
 into :Train separated by ' '
 from ObjectModeliter;
quit;

proc sql noprint;
select min(ValidError)
 into :Valid separated by ' '
 from ObjectModeliter;
quit;

proc sgplot data=ObjectModeliter;
 yaxis label='Misclassification Rate';
 series x=Epoch y=FitError / CURVELABEL="&Train"
 CURVELABELPOS=END;
 series x=Epoch y=ValidError / CURVELABEL="&Valid"
 CURVELABELPOS=END;
 run;

62 Deep Learning for Computer Vision with SAS: An Introduction

2. View the results after the program finishes running.
Scroll down in the Results window to the Model convnn Information Details table
(Figure 2.23). Notice that the model contains 801,974 parameters!

Figure 2.23: Model Convnn Information Details Table

Next, scroll down to the Optimization History of Deep Learning Model for
LARGEIMAGEDATASHUFFLED table. The best performance on the validation occurred at
epoch 52. The model has a 23.73% misclassification rate on the validation data. Notice
that there is considerable divergence between the training and validation
misclassification rates. Perhaps a greater use of regularizations could push the
validation error rate down further. This could include increasing the dropout rate,
applying dropout to other layers, incorporating L1 or L2 regularizations, or generating
synthetic cases with carefully chosen random mutations, as seen in Figure 2.24.

Chapter 2: Convolutional Neural Networks 63

Figure 2.24: Misclassification Rate

Note: Results might vary due to the distribution of data and computation.

The iteration plot in Figure 2.25 shows the performance of the model’s misclassification
rates on the training and validation data sets.

64 Deep Learning for Computer Vision with SAS: An Introduction

Figure 2.25: Performance of Model’s Misclassification Rates

Scoring with the Fitted Model
1. Open the program named DLMS02D02b.sas. Now that we have our model, it is time to

score new data. The dlScore action is used to score the validation data. Notice that the
INITWEIGHTS= option specifies the best weights discovered by the trained model (that
is, the weights discovered in epoch 55).
proc cas;
 dlScore / table={name='LargeImageDatashuffled',
 where='_PartInd_=2'} model='ConVNet'
 initWeights='ConVbestweights'
 layerOut={name='Layer_data', replace=1}
 layers='ConVLayer1'
 layerImageType='JPG'
 casout={name='ScoredData', replace=1}
 copyVars='_Label_'
;
run;
proc print data=mycas.ScoredData (obs=20);
run;

Note: dlScore applies SAS Enterprise Miner naming conventions to the prediction
variables when the option ENCODENAME=TRUE is specified.

Chapter 2: Convolutional Neural Networks 65

SAS detects the presence of the target variable and provides error statistics in the Score
Information table (as seen in Figure 2.26).

Figure 2.26: Score Information Table

The model appears to have a misclassification rate of 23.58 percent on the holdout
data.

2. Run the remaining code in the program and view the results.
The program prints the first 20 observations from the score data created by the dlScore
action. The _label_ column contains the actual label, and the I__label_ column contains
the predicted classification. PROC SGPLOT is used to create a histogram showing the
number of misclassified images for each class. (See Figure 2.27.)

Figure 2.27: Histogram of Misclassified Images

An example of the output produced by the code is displayed in Figure 2.28.

66 Deep Learning for Computer Vision with SAS: An Introduction

Figure 2.28: Code Output

The PARTITION procedure is used to sample data in SAS Viya. It performs simple
random sampling, stratified sampling, oversampling, or k-fold partitioning to produce a
table that contains a subset of the observations or a table that contains partitioned
observations. The BY statement is used to specify the stratum variable. In this example,
the target is used as the stratum.
The SAMPPCT=80 option requests that 80% of the input data be included in the training
partition, and the SAMPPCT2=20 option requests that 20% of the input data be included
in the validation partition. The PARTIND option requests that the output data table,
mycas.smalltraindata, include an indicator that shows whether each observation is
selected to a partition (1 for training and 2 for validation).

Chapter 2: Convolutional Neural Networks 67

A second run of the PARTITION procedure is used to partition the larger sample of
images in the same manner as described above.
proc partition data=mycas.SmalltrainData samppct=80
 samppct2=20 seed=12345 partind;
 by _label_;
 output out=mycas.smallImageData;
run;

proc partition data=mycas.LargetrainData samppct=80
 samppct2=20 seed=12345 partind;
 by _label_;
 output out=mycas.LargeImageData;
run;
Small Sample can be seen in Figure 2.29.

Figure 2.29: Small Sample

Large Sample can be seen in Figure 2.30.

68 Deep Learning for Computer Vision with SAS: An Introduction

Figure 2.30: Large Sample

The small sample can be used for practice if you want to run this example more quickly
instead of using the large sample.
The data are currently ordered by the target values. For example, the data might begin
with pictures of only frogs, followed by pictures of cats, and so on. Ordering by the
target can cause a problem for variants of stochastic gradient descent (SGD,
momentum, and ADAM). The problem arises because ordering by the outcome can
cause the model to become entrenched with a set of parameters that overpredicts a
single class. That is, it fails to discriminate between all outcome classes. It is
recommended that the data be randomly shuffled. If fact, it is quite common to change
the observation order when blending (ensemble through weighted averages of
predictions) models together for image classifiers.

Note: An alternative to random shuffling is curriculum learning. Curriculum
learning sorts the data by those observations that are easiest to learn. To
implement curriculum learning, a practitioner would train the model, sort the data
based on the predictions versus actuals, and then retrain the model.

Chapter 2: Convolutional Neural Networks 69

The following code randomly sorts the observations using the shuffle action. A new data
set named ImageDataShuffled is created.
proc cas;
 table.shuffle / table='smallImageData'
 casout={name='SmallImageDatashuffled', replace=1};
run;

proc cas;
 table.shuffle / table='LargeImageData'
 casout={name='LargeImageDatashuffled', replace=1};
run;
Convolutional neural networks can take days, weeks, or even months to train in certain
situations. This example builds a simple convolutional network with a limited amount of
data to save time.

3. Open the program titled DLMS02D02a.sas and run the program.

70 Deep Learning for Computer Vision with SAS: An Introduction

Chapter 3: Improving Accuracy
Introduction .. 71
Architectural Design Strategies ... 72

Spatial Exploration ... 73
Creating Blocks .. 73
Comparing Structural Depth to Cardinality ... 77

Image Preprocessing and Data Enrichment .. 81
Data Augmentation Techniques ... 81
Process Image Action ... 83
Gaussian Filters .. 87
Sharpen ... 88
Inverting Pixels .. 90
Pyramid Down ... 91
Rotating ... 92
Flipping .. 93

Transfer Learning Introduction .. 94
Domains and Subdomains ... 95

Tasks .. 95
Types of Transfer Learning .. 96

Heterogenous Transfer Learning and Domain Adaptation .. 97
Transfer Learning Biases .. 97

Frequency Bias ... 98
Transfer Learning Strategies .. 98

Supervised Pretraining ... 98
Unsupervised Pretraining ... 99

Customizations with FCMP .. 99
Tuning a Deep Learning Model .. 100

Selecting Hyperparameters .. 100
Sampling the Hyperparameter Space ... 100
Hyperparameter Selection ... 103
Hyperband Properties .. 104

Introduction
Most traditional data such as transaction or survey data does not contain the “truth.” For
example, knowing the actual quality of an individual’s moral fiber could dramatically improve the
accuracy of a fraud model, although there are types of data in which the truth is contained.
Image data is one example where the truth is present because the elements that define an
object exist in the image, albeit two-dimensionally. It is therefore not surprising that a properly
trained neural network can outperform a layperson in image classification and other vision-
related tasks.

72 Deep Learning for Computer Vision with SAS: An Introduction

The focus of this chapter is to highlight simple techniques that can be deployed to improve
computer vision models.

Architectural Design Strategies
A 1 x 1 convolution is commonly used to change the dimensional depth of information flowing
through the network. A 1 x 1 kernel shares a single weight across all columns of all channels of
information, which produces a summarized motif. (See Figure 3.1.)

Figure 3.1: 1 x 1 Convolutions

GoogLeNet deployed 1 x 1 convolutions to reduce the dimensional depth before applying larger
kernel filters, a technique referred to as bottlenecking (Szegedy et al. 2014). Bottlenecking can
reduce the computational cost associated with training, enabling resources to be allocated
toward other areas, such as increasing cardinality or constructing a deeper, wider network
structure. (See Figure 3.2.)

Figure 3.2: Dimensional Depth Reduction Before Feature Extraction

Chapter 3: Improving Accuracy 73

You can also use 1 x 1 convolutions to expand the dimensional depth, and they are sometimes
used in place of fully connected layers to save on computational cost, as shown in Figure 3.3.

Figure 3.3: Using 1 x 1 Convolutions to Expand Dimensional Depth

Spatial Exploration
Filters extract spatially correlated information and transcribe that information to an output
feature map. Spatial exploration techniques such as the use of filters of different sizes enables
the model to capture varying levels of granularity, providing a more complete understanding of
the region for which the filters are located. The information captured at varying magnitudes can
then be combined in subsequent layers to form a more detailed explanation of the information.

In addition, increasing the stride influences the exploration scheme of each filter and reduces
the size of the output feature map. The width and height of output feature maps are reduced by
larger stride values.

Creating Blocks
GoogLeNet combined 1 x 1 filters with spatial exploration to create blocks (Szegedy et al. 2014).
A block is a stage of feature extraction that commonly consists of multiple convolutions that are
usually stacked and then combined with either a concatenation layer or residual layer in a split-
transform-merge strategy. (See Figure 3.4.)

74 Deep Learning for Computer Vision with SAS: An Introduction

Figure 3.4: A Block

A block differs from a hidden layer because blocks can consist of multiple hidden layers that,
when combined, produce a more relevant output. Sometimes pooling layers are used within a
block, which was the situation in GoogLeNet. Blocks are usually stacked much like hidden layers.

ResNet introduced residual layers as a means of combining previously learned information with
the current feature state to formulate a model that can effectively support increased depth (He
et al. 2015). ResNet leveraged residual layers within what are called residual blocks.

Figure 3.5: ResNet Type Residual Block

Chapter 3: Improving Accuracy 75

A residual block begins with a convolution layer applied to the incoming information. The output
of the first convolution passes through a nonlinear activation before the next convolution layer.
Batch normalization is used to prevent the gradient from exploding and is applied to normalize
the information before another nonlinear activation is involved. The residual block closes with a
skip-layer residual connection that combines the original information with the newly learned
features. Residual blocks mitigate the vanishing/exploding gradient problem associated with
increased network depth.

Cardinality is in reference to the number of transformation sets within a block. Cardinality was
first introduced in the ResNeXt model in 2017 as an alternative to depth exploration for more
accuracy (Saining et al. 2017). It can be expensive to train, but if skip layers are used, residual
connections are recommended to reduce the training cost.

Figure 3.6: Cardinality

76 Deep Learning for Computer Vision with SAS: An Introduction

Each transformation set consists of an independent track of information that is trained jointly,
not independently. For example, Figure 3.7 below displays five transformation sets within the
block.

Figure 3.7: Transformation Sets Within a Block

ResNeXt showed that cardinality can be used as an alternative to depth exploration. Specifically,
the authors of ResNeXt demonstrated a lower misclassification rate compared to a ResNet with a
similar number of parameters. Each transformation set used in ResNeXt begins with a 1 x 1
convolution to reduce the dimensional depth, followed with a 3 x 3 convolution used for feature
extraction. Lastly, a 1 x 1 is used to expand the dimensional depth before the residual layer
summarizes and combines all transformation sets.

Chapter 3: Improving Accuracy 77

Figure 3.8: ResNet Type with Average Pooling

Interestingly, this author has observed cardinality to behave much like a structural regularity.
This means that cardinality would be a useful addition to a model that seems to overfit the
training data.

Comparing Structural Depth to Cardinality
Consider the following case study that examines the performance of a ResNet type model and
ResNeXt type model on the CIFAR-10 data. Specifically, the impact of cardinality versus network
depth is examined. Table 3.1 highlights some of the differences between ResNet-type and
ResNext-type models.

Table 3.1: ResNet versus ResNext Architectures

Attribute ResNet Type ResNext Type

Number of Blocks 10 3

Cardinality 1 6

Skip-Layer Connections residual residual

Number of Parameters 803,230 349,842

Both the ResNet type and ResNeXt type models examined in this experiment have almost
identical beginning and ending model structures. ResNet begins with a convolution layer
containing 12 filters, followed by a 2 x 2 max pooling layer, and ends with a 3 x 3 average pooling

78 Deep Learning for Computer Vision with SAS: An Introduction

layer followed by a fully connected layer with 660 neurons. ResNeXt begins with a convolution
layer containing 8 filters, followed by a 2 x 2 max pooling layer, and ends with a 3 x 3 average
pooling layer followed by a fully connected layer with 660 neurons.

The primary difference between the two architectures is the number of blocks and cardinality
used between the beginning and ending layers. The ResNet type model uses 10 blocks with a
single independent path, meaning that the cardinality is 1. The ResNeXt type is a much shallower
model, using only three blocks with six separate tracks, meaning that the cardinality is 6.

Cardinality has an additional unforeseen computational cost. Therefore, despite the difference in
model parameters, the ResNeXt type model takes slightly longer to train with fewer parameters
than the ResNet type model.

First, both models are trained on 10,000 observations for 60 epochs. ResNet performs
significantly better, with a misclassification rate of 44.2% compared to ResNeXt's
misclassification rate of 48.55%. Interestingly, ResNeXt seems to have lower variance compared
to ResNet. See Figure 3.9 and Table 3.2.

Figure 3.9: ResNet versus ResNext, 10,000 observations for 60 Epochs

Table 3.2: ResNet versus ResNext, 10,000 Observations for 60 Epochs

Validation Misc ResNet ResNext

10k obs, 60 epochs 44.2 48.55

Epochs were then increased from 60 to 1500, and both models were retrained. Performance for
both models improved, and the discrepancy between the two models is reduced, although the
ResNet type model still outperformed the ResNeXt type model. Training for 1500 epochs seems
a bit extreme given that the data contains only 10,000 observations. See Figure 3.10 and Table
3.3.

Chapter 3: Improving Accuracy 79

Figure 3.10: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs

Table 3.3: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs

Validation Misc ResNet ResNext

10k obs, 60 epochs 44.2 48.55

10k obs, 1,500 epochs 43.1 44.1

A dropout rate of 10% is added to the first convolutional layer for both models, and the models
are retrained. Both models show further improvement, and the discrepancy in performance
between the two models is marginal. See Figure 3.11 and Table 3.4.

Figure 3.11: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs with 10% Dropout Rate
in First Convolution Layer

80 Deep Learning for Computer Vision with SAS: An Introduction

Table 3.4: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs with 10% Dropout Rate in
First Convolution Layer

Validation Misc ResNet ResNext

10k obs, 60 epochs 44.2 48.55

10k obs, 1,500 epochs 43.1 44.1

10k obs, 1,500 epochs, 10%
dropout added

41.75 41.95

The data is increased from 10,000 observations to 50,000 observations. Variance for both
models decreases, and the performance on the holdout data has drastically improved. The
learning rate reductions are now clearly visible in the iteration plots. See Figure 3.12 and Table
3.5.

Figure 3.12: ResNet versus ResNext, 50,000 Observations, 1,500 Epochs

Table 3.5: ResNet versus ResNext, 50,000 Observations, 1,500 Epochs

Validation Misc ResNet ResNext

10k obs, 60 epochs 44.2 48.55

10k obs, 1,500 epochs 43.1 44.1

10k obs, 1,500 epochs, 100%
dropout added

41.75 41.95

Chapter 3: Improving Accuracy 81

Validation Misc ResNet ResNext

50k obs, 1,500 epochs 31.26 31.45

Image Preprocessing and Data Enrichment
If there appears to be a significant difference in performance between the training and
validation data partitions, then chances are that your model is suffering from high variance.
Gathering or generating more data and applying regularizations can mitigate variance error.
When generating images from the current data, translations and minor distortions are added to
the new permutations. However, the translations should be random to avoid introducing bias.
Enriching image data should be considered when there is limited training data and there is a
large discrepancy between training and validation errors. This enrichment can be used to
balance extreme target distributions.

Synthetic case creation is a practice used to enrich training data with designer cases when
obtaining more data is infeasible. These artificial observations should represent possibilities that
might exist in the population but might not be observed in the actual training sample. The key
here is to create cases that represent the possible, not the impossible. For example, suppose
that we are analyzing images of people exiting a train onto a station platform. We might want to
add reasonable color distortions that might mimic changes in lighting. However, we would not
want to vertically invert the picture because of gravitational influences present in the
environment.

Sometimes, adding noise can improve model generalities. Consider modeling human speech for
a new application. It might be beneficial to add in white noise to simulate the unpredictable
environments in which the user might be attempting to use the speech application. Even adding
random patches can also be considered a valid method used to generate more image data.

Data Augmentation Techniques
Data augmentation techniques often fall into one of four broad categories: geometric,
photometric, domain, and generative.

● Geometric transformations involve changes in pixel orientation or position and are used
to make the model more robust to spatial differences. This means that the model is
more invariant to positional deviations of the elements in an image. Common
transformations that fit into this category include rotating, flipping, scaling, and
cropping.

● Photometric morphologies and transformations change the pixel intensity with the
intended consequence of making the model more robust (or invariant) to changes in
color. Common augmentation techniques include pixel inversion, lightening / darkening,
color shifting, color jittering, eroding, and many others.

82 Deep Learning for Computer Vision with SAS: An Introduction

● Domain transformations incorporate data alterations driven by the modeler’s
knowledge of the data and the problem. Domain transformations usually incorporate a
photometric or geometric transformation (or both). For example, a government agency
building a facial recognition software using driver license photos might want to create
additional training images that incorporate black circles around the individual’s eyes to
simulate sunglasses. These types of transformations are user generated.

● Generative transformations often rely on a generative model to create new translations
of the input. These translations are defined by the model and a set of input variable
distributions. The generative modeling field seems to be converging around one type of
generative model, generative adversarial models (GANs) (Goodfellow et al. 2014). The
primary downside to a generative model is the time that it takes to train and tune the
model. Nevertheless, the models’ generative capabilities are very impressive—so much
so that, in some cases, the generated content can be indistinguishable to the human
eye.

Figure 3.13: Examples of Image Transformations

With all the complexities that accompany image data, generic synthetic case creation is (perhaps
surprisingly) quite simple. That is, an image can be augmented with different techniques, such as
flipping vertically, flipping horizontally, scaling up and down with pyramids, changing the
contrast (darkening or lightening), sharpening, and rotating to the left or right. All these
mutations can be applied to new copies of a training image to generate new cases.

More complex data augmentation techniques require extensive input from the modeler or
incurring the expense of time used to train a generative adversarial model.

It is important to avoid mutations that might misrepresent the target. For example, vertically
flipping a 6 turns it into a 9, but with the label of a six. Care should be taken to avoid these
mistakes because they can degrade your model’s performance.

Chapter 3: Improving Accuracy 83

The SAS Image action set contains a rich set of actions for image preprocessing and data
augmentation. The Image action set offers the ability to load, process, and save images. It
enables images to be used as a basic data type in SAS Viya. The load and save actions support all
common image formats such as JPG for photographic images, and Digital Imaging and
Communications in Medicine (DICOM) for biomedical images. The process action supports all
images loaded from a photographic format. This chapter focuses on the ProcessImage and
AugmentImage actions from the Image action set.

The ProcessImage and AugmentImage actions are often used for advanced augmentations.
Augmenting the data before the modeling process incurs additional cost because the data size is
increased, reducing the overall speed of the analysis. SAS deep learning provides basic
augmentations “on the fly,” which mitigates the speed reduction from data augmentation.

Process Image Action
The processImages action performs single or multiple image-processing functions on input
images. The input of this action is a CAS table that contains images and an array of functions
(with their specific parameters) as shown in the code below.

PROC CAS;
 ProcessImages /
 table= {name= "< image table name >"}
 casOut= {name= "< output image table name >"}

 imageFunctions= {
 {functionOptions= {functionType= "< first transformation
type >" < function type-specific-
parameters >}},
 {functionOptions= {functionType= "< second transformation
type >" < function type-specific-
parameters >}},
 {{….}}};
RUN;

The output is a CAS table that contains the resulting images after the specified functions are
applied. You can define the following functions:

● RESIZE: resizes an input image based on the width and height parameters. The
parameters must be specified as positive integers.

● GET_PATCH: creates a patch based on a rectangular region (using x, y, width, and height
parameters) from an input image. The x and y parameters must be specified as integers
that are greater than or equal to 0. The width and height parameters must be specified
as positive integers. Further, if x + width is greater than the specified width of the input
image, then the width of the rectangular region is reduced to the input image’s
specified width. The same is true for the y and height parameters.

● CANNY_EDGE: detects edges in input images by using the Canny edge detection
algorithm. This function accepts three parameters: lowThreshold, highThreshold, and
kernelSize.

84 Deep Learning for Computer Vision with SAS: An Introduction

● LAPLACIAN: applies the Laplace operator to input images. The Laplace operator is a
second-order differential operator in the n-dimensional Euclidean space. When the
value of the kernelSize parameter is 1, the resulting value is approximated by
convolving the kernel with input images.

● Otherwise, the value is approximated by summing the second x and y derivatives,
which are calculated using the Sobel operator.

● SOBEL: uses the Sobel operator to calculate the first, second, third, or mixed image
derivatives. Derivatives are calculated by convolving the image with a kernel. Kernels
must be square. The size can be only one of the following numbers: 1, 3, 5, and 7. When
the kernel size is 1, a kernel is used for the first or second derivative of x, and a kernel is
used for the first or second derivative of y. For the other kernel sizes, the Sobel
operator considers Gaussian smoothing and differentiation together (handling noise).

● NORMALIZE: normalizes the value range of an image. You can specify the following
normalization functions in the type parameter: INF, L1, L2, L2SQR, HAMMING,
HAMMING2, RELATIVE, and MINMAX. The MINMAX function is commonly used to
normalize an image between alpha and beta values.

● THRESHOLD: applies a threshold value to each pixel in an image. You can specify the
following threshold types: BINARY, BINARY_INVERSE, TRUNCATE, TO_ZERO,
TO_ZERO_INVERSE, OTSU, and TRIANGLE.

● CONVERT_COLOR: converts an image’s color space. Currently available conversions are
COLOR2GRAY, GRAY2COLOR, BGR2RGB, and RGB2BGR. The default color space for an
image is BGR. COLOR2GRAY means BGR2GRAY.

● RESCALE: changes an image’s depth. You can specify the following types of rescaling:

◦ TO_8U where depth is changed to 8-bit, where a pixel is represented by an
unsigned integer.

◦ TO_32F where depth is changed to 32-bit, where a pixel is represented by a floating
number.

◦ TO_64F where depth is changed to 64-bit, where a pixel is represented by a double-
precision number).

You can scale the values based on the alpha and beta parameters.

● MORPHOLOGY: performs a morphological transformation on images. You can specify
the following types of transformation: ERODE, DILATE, OPEN, CLOSE, GRADIENT,
TOPHAT, BLACKHAT, and HITMISS. Each of these operations can be in RECT
(rectangular), CROSS, and ELLIPSE shapes.

● BOX_FILTER: blurs an image by using a normalized box filter. The kernelWidth and
kernelHeight parameters shape the filter. The anchor is assumed to be at the kernel’s
center.

Chapter 3: Improving Accuracy 85

● GAUSSIAN_FILTER: blurs an image by using a Gaussian filter. A convolution kernel is
created based on the kernelWidth and kernelHeight parameters, which must be
positive and odd.

● BILATERAL_FILTER: applies a bilateral filter to images. A bilateral filter is a nonlinear,
edge-preserving, noise-reducing smoothing filter. The idea behind this filter is to
consider pixels close if they are
in spatially nearby locations, and similar if they have nearby values (in color space).

● MEDIAN_FILTER: blurs an image by using the median filter. This filter uses a square
matrix of the size specified in the kernelSize parameter, which must be greater than 1
and odd.

● BUILD_PYRAMID: blurs an image and samples it down (PYR_DOWN) or up (PYR_UP).
A Gaussian kernel is used for blurring.

● CONTOURS: applies several preprocessing steps for more accurate results. This function
accepts only one-channel images (for example, grayscale images). It provides better
results when the input image is a binarized image (for example, pixel values are either
black or white). If you provide a grayscale image rather than a binarized image, you still
see results, but they might be inaccurate or unexpected. (For example, a contour could
look like a frame that contains the whole picture.)

● CUSTOM_FILTER: creates a custom filter and uses it in convolution. This operation takes
the width, height, and values of a filter.

● ADD_CONSTANT: adds or subtracts a constant value from the pixel intensity values
input images. This function also makes sure that the resulting values are in the
permitted range that is determined by the depth of a pixel. For example, if an image’s
pixel depth is unsigned 8-bit (meaning that the pixel values can be between 0 and 255
only), then this function makes sure that the resulting values are within the range of 0
and 255 (meaning no overflows and negative values are permitted in this case).
Furthermore, if the image is a one-channel image, then the function uses only the
constant value of the first input.

● HIST_EQUALIZATION: aims to stretch out the intensity range. This function maps the
intensity distribution of an input image to another distribution that is wider and has a
more uniform distribution of intensity values. Two versions are supported: global and
adaptive. In the global version, the mapping is applied by considering the whole image.
In the adaptive version, the mapping is performed in local patches of input images.
Therefore, the adaptive version is more robust to images where contrast is quite
different at different regions of those images.

86 Deep Learning for Computer Vision with SAS: An Introduction

● LINEAR_TRANSFORMATION: performs linear transformation in one of the following
ways, based on the value of the method parameter:

◦ STANDARDIZATION creates an image that has zero mean and unit variance.

◦ WHITENING_PCA uses principal component analysis to create an image that has an
identity covariance.

◦ WHITENING_ZCA uses a ZCA transformation (also called a Mahalanobis
transformation) to create an image that has an identity covariance.

◦ LOCAL_CONTRAST_NORM is similar to STANDARDIZATION except that it convolves
a 9 x 9 Gaussian image with the input image.

● MUTATIONS: mutates images by using different augmentation techniques: flipping
vertically, flipping horizontally, scaling up and down with pyramids, changing the
contrast (darkening or lightening), sharpening, and rotating to the left or right. This
function is useful for increasing the variety of the input images, which is a major
preprocessing step for training methods based on deep neural networks.

The code below displays an example code that demonstrates how to use the processImage
action to apply a 5 x 5 Gaussian filter to blur an image. The KERNELWIDTH= and KERNELHEIGHT=
options specify the width of the kernel width and height, respectively.

PROC CAS ;
 ProcessImages /
 table={name= "MyInputTable"}
 casOut={name= "MyOutputTable"}

 imageFunctions= {
 {functionOptions= {functionType= "Gaussian_filter"
 KernelWidth= 5
 KernelHeight= 5}};
RUN;

The augmentImages action enables you to create patches by using either sliding windows or
coordinates of a rectangle. It also allows image augmentation by using a number of methods,
including rotating the image, flipping it, and adjusting the contrast as seen in the code below.

PROC CAS;
 AugmentImages /
 table={name= "< image table name >" }
 casOut={name= "< output image table name >" }
 writeRandomly= < true | false
 cropList= {mutations= { < first mutation type > = < true |
false >
 < second mutation type > = < true| false
>
 < … > }
 width= < input image width >
 height= < input image height >
 useWholeImage= true | false};
RUN;

Chapter 3: Improving Accuracy 87

This action can process more than one patch or augmentation command in a single run.

For example, you can use the sliding window method on input images and separately flip input
images. The output CAS table contains the resulting images. In addition, the writeRandomly
parameter enables you to randomly apply augmentations to input images. This is very important
for machine learning methods that are based on deep neural networks.

Setting both the sweepImage and useWholeImage parameters to True is contradictory.
Therefore, the useWholeImage parameter overrides the sweepImage parameter.

The code below is an example that demonstrates how to use the AugmentImage action to apply
two transformations to a 32 x 32-pixel image.

PROC CAS;
 AugmentImages /
 table={name= "MyInputTable"}
 casOut={name= "MyOutputTable"}
 writeRandomly= true

 cropList={mutations= { colorjittering= true
 rotateright= true }
 width= 32
 heigth= 32
 useWholeImage= true};
RUN;

Gaussian Filters
Gaussian filters are used to smooth steep variations within an image.

Figure 3.14: Gaussian Filter

88 Deep Learning for Computer Vision with SAS: An Introduction

This photometric transformation blends pixels to create a blurred version of the image. Larger
kernels increase the blurred effect of the transformation as seen in Figure 3.14. A Gaussian filter
applies larger weights to the center of the kernel such that the area of interest is lightly blended
with surrounding pixels. An example Gaussian kernel filter might look something like the figure
below.

Figure 3.15: Gaussian Kernel Filter

The user needs to provide only the height and width of the Gaussian kernel. SAS creates a valid
kernel such that the volume under the two-dimensional kernel equals 1. The processImages
action is used to create images transformed by Gaussian filters. Here is some example code:

PROC CAS;
 image.processImages /
 imageFunctions= {{functionOptions=
 {functionType= "GAUSSIAN_FILTER"

 KernelWidth= 5
 KernelHeight= 5}}
 table={name='inputTable'}
 casout={name='outputTable'};
RUN;

Sharpen
Sharpening an image is considered a photometric transformation, as seen in Figure 3.16.

Chapter 3: Improving Accuracy 89

Figure 3.16: Sharpen

To sharpen an image, SAS encodes the red, green, blue (RGB) color image to Y′CbCr, where Y′ is
the brightness component, Cb represents the blue-difference component, and Cr represents the
red-difference component. A high-pass filter is then applied to the encoded image to detect
edges. Figure 3.17 is an example of a high-pass filter.

Figure 3.17: High-Pass Filter

Then the image is transformed back the RGB color space. Here is example code that sharpens an
image:

PROC CAS;
 image.processImages /
 imagefunctions= {{functionOptions=
 {functionType="MUTATIONS"

 type="SHARPEN"
 }}}
 table={name='inputTable'}
 casout={name='outputTable'};
RUN;

90 Deep Learning for Computer Vision with SAS: An Introduction

Inverting Pixels
Pixel inversion is a photometric transformation that reverses the color density such that light
becomes dark and dark becomes light, as seen in Figure 3.18.

Figure 3.18: Inverting Pixels

It can be as simple as replacing each of the RGB pixel values with (255 – pixel value). Here is
sample code that demonstrates how to invert pixels using SAS:

PROC CAS;
 image.processImages /

 imagefunctions= {{functionOptions=
 {functionType="MUTATIONS"

 type="INVERT_PIXELS"
 }}}
 table={name='inputTable'}
 casout={name='outputTable'};
RUN;

Chapter 3: Improving Accuracy 91

Pyramid Down
The Pyramid Down transformation downsamples and then blurs the image. An example is shown
in Figure 3.19.

Figure 3.19: Pyramid Down and Cropping Transformations

Cropping was also used in the example in Figure 3.19. Empirical evidence indicates that cropping,
a geometric augmentation, can significantly improve the generalization performance of a
convolutional neural network model (Taylor and Nitschke 2017). The augmentImages action is
used to both crop and apply the Pyramid Down transformation in the same pass.

In the code below, notice that the useWholeImage= option is set to false, which indicates
cropping will likely be performed.

proc cas;
 image.augmentImages /
 cropList= {{mutations=
{pyramidDown=TRUE}
x=60
y=20

width=416
height=416

outputWidth=208
outputHeight=208

useWholeImage=false
 }}
 table={name='inputTable'}
 casout={name='outputTable'};
run;

92 Deep Learning for Computer Vision with SAS: An Introduction

The X= and Y= options represent the pixel starting position. The WIDTH= and HEIGHT= options
specify the original image size. The OUTPUTWIDTH= and OUTPUTHEIGHT= options control the
extent to which the image will be downsampled. In the example above, the image is down
sampled by a factor of two (416 / 208).

Rotating
Rotating an image is one of the most popular geometric transformations used to expand training
data for computer vision tasks because an object’s angle can often vary in application. Consider
an image of a person sitting upright in a chair versus a person reclined back in a chair. Reclining
back in the chair alters the angles of vital facial features for which the model might be relying on
to detect the person. Figure 3.20 shows ways an image can be rotated.

Figure 3.20: Image Rotation

An image can be rotated either left or right, and the transformation can be applied multiple
times to the same image. SAS automatically pads the outer edges with zero-padding. However,
replacing the zero-padding with noise might help the model’s generalizability. Alternatively, you
can rotate and then crop the image to remove the zero-padding region. Here is code that rotates
an image to the right using the processImages action:

proc cas;
 image.processImages /

 imagefunctions= {{functionOptions=
 {functionType="MUTATIONS"

 type="ROTATE_RIGHT"
 }}}
 table={name='inputTable'}
 casout={name='outputTable'};
run;

Chapter 3: Improving Accuracy 93

Flipping
Flipping an image is another widespread geometric transformation, but it is one that should be
used with care because it can sometimes create a mislabeled image or represent an unlikely
scenario. Figure 3.21 shows an example of flipping an image.

Figure 3.21: Flipping

The code below flips an image vertically using the processImages action.

PROC CAS;
 image.processImages /

 imagefunctions={{functionOptions=
 {functionType="MUTATIONS"

 type="VERTICAL_FLIP"
 }}}
 table={name='inputTable'}
 casout={name='outputTable'};
run;

94 Deep Learning for Computer Vision with SAS: An Introduction

In most cases, multiple photometric and geometric data augmentation techniques are randomly
applied to images to generate a diverse set of training examples, as seen in Figure 3.22.

Figure 3.22: Multiple Data Augmentation Techniques

Data augmentation techniques are usually not applied to validation or test partitions to reduce
the pressures of overfitting.

Transfer Learning Introduction
Traditional machine learning methods extract information from one data source for use in
another data source under the assumptions that the distributions are the same, or at least very
similar, as in Figure 3.23.

Figure 3.23: Similar Distributions

Predictive modeling is a classic example where information extracted from historical or current
data is used to predict an outcome associated with data not yet observed. Predictive models
assume the feature distributions remain the same from training to scoring.

Transfer learning is an area of machine learning that leverages information extracted from one
set of distributions for use in another different set of distributions as seen in Figure 3.24.

Figure 3.24: Dissimilar Distributions

Chapter 3: Improving Accuracy 95

That is, transfer learning refers to a situation where information extracted from one setting
(often referred to as the source) is exploited in another setting (often referred to as the target)
to improve the learner’s performance. Meaning the feature space of the extracted information is
different from the feature space associated with the desired learner (model). Transfer learning
refers to a situation where information extracted from one setting is exploited in another setting
with the goal of improving the learner’s performance. More formally, either the source (s) and
target (t) domains do not match (Ds ≠ Dt) or the source and target task do not match (Ts ≠ Tt)
(Weiss, Khoshgoftaar, and Wang 2016).

Domains and Subdomains
A domain is an environment or setting that is described by a set of features. (See Figure 3.25.)
Domains are antecedents to subdomains, where the structure of domains and subdomains
describe a hierarchical relationship of related information. Domains, and by extensions
subdomains, are defined by a feature space (X) and a marginal probability distribution (P (X)). For
example, English, Chinese, and Icelandic translations are each subdomains of a natural language
processing domain (Weiss, Khoshgoftaar, and Wang 2016).

Figure 3.25: Example of Domains and Subdomains

Note: Usually, the nearest subdomain is considered as the “domain” for practical purposes
when considering whether the source and target domains are equivalent. That is, when
answering the question is XS=XT and P(XS)=P(XT)?

Tasks
Domains consider only the input variables, whereas the task, on the other hand, considers the
outcome. Tasks are defined by an output space (Y) and a conditional probability distribution
(P(Y|X)). For example, Figure 3.26 shows that predicting a classification outcome, such as the

96 Deep Learning for Computer Vision with SAS: An Introduction

breed of a dog based on an image of the dog, is a task within the computer vision domain
(Weiss, Khoshgoftaar, and Wang 2016).

Figure 3.26: Domain versus Task

Therefore, we can formally define transfer learning as, “given a source domain Ds with a
corresponding task Ts and a target domain Ts with a corresponding task Tt, transfer learning is

the process of improving the target function ft(x) ()tf x by using the related information from Ds
and Dt, where Ds≠Dt or Ts≠Tt” (Weiss, Khoshgoftaar, and Wang 2016).

Types of Transfer Learning
There are two types of transfer learning: homogeneous (where Xs=Xt) and heterogeneous
(where Xs≠Xt). An example of homogeneous transfer learning is shown in Figure 3.27 below,
where each column represents a pixel density value.

Figure 3.27: Homogeneous Transfer Learning

Chapter 3: Improving Accuracy 97

Note: P(Xs) does not have to equal P(Xt) in homogenous transfer learning.

Heterogenous Transfer Learning and Domain Adaptation
As mentioned above, heterogenous transfer learning refers to cases where Xs≠Xt. An example of
heterogeneous transfer learning is shown in Figure 3.28.

Figure 3.28: Heterogeneous Transfer Learning with Tabular and Image Data

Domain adaption is closely related to heterogeneous transfer learning. It is characterized by
methods that alter the source domain (Xs and/or P(Xs)) to better fit the target domain in
situations where the source and target task are the same Ts=Tt, but the domains are different
Ds≠Dt. For example, consider a task of text generation, which consists of generating text based
on a set of criteria. An example of criteria could be the demeanor (happy, sad, angry, and so on)
of the generated text. The domains are different when generating text for a Chinese
conversation, as compared to an English conversation. Both tasks are the same, but the
vocabulary, style, linearity, and systematicity of the languages differ. Domain adaption would
alter (or adapt) the source domain to match the target domain. Glorot et al. (2011)
demonstrated stacked denoising autoencoders could be used for domain adaption.

Note: There are many inconsistencies in literature with regard to the formal definition of
domain adaption. This book’s definition of domain adaptation is consistent with both
Goodfellow et al. 2016, and Weiss et al. 2016.

Transfer Learning Biases
Transfer learning can be difficult because by invention, there exists a difference in the
information being transferred from one setting to another. These differences can give rise to
biases and can cause the model to degrade to the point of negative transfer learning.

Negative transfer learning occurs when the desired target function performs worse after having
incorporated a transfer learning strategy relative to the target function with no exposure to

98 Deep Learning for Computer Vision with SAS: An Introduction

transfer learning. Bias is the primary cause of negative transfer learning. The two most common
types of transfer learning biases are frequency bias and context bias.

Frequency Bias
Frequency bias occurs when features are not independent of the domain, and the transfer
learning strategy is being deployed across different domains. For example, consider the task of
sentiment analysis across two domains, a hospital domain, and a business domain. Words such
as “people,” “help,” and “work,” are independent of the domains and are likely to occur at
similar rates. However, words such as “heart,” “patient,” and “medication” are likely to occur
more frequently in the hospital domain, and words like “profit,” “customer,” and “sales” would

be more frequent in the business domain. Therefore, () ()s tP X P X≠ , meaning the marginal
probability distribution of the features does not match.

Context bias occurs when the underlying relationship between the features and the output
changes from source data to target data. Consider our earlier example of the hospital and
business domains. The word “positive” used in a business domain would likely have positive
sentiment. However, that same word used in a hospital domain might have negative sentiment.

For example, “the test results came back positive,” where the word “positive” is in reference to
the presence of a disease. Therefore, context bias refers to instances where

(|) (|)s s t tP Y X P Y X≠ , meaning that the conditional probability distributions are different
from the source data to the target data.

Transfer Learning Strategies
There are many methods that are used for transfer learning. Two of the most general forms are
supervised and unsupervised pretraining. This chapter focuses on specific examples of
supervised and unsupervised pretraining that can be used to capture and leverage information
that exist across domains. Transfer learning is also known as representational learning.

Supervised Pretraining
One method for supervised pretraining incorporates first training a model on the source data.
The model weights are then transferred and frozen for use by the target data. It is common to
leave some weights unfrozen to allow for reconciliation between the weights learned on the
source data, and differences in the target data. In neural network modeling, the layers with the
unfrozen weights are referred to as the “adaptable layers.” The output layer is left unfrozen,
permitting the generation of new posteriors that reflect the target data.

Choosing which layers to freeze depends on the problem at hand. If the task is identical from the

source to the target (s tY Y=), then sharing the layers closer to the output layer is sensible. In
this scenario, the adaptable layers are those closer to the input layer. Conversely, the layers

Chapter 3: Improving Accuracy 99

closer to the input layer should be frozen and the layers closer to the output left adaptable if the
relevant information exists primarily in the inputs.

Unsupervised Pretraining
Autoencoders are unsupervised models that have been leveraged with some success for
unsupervised pretraining. One benefit to an unsupervised method is that the source data do not
need to be labeled. An unsupervised pretraining strategy usually begins by combining the
features of the source and target data. An autoencoder is then trained on the full data with
hopes of capturing information that persists across domains. This is most useful when the source
data is abundant and the target data is limited. The trained autoencoder is then assigned to
score (inference) the target data and encoded projections are extracted. These encoders are
provided as inputs to the target learner, along with the original target features. Glorot et al.
(2011) have shown success using stacked denoising autoencoders for unsupervised transfer
learning.

Denoising autoencoders were introduced by Vincent et al. (2010) as autoencoders that are
trained on corrupted (perturbed) inputs. Corrupting the inputs can be as simple as applying
dropout to the input layer. A popular variant of a denoising autoencoder is called a stacked
denoising autoencoder.

A stacked denoising autoencoder is greedily trained, layer by layer. Meaning, the first layer is
thoroughly trained on the perturbed inputs and then frozen. The perturbed input is then
replaced with the unperturbed input and the next layer is trained thoroughly. This layer is then
frozen, and the process repeats until the output layer is trained.

Another variant of autoencoders is known as sparse autoencoders. Sparse autoencoders
incorporate a constraint on the objective function. L1 and L2 regularizations can be used as the
constraining mechanisms to generate a sparse autoencoder.

Customizations with FCMP
Sometimes data scientists want to create custom functions for models to better fit a particular
deep learning requirement that the available default functions cannot deliver. Deep learning
tools in SAS enable you to use the SAS Function Compiler (FCMP) to create and modify your own
custom definitions for deep neural network activation and error functions. FCMP is a
programming tool that you can use with the deep learning actions in SAS to produce your own
custom deep learning entities:

● activation functions

● error functions

● model layers

● learning rate policies

100 Deep Learning for Computer Vision with SAS: An Introduction

Custom FCMP network layers, functions, and learning rate policies are separate entities that
perform different deep learning tasks. The one common factor is that all of the custom layers,
custom activation and error functions, and custom learning rate policies were created for use
with SAS deep learning using FCMP.

The parameters of the FCMP action can be found in the documentation.

Tuning a Deep Learning Model

Selecting Hyperparameters
The quality of the predictive model that a machine learning algorithm creates depends on the
values of various attributes that govern the training process and model structure. The
parameters that represent these attributes are also known as hyperparameters. Searching the
hyperparameter space of a deep neural network can be prohibitively expensive for genetic or
Bayesian optimization methods, because these methods require training with each
hyperparameter combination until convergence of the algorithm. Alternatively, the Hyperband
method (Li et al. 2017) is a good approach for dense model structures, because resources are
adaptively allocated to only those model structures that show promise.

Sampling the Hyperparameter Space
The dlTune action implements the Hyperband method and begins by selecting sets of
hyperparameters using a Latin hypercube sample of the search space. A Latin hypercube sample
is preferred over a simple random, which is considered the least intelligent sample search. (See
Figure 3.29.)

Figure 3.29: Simple Random Sample

The Latin hypercube sample is a discrete sample that is uniform in each hyperparameter but
random in combinations. These so-called low-discrepancy point sets attempt to ensure that

Chapter 3: Improving Accuracy 101

points are approximately equidistant from one another in order to fill the space efficiently, as
seen in Figure 3.30.

Figure 3.30: Latin Hypercube Sample

This sampling allows for convergence across the entire search range of each hyperparameter. It
is more likely to find good values of each hyperparameter when compared to a simple random
sample. The method is considered to yield a fairly uniform sampling of the space (Koch, et al.
2018).

To avoid overfitting, a holdout sample is recommended to evaluate each set of
hyperparameters. Each set of sampled hyperparameters is assigned to the specified model
structure, and resources are allocated proportionally per the Hyperband method, as seen in
Figure 3.31.

Figure 3.31: Hyperband Tuning

102 Deep Learning for Computer Vision with SAS: An Introduction

The models are then trained for one or several epochs, and their accuracy assessed. Poor
performing models are then removed from the training process. The user can control the
proportion of hyperparameter sets that are retained with the TUNERETENTION= option. See
Figure 3.32.

Figure 3.32: Hyperband Tuning Over One or Several Epochs

The resources previously provided to the poor performing models are reallocated and
distributed among the remaining models, as seen in Figure 3.33.

Figure 3.33: Poor Performing Model Resource Reallocation

Chapter 3: Improving Accuracy 103

The remaining models are then trained for one or several epochs, and their accuracy is assessed.
The process is repeated until a champion set of hyperparameters remains (Figure 3.34).

Figure 3.34: Champion Model

Hyperparameter Selection
You can tune the following hyperparameter values through DLTUNE:

● Learning rate

● Momentum rate

● Mini-batch size

● Learning rate reduction (gamma)

● Step size

● L1 Regularization

● L2 Regularization

● Dropout

● Beta1

● Beta2

The dlTune action can search for optimal values amongst many important hyperparameters.
Tuning the learning rate (or rates) is recommended for easy gains in model lift. Tuning the
regularizations (L1, L2, and dropout) is recommended if the model performs significantly better
on the training data than on the validation data.

104 Deep Learning for Computer Vision with SAS: An Introduction

Note: When the gpu parameter is specified, the dlTune action uses graphical processing
unit hardware to accelerate the dlTune action. You can identify GPU devices with 0-based
64-bit integers. For example, devices={0, 2} requests that the first and the third GPU device
be used. When the devices= option is not specified, the action uses all available GPU
devices in the system.

Hyperband Properties
The following optimization property values affect the behavior of DLTUNE:

● MAXEPOCHS (Maximum epochs)

● TUNEITER (Tuning iterations)

● NUMTRIALS (Number of trials)

● TUNERETENTION

● TUNERESTART

The MAXEPOCHS property specifies the number of epochs to perform on each hyperparameter
combination before comparing validation errors and culling. The number of combinations culled
is a function of the TUNERETENTION property.

Note: For SGD with a single-machine server or a session that uses one worker on a
distributed server, one epoch is reached when the action passes through the data one time.
For a session that uses more than one worker, one epoch is reached when all the workers
exchange the weights with the controller one time. The syncFreq parameter specifies the
number of times each worker passes through the data before exchanging weights with the
controller.

The TUNEITER property specifies the number of iterations of the tuning algorithm to run. One
iteration of the tuning algorithm trains the models using all active hyperparameter sets for the
specified maxEpochs. The hyperparameters with the best validation fit error remain active for
future tuning iterations.

The NUMTRIALS property specifies the number of hyperparameter sets to try at the start of the
tuning process. For example, specifying 100 for the property will begin the process training 100
models with different hyperparameter values.

The TUNERETENTION property determines the proportion of hyperparameter configurations
that are kept after each tuning iteration.

The TUNERESTART specifies the number of times to restart the parameter tuning process, using
the best available weights from a previous search, and newly chosen parameter sets.

Choosing the appropriate set of tuner values for maxepochs, tuneiter, numtrials, tuneretention,
and tunerestart is not trivial. A common approach is to set the maxepochs number to a small

Chapter 3: Improving Accuracy 105

value so that the number of hyperparameter combinations (numtrials) can be assigned a larger
value. This approach seems to imply that for hyperparameter search methods, the model
parameter estimates (weights) matter less than the characteristics of a model. Regardless of
whether this is true or not, there are instances when an alternative approach is warranted. For
example, imagine your model’s current iteration plot resembles Figure 3.35.

Figure 3.35: Current Iteration Plot

It would then be logical to search L1 and L2 regularization values in hopes of reducing variance in
the model. Setting the maxepochs value to a small number, such as four, might result in the
process assessing the performance of each hyperparameter combination at a peak of poor
performance, as seen in Figure 3.36.

Figure 3.36: Setting Maxepochs to a Small Value

Assessing the model at this point in the training process is likely to favor larger L1 and L2 values
because larger values constrain weight growth, which is likely to cause the model to be less
responsive to information in the data. Meaning, larger L1 and L2 values appear to have superior
performance at epoch four because the degradation observed early in the process will be
dampened. But are large L1 and L2 weight values really “best” for the model in the long run?
One might postulate the answer is “no” because the model will struggle to capture less
pronounced single that might exist in the data. Therefore, in this example it may be best to set

106 Deep Learning for Computer Vision with SAS: An Introduction

maxepochs to a larger value to avoid assessing the hypermeter combination at the poor
performance peak observed early in the training process, as seen in Figure 3.37.

Figure 3.37: Setting Maxepochs to a Larger Value

It is imperative that the business problem and the model’s interaction with the data should be
considered when setting the tuning parameters.

Chapter 4: Object Detection
Introduction .. 107
Types of Object Detection Algorithms ... 108
Data Preparation and Prediction Overview ... 109

Non-Normalized Data .. 109
Normalized Locations .. 110
Multi-Loss Error Function .. 111
Error Function Scalars.. 113
Anchor Boxes .. 115
Final Convolution Layer ... 117
Demonstration: Using DLPy to Access SAS Deep Learning Technologies: Part 1 117
Demonstration: Using DLPy to Access SAS Deep Learning Technologies: Part 2 119

Introduction
By itself, image classification is a task of examining an image that is usually well framed and
responding with a probability of classification that describes the image. Object detection is more
advanced than image classification because object detection analyzes complex images that
contain a mixed multitude of objects, at different distances and locations, amidst varying, often
visually noisy backgrounds. Objects can appear anywhere within the visual frame, be near or far,
and can overlap each other. (See Figure 4.1.) Object detection locates and classifies objects, and
it determines these objects’ boundaries and relationships to other objects.

Figure 4.1: Object Classification

108 Deep Learning for Computer Vision with SAS: An Introduction

Object detection is a challenging task, as well as one of the most fundamental tasks in computer
vision. We use convolutional neural networks (CNNs) to perform tasks that include object
identification, object localization, and bounding, as well as object classification. Lately, CNN-
based deep learning algorithms like the following have been successful in addressing problems
associated with object detection tasks:

● You Only Look Once (YOLO)

● Single Shot MultiBox Detector (SSD)

● Region Proposal Networks (R-CNN)

● Faster Region Proposal Networks (Faster R-CNN)

● Backbone feature extractor for object detection (DETNet)

Types of Object Detection Algorithms
Object detection algorithms can be categorized as follows. The first category of object detection
algorithms looks for objects in one step with anchors of predefined sizes at predefined locations.
The locations and fixed sizes are strategically selected in order to cover the greatest number of
scenarios. The algorithms typically separate the original images into fixed-size grid regions. For
each region, these algorithms try to predict a fixed number of objects using certain
predetermined shapes and sizes. Algorithms in this category are called single-stage methods.
Examples of single-stage algorithms include YOLO, SSD, and RetinaNet. Algorithms in this
category usually run faster but can be less accurate. This type of algorithm is often used for
applications that require real-time detection.

The second category of object detection algorithms is region proposals that involve two steps.
Under region proposal, the regions that are highly likely to contain an object are selected either
using traditional computer vision techniques (like selective search) or by using a deep-learning-
based region proposal network (RPN). After you gather the small set of candidate windows, you
can formulate a specific number of regression models and classification models to solve the
object detection problem. This category includes algorithms like Faster R-CNN, R-FCN, and FPN-
FRCN. Algorithms in this category are usually called two-stage methods. They are generally more
accurate but are often slower than single-stage methods.

The deep learning tools in SAS support two representative object detection algorithms: YOLO
and Faster R-CNN. YOLO is a one-stage, fixed-size object detection algorithm. Faster R-CNN is a
two-stage region, proposal-based object detection algorithm.

One-stage object detectors like YOLO analyze an image in a single pass, and they output multiple
object location and classification predictions. As a result, YOLO networks are fast when
compared to multi-stage algorithms like R-CNNs. YOLO architectures are also able to perform
image reasoning with larger contexts during training.

YOLO applies a single CNN to the full image and then divides the image into regions (usually 13 x
13 grid cells). Then, for each region, YOLO predicts a fixed number of bounding boxes and
associated object classification probabilities. Anchor boxes for each region provide pre-set values

Chapter 4: Object Detection 109

for predicted object sizes, and the actual prediction gives a correction to the anchor boxes.
Anchor boxes are typically obtained for a given data set using k-means clustering. Final detection
results are obtained by applying threshold and non-maximum suppression operations on the
predictive probabilities.

Data Preparation and Prediction Overview
The data from which the model now learns has expanded to include information describing the
spatial dynamics of an object or objects. Depending on the format used, the predictions that
describe an object’s location can be presented in the following three ways:

1. RECT: Use the RECT format for coordinates [xleft, ytop, width, height] in image pixels
2. YOLO: Use the YOLO format for coordinates [xMiddle, yMiddle, width, height] in

normalized image size (obtained by dividing the coordinates by the image size)
3. COCO: Use the COCO format for coordinates [xmin, ymin, xmax, ymax] in image pixels

An output variable describing the number of objects is included in addition to the output
variables describing an object’s location. This chapter focuses on the YOLO format, which
includes four normalized variables that depict an object’s location. Normalizing the values
ensures that resizing transformations can be used with minimal loss of precision with regard to
the target location.

● _Objectn_x corresponds to the normalized horizontal location of the object.

● _Objectn_y corresponds to the normalized vertical location of the object.

● _Objectn_width corresponds to the normalized width of the bounding box.

● _Objectn_height corresponds to the normalized height of the bounding box.

Non-Normalized Data
In some cases, the data provided are not normalized. For example, consider a scenario where
xmin, max, ymin, and ymax represent unnormalized pixel values in an image with dimensions of
500 x 400. The normalized values are calculated by dividing each x and y coordinate by the
maximum value of the respective plane (that is, xmin/500, xmax/500, ymin/400, and ymax/400).

The following equations transform the normalized xmin, xmax, ymin, and ymax values into YOLO
formatted values:

_objectn_x=.5(x min + x max)

_objectn_y=.5(y min + y max)

_objectn_width=(x max - x min)

_objectn_height=(y max - y min)

Where n represents the object number.

110 Deep Learning for Computer Vision with SAS: An Introduction

Normalized Locations
Consider the example below where the object of interest is a person fishing in Figure 4.2. Pixels
within a two-dimensional image represent coordinates on an X-axis and Y-axis grid. The grid
itself can be thought of as a normalized representation of the image where the pixel in the top
left corner has the coordinates (0,0), and the pixel in the bottom right corner has the coordinates
(1,1). The variables _objectn_x and _objectn_y provide the normalized origin of an object. For
example, the fisherman is located approximately 70.5% in the direction of the X axis’ terminal
value, 1.

Figure 4.2: Normalized Locations, objectn_x and objectn_y

This means that the fisherman’s origin is 70.5% of the way to the right side of the image.
Similarly, the fisherman is located 73% in the direction of the Y axis’ terminal value (that is, 73%
of the way heading from top to bottom). The combination of _objectn_x and _objectn_y
provides the fisherman’s normalized origin.

The variables _objectn_width and _objectn_height provide the respective normalized width and
height of an object, as seen in Figure 4.3. The object's origin (in this case, the fisherman's origin)
lies in the center of the box. This means that the width and height extend in equal distances
from the fisherman's origin.

Chapter 4: Object Detection 111

Figure 4.3: Normalized Locations, objectn_width and objectn_height

Notice that the width of the box is approximately 10% the width of the image and the height of
the bounding box is about one quarter, or 23%, the height of the picture.

Multi-Loss Error Function
The YOLOv2 multi-loss function combines several error functions and attempts to balance the
model’s focus between classification and localization prediction task. The prediction task focuses
on the following four areas:

● bounding box error λcoord ∑ ∑ Lij
objB

j=0
S2
i=0 [(zx

ij − z�xl)2 + (zy
ij − z�yl)2 + (zw

ij − z�wl)2 +
(zh

ij − z�hl)2]

● + true confidence error λobj ∑ ∑ Lij
obj(Cij − 1)2B

j=0
S2
i=0

● + false confidence error λnoobj ∑ ∑ Lij
noobj(Cij − 0)2B

j=0
S2
i=0

● + classification error λclass ∑ Lij
obj ∑ (pij(c) − p�l(c))2B

c∈classes
S2
i=0

As seen in Figure 4.4, the image is separated into a matrix of S x S cells. In each cell, a number B
of bounding boxes are predicted. Each prediction includes the center location of the bounding
box and the width and height of the bounding box error, the probability of the prediction being
an object (source of true and false confidence errors), and the classification probabilities (source
of classification error). The number of bounding boxes predicted are determined by the number
of anchor boxes specified. Anchor boxes are discussed later in the chapter.

112 Deep Learning for Computer Vision with SAS: An Introduction

obj
ijL is 1 if the prediction j in the cell i is correct for a labeled object whose center falls into the

cell i . Otherwise, its value is 0.
noobj
ijL is 1 if the prediction j in the cell i is not correct for a

labeled object whose center falls into the cell i . Otherwise, its value is 0.

Figure 4.4: YOLOv2 Multi-Loss Error Function

If a cell does not contain an object of interest, then 1noobj
ijL = , and the multi-loss error function

resolves to a simple squared error function:
2

2
0 0

(0)S B
noobj iji j

Cλ
= =

−∑ ∑ where ijC represents the

predicted probability of being an object for a prediction j in the cell i .

If a cell contains an object of interest, then 1obj
ijL = , and the multi-loss error function drops

2
2

0 0
(0)S B

noobj iji j
Cλ

= =
−∑ ∑ and simplifies to the following:

2

2

2

2 2 2 2
0 0

2
0 0

2
0

ˆ ˆ ˆ ˆ[() () () ()]

(1)

ˆ(() ())

S B ij l ij l ij l ij l
coord x x y y w w h hi j

S B
obj iji j

S B l
class iji c classes

z z z z z z z z

C

p c p c

λ

λ

λ

= =

= =

= ∈

− + − + − + −

+ −

+ −

∑ ∑
∑ ∑
∑ ∑

where , , ,ij ij ij ij
x y w hz z z z represent predicted coordinate offsets from the anchor box, and

ˆ ˆ ˆ ˆ, , ,l l l l
x y w hz z z z represent coordinate offsets of the labeled object bounding box for which the

prediction ij is responsible.

Note: An anchor box provides a candidate set of starting points for bounding box
predictions. This topic is discussed in more detail in a later section.

Chapter 4: Object Detection 113

Only a single anchor box that contains the highest intersection over union (IOU) value with the

true bounding box is retained as the prior of best fit and is represented by ˆ ˆ ˆ ˆ, , ,l l l l
x y w hz z z z offsets.

Intersection over union (IOU) is calculated as shown in Figure 4.5.

Figure 4.5: Intersection over Union

When a prediction is “responsible” for a true object, it means that the prediction is the closest

match for a labeled object whose center falls into the cell, with respect to IOU. ijP represents

the predicted probability of being class C for prediction j in the cell i . ˆ ()lP c is 1 if the labeled

object that this prediction is responsible for is class C . Otherwise, it is zero.

Error Function Scalars
Scalars (, , ,coord obj noobj classλ λ λ λ) are used to fine-tune predictions by emphasizing specific

predictions over others. For example, the authors of You Only Look Once: Unified, Real-Time
Object Detection discovered that the prediction scores for confidence were being pressured
toward zero because the number of cells not containing an object largely outnumbered the

number of cells containing an object. Therefore, the authors used a lower scalar for noobjλ (that

is, 0.5) to offset the lack of objects in most grid cells. The authors further adjusted their
predictions with a higher scalar for coordλ (that is, 5) to upweight bounding box predictions
(Redmon et al. 2016).

Changing scalars in the multi-loss error function imposes on the model a tradeoff between
various perdition tasks. For example, increasing coordλ causes the optimization process to
emphasize the prediction of the bounding box at the sacrifice of de-emphasizing confidence and
classification predictions. The coordλ scalar is adjusted using the COORDSCALE= option in the
object detection layer created by the last ADDLAYER statement.

114 Deep Learning for Computer Vision with SAS: An Introduction

Here is an example of COORDSCALE= implementation in the ADDLAYER statement:

AddLayer / model='ObjectDetection'
 name='output_object_dectect' layer={type='detection'
 coordScale = 5
 /***Remaining code not shown but will be displayed as topics are
introduced later in the chapter ***/
run;

Increasing objλ increases the model’s awareness of objects at the cost of an increased false

detection rate. The objλ scalar is adjusted using the OBJECTSCALE= option in the object

detection layer created by the last ADDLAYER statement.

Here is an example of OBJECTSCALE= implementation in the ADDLAYER statement:

AddLayer / model='ObjectDetection'
 name='output_object_dectect' layer={type='detection'
 coordScale = 5
 objectScale = 1
 /***Remaining code not shown but will be displayed as topics are
introduced later in the chapter ***/
run;

Increasing noobjλ encourages the model to be more cautious when detecting objects. Objects

that exist in the picture are more likely to be missed if a large value is assigned to the noobjλ

scalar.

The noobjλ scalar is adjusted using the PREDICTIONNOTAOBJECTSCALE= option in the object

detection layer created by the last ADDLAYER statement.

Here is an example of PREDICTIONNOTAOBJECTSCALE= implementation in the ADDLAYER
statement:

AddLayer / model='ObjectDetection'
 name='output_object_dectect' layer={type='detection'
 coordScale = 5
 objectScale = 1
 predictionNotAObjectScale = .25
 /***Remaining code not shown but will be displayed as topics are
introduced later in the chapter ***/
run;

Increasing classλ encourages the model to pay more attention to correctly predicting the object
classification, as opposed to the location of the object within the image. The classλ scalar is
adjusted using the CLASSSCALE= option in the object detection layer created by the last
ADDLAYER statement.

Chapter 4: Object Detection 115

Here is an example of CLASSSCALE= implementation in the ADDLAYER statement:

AddLayer / model='ObjectDetection'
 name='output_object_dectect' layer={type='detection'
 coordScale = 5
 objectScale = 1
 predictionNotAObjectScale = .25
 classScale = 1
 /***Remaining code not shown but will be displayed as topics are
introduced later in the chapter ***/
run;

Note: CLASSSCALE= should be set to zero if the business need is to detect a single object.
That is, no other objects are competing for the model’s attention.

Anchor Boxes
An anchor box provides a candidate set of starting points for bounding box predictions. Including
multiple anchor boxes of varying sizes decreases the need for the optimization process to adjust
the bounding box coordinates dramatically because the chances of having a starting box that
closely matches the box of an object increases. This means that there is a reduction in significant
gradient swings and starting error is reduced.

Each anchor box is itself a candidate prediction. The candidate prediction (anchor box) must
satisfy two criteria to become an actual prediction. First, the predicted probability of being an

object for prediction in the cell i (ijC) should be greater than or equal to the prediction

threshold property value set by the DETECTIONTHRESHOLD= property.

Here is an example of DETECTIONTHRESHOLD= implementation in the ADDLAYER statement:

AddLayer / model='ObjectDetection'
 name='output_object_dectect' layer={type='detection'
 coordScale = 5
 objectScale = 1
 predictionNotAObjectScale = .25
 classScale = 1
 detectionThreshold = 0.15
 /***Remaining code not shown but will be displayed as topics are
introduced later in the chapter ***/
run;

The probability threshold value is set to 15% in the example code above. This means that a
candidate prediction, j (anchor box), should have at least a predicted probability of 15% to be
considered.

Candidate predictions that meet or exceed the posterior threshold are then assessed using the
intersection over union (IOU) between the candidate prediction and the actual bounding box
(ground truth). Candidate predictions that meet or exceed the IOU threshold set by the
IOUTHRESHOLD= property become predictions.

116 Deep Learning for Computer Vision with SAS: An Introduction

Here is an example of IOUTHRESHOLD = implementation in the ADDLAYER statement:

AddLayer / model='ObjectDetection'
 name='output_object_dectect' layer={type='detection'
 coordScale = 5
 objectScale = 1
 predictionNotAObjectScale = .25
 classScale = 1
 detectionThreshold = 0.15
 iouThreshold = 0.1
 /***Remaining code not shown but will be displayed as topics are
introduced later in the chapter ***/
run;

The IOU threshold value is set to 10% in the example code above. This means that a candidate
prediction, j (anchor box), should have at least an IOU value of 10% to become a prediction.

The appropriate number of anchor boxes and the size of the boxes is perhaps best determined
empirically. Clustering algorithms applied to the training data guide the user to an appropriate
number and size of anchor boxes. Prior sizes can be determined empirically through clustering
on the pixel width and pixel height of actual bounding boxes. Average width and height for each
cluster should be downsampled equivalently to that of the original image. For example, going
from a 416 x 416 image to a 13 x 13 tensor means that the data has been downsampled by a
factor of 32.

SAS software includes a rich set of clustering algorithms for grouping to the height and width of
the labeled boxes. The average height and width of each group should be divided by the same
amount for which the model downsampled the image. For example, a 416 x 416 image that has
been downsampled to 13 x 13 has been decreased by a factor of 32. The ANCHORS= property
specifies the number and size of the anchor boxes. Two numeric values are required for each
anchor box. The first value represents the width of the anchor box, and the second value
represents the height of the same box.

Here is an example of ANCHORS= implementation in the ADDLAYER statement:

AddLayer / model='ObjectDetection'
 name='output_object_dectect' layer={type='detection'
 coordScale = 5
 objectScale = 1
 predictionNotAObjectScale = .25
 classScale = 1
 detectionThreshold = 0.15
 iouThreshold = 0.1
 anchors ={10.71475, 10.43283,
 5.139861, 11.92218}

The code example above creates two anchor boxes with a square and rectangular shapes
respectively.

Chapter 4: Object Detection 117

Final Convolution Layer
There are some requirements for the output of the last layer of CNN, as well as the object
detection layer parameters.

In the last convolutional layer, the width and heights of the output should both be equal to the
value for gridNumber. The depth of the output should be the value calculated as
predictionsPerGrid * (classNumber + coordNumber + 1).

The terms gridNumber, predictionsPerGrid, classNumber, and coordNumber are all parameters
in the detection layer. The detection layer is the output layer of the object detection model.

SAS deep learning technologies can be accessed using many different types of code editors. SAS
Studio is a code editor favorite among SAS users. SAS users can also code in the SAS language
within Jupyter Notebook using a SAS kernel. R and Python programmers can also access SAS
deep learning technologies through the Jupyter Notebook interface. DLPy is a high-level package
for the Python APIs created for the deep learning technologies in SAS Viya. DLPy provides many
prebuilt models, including VGG and ResNet. The pretrained weights using ImageNet data are also
provided for those models. This would give you a warm start on your favorite task via transfer
learning.

Demonstration: Using DLPy to Access SAS Deep Learning
Technologies: Part 1
This demonstration uses DLPy to create and manipulate training image data sets for use with
CNN-based object-detection models. The learning objective is to understand how you can use
DLPy to create your own object detection training data set with only a few lines of code. You
should also learn how to visually inspect an object detection data set for potential issues.

1. From the Windows menu, expand the Anaconda3 (64-bit) folder.
2. Select Jupyter Notebook to open the code editor interface, as seen in Figure 4.6.

118 Deep Learning for Computer Vision with SAS: An Introduction

Figure 4.6: Jupyter Notebook

3. Select Documents (Figure 4.7).

Figure 4.7: Documents

Chapter 4: Object Detection 119

4. Select SimpleObjectDetection.ipynb (Figure 4.8).

Figure 4.8: jpynb Selection

5. Select Cell Run All.

Figure 4.9: Run All

Demonstration: Using DLPy to Access SAS Deep Learning
Technologies: Part 2
This demonstration examines the results from the object detection model that was run in the
previous demo.

The example begins with configuring the computing environment. After that, the training data
are prepared, followed by training the model using pre-trained weights for a warm start.

120 Deep Learning for Computer Vision with SAS: An Introduction

After you train the model, several holdout images are run against the trained model, and the
results are visualized. Then several metrics (for example, precision) are generated to evaluate
the model performance.

1. Navigate to Jupyter Notebook to view the code and results.
2. Begin by importing SWAT. SWAT is a Python interface to SAS Cloud Analytic Services.

For more information about starting a CAS session with the SWAT package, see
https://sassoftware.github.io/python-swat/getting-started.html.

3. Import DLPy and the functions for the DLPy utils, applications, and model classes.
import swat
import dlpy
from dlpy.utils import *
from dlpy.applications import *
from dlpy.model import *
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

4. After configuring your environment and loading required libraries and functions,
connect to your CAS server. You need a host name and port number for this step.
CAS(host name,port,username,password)
s = swat.CAS("http://sasviya01.demo.sas.com/cas-shared-default-
http/", 8777, "student", "Metadata0", protocol="http")

s.table.addcaslib(activeonadd=False,
 datasource={'srctype':'path'},
 name='dnfs',
 path='/home/student/LWDLUS/Image
Data/ObjectDetectionData',
 subdirectories=False)
The results show that the caslib was successfully defined, as seen in Figure 4.10.

Figure 4.10: Successfully Defined caslib

5. Prepare the data for training. This step accesses a large trained object detection data
set saved as a SASHDAT file, creates a smaller subset of the training data, and then
saves and loads the subsetted training data as a CAS table. The following code filters the
source data by selecting only observations that contain single-object images classified
as either ‘Cat’, ‘Dog’, or ‘Bird’.
s.loadtable('train_3classes_1object_animals_cleaned.sashdat',
 caslib='dnfs',
 casout=dict(name='trainset', replace=1),
 where="_nObjects_ eq 1")
The output of the code cell is shown below in Figure 4.11.

https://sassoftware.github.io/python-swat/getting-started.html

Chapter 4: Object Detection 121

Figure 4.11: Output of Code Cell

6. Examine the number of images corresponding to each class.
s.simple.freq(table=dict(name='trainset', where='_istrain_ eq 1'),
inputs='_object0_')
The output of the code cell is shown in Figure 4.12.

Figure 4.12: Output of Code Cell

Examining the characteristics of the data shows the appropriately formatted target
variables (Figure 4.13).
s.columnInfo(table='trainset')

Figure 4.13: Target Variables

122 Deep Learning for Computer Vision with SAS: An Introduction

7. Now look at a sampling of the various anchor box shapes in the subsetted training data
trainset.
yolo_anchors = get_anchors(s, data=s.CASTable(name='trainset',
where='_IsTrain_ eq 1'), n_anchors=5, coord_type='yolo')
yolo_anchors

Figure 4.14: Sampling of Anchor Box Shapes

8. Use DLPy to create a Tiny YOLOv2 object detection model named yolo_model. The
model has three output classes and is configured to generate five predictions per grid in
the detection layer of the model. The maximum is two boxes (and box labels) per
image, and the table yolo_anchors contains the anchor shapes. See Figure 4.15.
yolo_model = Tiny_YoloV2(s,
 n_classes=3,
 predictions_per_grid=5,
 anchors = yolo_anchors,
 max_boxes=2,
 coord_type='yolo',
 max_label_per_image = 1,
 class_scale=1.0,
 coord_scale=1.0,
 prediction_not_a_object_scale=1,
 object_scale=5,
 detection_threshold=0.2,
 iou_threshold=0.2

Chapter 4: Object Detection 123

Figure 4.15: Log

9. Use print_summary to view a table describing the model that we just created.

yolo_model.print_summary()

124 Deep Learning for Computer Vision with SAS: An Introduction

Figure 4.16: Print_summary Results

Training an accurate object detection model can be time consuming and
computationally expensive. Importing weights from an already trained YOLOv2 model
saves time and can produce reasonable results.
s.table.loadtable(casout={'name':'tinyyolov2_40epoch_trainless100',
'replace':True},
 caslib='dnfs',
 path="tinyyolov2_40epoch_trainless100.sashdat")

Figure 4.17: Log

Chapter 4: Object Detection 125

10. Create a table named targets and a table named inputVars. The targets table contains a
list of objects along with their bounding box locations. The model hyperparameters are
specified in the next code cell and the model is then trained for one epoch.
solver = MomentumSolver(learning_rate=0.0005, clip_grad_max = 100,
 clip_grad_min = -100)
 optimizer = Optimizer(algorithm=solver, mini_batch_size=64,
 log_level=3, max_epochs=1, reg_l2=0.005)
 data_specs = [DataSpec(type_='IMAGE', layer='Input1',
 data=inputVars),
 DataSpec(type_='OBJECTDETECTION', layer='Detection1',
 data=targets)]
 gpu = Gpu(devices=[0])
 yolo_model.set_weights('tinyyolov2_40epoch_trainless100')

Figure 4.18: Log

11. Finally, use the trained model to score the holdout images and print the images with
the model predictions. See Figure 4.19.
yolo_model.predict(data=s.CASTable(name='trainset',
 where='_istrain_ eq 0'), gpu = Gpu(devices=[0]))

 display_object_detections(conn=s,
 coord_type='yolo',
 max_objects=1,

 table=dict(name=yolo_model.valid_res_tbl.name,
 where='_nobjects_ eq 1')
 #,num_plot=10,
 #n_col=3
)

126 Deep Learning for Computer Vision with SAS: An Introduction

Figure 4.19: Results.

Chapter 5: Computer Vision Case Study
This chapter details a computer vision case study using the SAS programming language.

One of the world’s foremost medical research centers seeks to build a computer vision model to
automatically extract and summarize an understanding of metabolic pathways from an image
depicting the structure. That is, understanding the geometric sequence created by a series of
chemical compounds and arrows. The images are parsed from research papers or journals.

This case study details a solution that involves creating a two-stage computer vision model. The
first stage relies on an object localization (detection) model. An image classifier is used in the
second stage to classify the orientation of an extracted arrow. However, only the first stage is
described in this case study.

The training data consist of 871 labeled images, of which approximately half of the images were
extracted from papers and the other half of the images were synthetically generated by hand.
The synthetic images have variants of arrows positioned in random orientation in combination
with randomly selected compounds. Each synthetic image contains noise to improve
generalization (text, shapes, random noise patches, and so on). Additionally, the synthetic
images were designed so that each arrow and compound could be “boxed” without capturing
other protruding edges in hopes of reducing entity obfuscation, as seen in Figure 5.1.

Figure 5.1: Synthetic Images

An example of several labeled images can be seen in Figure 5.2.

128 Deep Learning for Computer Vision with SAS: An Introduction

Figure 5.2: Labeled Images

The data is in a SASHDAT data file titled Train_metabolic_pathways.

1. Open the program titled CASESTUDY_1a. This program begins with a macro variable
defining the location of the data and programs.
%let datalocation= *specify the location of the programs and data here;
Then the cas libraries are established.

libname mycas cas;
proc cas;
 table.addCaslib / name='Scoreimageslib'
path="&datalocation"
 subdirectories=true;
quit;

2. Next, a macro is created that is used to create a list of output variable names
corresponding to the maximum number of objects in an image that exist in the training
data. In this case, the largest number of objects in an image is 41. The list of output
variables includes the number of objects in the image (_nobjects_) and a set of variables
defining the spatial location of each entity. (ex. _Object#_, _Object#_x, _Object#_y,
_Object#_width, and _Object#_height). The list of variable names is stored in a macro
variable called ObjectTargets.

%macro makevars;
data mycas.createvars;
nObjects=.;
%do i=0 %to 40;

Chapter 5: Computer Vision Case Study 129

length _Object&i._ varchar(8);
length _Object&i._x _Object&i._y _Object&i._width
_Object&i._height 8;
Object&i.=' ';
_Object&i._x=.;
_Object&i._y=.;
_Object&i._width=.;
_Object&i._height=.;
%end;
run;
%mend makevars;
%makevars;

 proc transpose data=mycas.createvars
out=createvars_Transposed;
 var _all_;
 run;
 proc sql;
 select quote(trim(_NAME_), "'")
 into: ObjectTargets separated by ", "
 from work.createvars_Transposed;
 quit;

3. Next, the program uploads the Train_metabolic_pathways data.
proc casutil;
load file="&datalocation/Train_metabolic_pathways.sashdat"
/*TrainsetFull.sashdat TrainsetFullNew*/
casout="ChemArrows"
importoptions=(filetype="hdat")
replace;
quit;

The images in the training data have been resized to 416 x 416 and have been
converted to grayscale. The data also includes a partition indicator, _partind_.

4. Next, the program loads a pretrained model called Tiny-Yolov2. SAS provides a large
number of pretrained models that can be retrieved from the following URL:
https://support.sas.com/documentation/prod-p/vdmml/zip/index.html.

/* Load model - TinyYolov2 */
proc casutil;
load file="&datalocation/Tiny-Yolov2.sashdat"
casout="Tiny-Yolov2"
importoptions=(filetype="hdat")
replace;
quit;

proc casutil;
load file="/data/roblan/Models/Pretrained/Tiny_Yolo/Tiny-
Yolov2_weights.sashdat"
casout="Tiny-Yolov2_weights"
importoptions=(filetype="hdat")
replace;
quit;

https://support.sas.com/documentation/prod-p/vdmml/zip/index.html

130 Deep Learning for Computer Vision with SAS: An Introduction

5. The model table is displayed using the fetch table action. Several action sets are also
loaded.

 proc cas;
 table.fetch /
 table="Tiny-Yolov2"
 to=500;
 loadactionset 'deeplearn';
 loadactionset 'image';
 loadactionset 'table';
quit;

Figure 5.3 shows the results.

Figure 5.3: Model Table

The model table defines the architecture of the model and can be altered to change or
enhance the behavior of the pretrained model. For example, the pretrained Tiny-Yolov2
provided by SAS does not perform any in-memory flipping mutations of input images.
This behavior is modified in subsequent code enabling the model to flip the incoming
images. The coordinates are automatically adjusted to correct for the geometric
mutations.

Chapter 5: Computer Vision Case Study 131

The output layer (detections1) is removed from the Tiny-Yolov2 model.
proc cas;
removelayer / model='Tiny-Yolov2' name='detection1';
quit;

Several adaptation layers are added along with a new output layer.
proc cas;

AddLayer / model='Tiny-Yolov2' name='ConVL1'
layer={type='CONVO' nFilters=1000 /*588*/ width=1 height=1
stride=1 act='identity' includeBias=FALSE}
srcLayers={'convo.9'};
AddLayer / model='Tiny-Yolov2' name='BatchL1'
layer={type='BATCHNORM' act='ELU'} srcLayers={'ConVL1'};

AddLayer / model='Tiny-Yolov2' name='ConVL2'
layer={type='CONVO' nFilters=1000 /*588*/ width=3 height=3
stride=1 act='identity' includeBias=FALSE}
srcLayers={'BatchL1'};
AddLayer / model='Tiny-Yolov2' name='BatchL2'
layer={type='BATCHNORM' act='ELU'} srcLayers={'ConVL2'};

AddLayer / model='Tiny-Yolov2' name='PoolL1'
layer={type='POOL' width=2 height=2 stride=1 pool='max'}
srcLayers={'BatchL2'};

AddLayer / model='Tiny-Yolov2' name='ConVL3a'
layer={type='CONVO' nFilters=250 /*45*/ width=1 height=1
stride=1 act='identity' includeBias=FALSE}
srcLayers={'PoolL1'};
AddLayer / model='Tiny-Yolov2' name='BatchL3a'
layer={type='BATCHNORM' act='ELU'} srcLayers={'ConVL3a'};

AddLayer / model='Tiny-Yolov2' name='ConVL3'
layer={type='CONVO' nFilters=250 /*2000*/ width=1 height=1
stride=1 act='identity' includeBias=FALSE}
srcLayers={'PoolL1'};
AddLayer / model='Tiny-Yolov2' name='BatchL3'
layer={type='BATCHNORM' act='ELU'} srcLayers={'ConVL3'};

AddLayer / model='Tiny-Yolov2' name='ConVL4'
layer={type='CONVO' nFilters=250 /*2000*/ width=3 height=3
stride=1 act='identity' includeBias=FALSE}
srcLayers={'BatchL3'};
AddLayer / model='Tiny-Yolov2' name='BatchL4'
layer={type='BATCHNORM' act='ELU'} srcLayers={'ConVL4'};

AddLayer / model='Tiny-Yolov2' name='ConVL5a'
layer={type='CONVO' nFilters=25 /*250*/ width=1 height=1
stride=1 act='identity' includeBias=FALSE}
srcLayers={'BatchL4'};
AddLayer / model='Tiny-Yolov2' name='BatchL5a'
layer={type='BATCHNORM' act='ELU'} srcLayers={'ConVL5a'};

132 Deep Learning for Computer Vision with SAS: An Introduction

AddLayer / model='Tiny-Yolov2' name='ConVL5'
layer={type='CONVO' nFilters=25 /*250*/ width=3 height=3
stride=1 act='identity' includeBias=FALSE}
srcLayers={'BatchL5a'};

AddLayer / model='Tiny-Yolov2' name='BatchL5'
layer={type='BATCHNORM' act='ELU'} srcLayers={'ConVL5'};

AddLayer / model='Tiny-Yolov2' name='concatl1'
layer={type='concat'} srcLayers={'BatchL5','BatchL3a'};

AddLayer / model='Tiny-Yolov2' name='ConVL7'
layer={type='CONVO' nFilters=49 width=1 height=1 stride=1
act='identity' includeBias=FALSE} srcLayers={'concatl1'};

AddLayer / model='Tiny-Yolov2'
name='detection1' layer={type='detection'

 detectionModelType = "YOLOV2"

 classNumber = 2

 gridNumber = 13

 coordNumber = 4

 predictionsPerGrid = 7

 anchors ={
0.459726,
1.103842,
4.418608,
2.111627,
1.453295,
2.195889,
1.318375,
0.840207,
1.912652,
5.398259,
0.485043,
0.356428,
2.295685,
1.433674
}
 softMaxForClassProb =
True
 objectScale = 1.01

 predictionNotAObjectScale =1
 classScale = 1.0
 coordScale = 3
 coordType = "YOLO"
 detectionThreshold
= 0.4
 iouThreshold = 0.1
trainIouThreshold=.3
/* randomBoxes=TRUE
*/

Chapter 5: Computer Vision Case Study 133

 }
srcLayers={'ConVL7'}; quit;

6. The pretrained model architecture is further modified with the following characteristics
using the update table action:

◦ Images are randomly selected and flipped horizontally

◦ Images are randomly selected and flipped vertically

◦ A dropout rate of 0.0176666749 is applied to all layers except the input and first
convolution layers

Changing the _DLNumVal_ variable’s value to “4” for the input layer’s flip mutation
option tells SAS to vertically and horizontally flip randomly selected images. Other
modifications such as random cropping and dropout are also applied to the model.

proc cas;
/* Apply horizontal and vertical flipping mutations */
mytbl.name ="Tiny-Yolov2";
mytbl.where = "'input1' = _DLKey0_ and 'No flipping' =
DLChrVal";
table.update /
 table=mytbl
 set = {
 {var="_DLNumVal_", value="4"}};
/* Apply a random cropping mutation */
mytbl.name ="Tiny-Yolov2";
mytbl.where = "'input1' = _DLKey0_ and 'No cropping' =
DLChrVal";
table.update /

 table=mytbl
 set = {
 {var="_DLNumVal_", value="2"}

 };
/* Apply a dropout rate of 0.0176666749 to all layers in the
model */
mytbl.name ="Tiny-Yolov2";
mytbl.where = "'dropout' = _DLChrVal_";
table.update /
 table=mytbl
 set = {
 {var="_DLNumVal_", value="0.0176666749"}};
/* Reset the dropout rate for the first convolution layer
back to zero */
mytbl.name ="Tiny-Yolov2";
mytbl.where = "'convo.1' = _DLKey0_ and 'dropout' =
DLChrVal";
table.update /
 table=mytbl
 set = {
 {var="_DLNumVal_", value="0"}};

/* Reset the dropout rate for the input layer back to zero */
mytbl.name ="Tiny-Yolov2";

134 Deep Learning for Computer Vision with SAS: An Introduction

mytbl.where = "'input1' = _DLKey0_ and 'dropout' =
DLChrVal";
table.update /
 table=mytbl
 set = {
 {var="_DLNumVal_", value="0.00003"}}; quit;

The Tiny-Yolov2 model was previously trained using DLTRAIN for 250 epochs and the
loss for each partition plotted, as shown in Figure 5.4.

Figure 5.4: Tiny-Yolov2 Model, DLTRAIN 250 Epochs with Losses Partition Plotted

7. We continue to train the model for an additional epoch.
proc cas;
 dlTrain / table={name='Train_metabolic_pathways',
where='_PartInd_=1'} model='Tiny-Yolov2'
 modelWeights={name='ConVTrainedWeights_d', replace=1}
 bestweights={name='MytinyYolo', replace=1}
initWeights='tinyYolo_pathways'
dataSpecs={{data={&ObjectTargets},
 layer='detection1',
 type='OBJECTDETECTION'}

 {data={'_image_'},
 layer='input1',
 type='IMAGE'}
 } GPU=True
forceEqualPadding = True

Chapter 5: Computer Vision Case Study 135

 ValidTable={name='Train_metabolic_pathways',
where='_PartInd_=2'}
 optimizer={minibatchsize=4, ignoreTrainingError=true,
 algorithm={method='LARS', lrpolicy='Step',
gamma=0.901, stepsize=1, learningrate=6.047E-7,
scalefactor=.009,warmup=0,momentum=0.9395666667,
clipgradmin=-100, clipgradmax=100},loglevel=3,
regL1=0.0022902367, regL2=0.0025301567,maxepochs=1}
seed=12345
;
quit;

The model contains 23,511,562 parameters! Performance is marginally worse than
where the model landed during the extended training session.

8. The trained model is used to predict (score or inference) the locations of compounds
and arrows from the data.

 /* Score full data to generate extractions */;
proc cas;
 dlScore /
table={name='Train_metabolic_pathways'} model='Tiny-Yolov2'

initWeights='tinyYolo'

casout={name='PathwaysScored', replace=1}

copyVars={'_image_'}

gpu=true;
Quit;

9. The predictions from DLSCORE are passed to the extractDetectedObjects action. The
extractDetectedObjects action applies the predicted bounding boxes to the images in
the data, PathwaysScored.

proc cas;
image.extractDetectedObjects /
 casOut={name='ObjectsExtracted', replace=true}
 coordType='YOLO'
 maxObjects=50
 extractType='highlight'
 Table={name='PathwaysScored'};
quit;

10. The images in PathwaysScored are saved and viewed.
proc cas;
 saveImages / caslib="Scoreimageslib"
 subdirectory='Predicted Locations'
 images = {table={name='ObjectsExtracted'} image='_image_'}
 overwrite=TRUE type="JPG";

 image.loadimages / caslib='Scoreimageslib' path='Predicted
Locations'
 recurse=true
casout={name='Imagesforviewing', replace=true};

quit;

136 Deep Learning for Computer Vision with SAS: An Introduction

/***************/
/* View Images */
/***************/

data _null_;
 set mycas.Imagesforviewing(where=(
 id<=6)
 keep=_path_ _id_) end=eof;
 if _n_=1 then
 do;
 dcl odsout obj();
 obj.layout_gridded(columns:1);
 end;
 obj.region();
 obj.format_text(just: "c", style_attr: 'font_size=8pt');
 obj.image(file: _path_, width: "416", height: "416");

 if eof then
 do;
 obj.layout_end();
 end;
run;

Figures 6.5 and 6.6 show the results.

Figure 5.5: Results

Chapter 5: Computer Vision Case Study 137

Figure 5.6: Results

138 Deep Learning for Computer Vision with SAS: An Introduction

References
Bengio, Y., J. Louradour, R. Collobert, and J. Weston. 2009. “Curriculum Learning.” Proceedings of the 26th International

Conference on Machine Learning. Montreal, Canada. pp. 41–48.

Daniely, A., R. Frostig, and Y. Singerz. 2017. “Toward Deeper Understanding of Neural Networks: The Power of
Initialization and a Dual View on Expressivity.” arXiv:1602.05897v2 [cs.LG]. Cornell University Library. New York.
Available at: https://arxiv.org/pdf/1602.05897v1.pdf.

Glorot, X., A. Bordes, and Y. Bengio. 2011. “Domain Adaption for Large-Scale Sentiment Classification: A Deep Learning
Approach.” Available at: http://www.icml-2011.org/papers/342_icmlpaper.pdf.

Goodfellow, I., Y. Bengio, and A. Courville. 2017. Deep Learning. Cambridge. MA: The MIT Press.

He, K., et al. 2015. “Deep Residual Learning for Image Recognition.” ArXiv:1512.03385 [cs.CV] Cornell University Library.
New York. Available at: https://arxiv.org/pdf/1512.03385.pdf.

Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction to the Theory of Neural Computation. Redwood City, CA:
Addison-Wesley Publishing Co.

Hinton, G. E., S. Osindero, and Y. W. Teh. 2006. “A Fast Learning Algorithm for Deep Belief Networks.” Neural
Computation 18:1527–1554.

Ioffe, S. and C. Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift.” arXiv:1502.03167v3 [cs.LG]. Cornell University Library. New York. Available at:
https://arxiv.org/abs/1502.03167.

Kingma, D. and J. Lei Ba. 2017. “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.” arXiv:1412.6980v9 [cs.LG]. Cornell
University Library. New York. Available at: https://arxiv.org/abs/1412.6980.

Koch, P., et al. 2018. “Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning.”
arXiv:1804.07824v2 [cs.LG]. Cornell University Library. New York. Available at https://arxiv.org/abs/1804.07824.

Li, L. et al. 2018. “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization.” arXiv:1603.06560v4
[cs.LG]. Cornell University Library. New York. Available at: https://arxiv.org/abs/1603.06560.

McCulloch, W. and W. Pitts. 1943. A Logical Calculus of the Ideas Immanent in Nervous Activity. Pergamon Press plc.
Society for Mathematical Biology

Ng, A. 2013. “Stochastic Gradient Descent” Video from Coursera - Stanford University - Course: Machine Learning:
Published on Nov 1, 2013. https://www.coursera.org/course/ml.

Principe, J.C., N. R. Euliano, and W. C. Lefebvre. 2000. Neural and Adaptive Systems. New York: Wiley.

Redmon, J., et al. 2016. “You Only Look Once: Unified, Real-Time Object Detection.” arXiv:1506.02640v5 [cs.CV]. Cornell
University Library. New York. Available at https://arxiv.org/abs/1506.02640.

Saining, X., et al. 2017. “Aggregated Residual Transformations for Deep Neural Networks” arXiv:1611.05431v2 [cs.CV]
Cornell University Library. New York. Available at https://arxiv.org/abs/1611.05431.

Santurkar, S., et al. 2018. “How Does Batch Normalization Help Optimization? (No, It Is Not About Internal Covariate
Shift).” arXiv:1805.11604v2 [stat.ML]. Cornell University Library. New York. Available at
https://arxiv.org/abs/1805.11604.

Springenberg, J., et al. “Striving for Simplicity: The All Convolutional Net.” Available at: https://arxiv.org/abs/1412.6806.

Szegedy, C., et al. 2014. “Going Deeper with Convolutions.” arXiv:1409.4842v1 [cs.CV]. Cornell University Library. New
York. Available at https://arxiv.org/abs/1409.4842.

Vanhoucke, V., Senior, A., and Mao, M. Z. 2011. Improving the speed of neural networks on CPUs. In: Proc. Deep
Learning and Unsupervised Feature Learning NIPS Workshop.

https://arxiv.org/pdf/1602.05897v1.pdf
http://www.icml-2011.org/papers/342_icmlpaper.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1603.06560
https://www.coursera.org/course/ml
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1409.4842

140 Deep Learning for Computer Vision with SAS: An Introduction

Vincent, P., et al. 2008. “Extracting and Composing Robust Features with Denoising Autoencoders.” Montreal: Université
de Montreal.

Vincent, P., et al. 2010. “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a
Logical Denoising Criterion.” Journal of Machine Learning Research 11:3371–3408.

Weiss, K., T. Khoshgoftaar, and D. Wang. 2016. “A Survey of Transfer Learning.” Journal of Big Data 3: Article number: 9

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2017 SAS Institute Inc. All rights reserved. M1588358 US.0217

Be among the fi rst to know about new books,
special events, and exclusive discounts.

support.sas.com/newbooks

Share your expertise. Write a book with SAS.
support.sas.com/publish

sas.com/books
for additional books and resources.

Ready to take your SAS®
and JMP®skills up a notch?

	Contents
	About This Book
	What Does This Book Cover?
	Is This Book for You?
	What Should You Know about the Examples?
	Software Used to Develop the Book's Content
	Example Code and Data

	We Want to Hear from You

	About The Author
	Introduction to Deep Learning
	Introduction to Neural Networks
	Biological Neurons
	Mathematical Neurons
	Figure 1.1: Multilayer Perceptron

	Deep Learning
	Table 1.1: Traditional Neural Networks versus Deep Learning
	Figure 1.2: Hyperbolic Tangent Function
	Figure 1.3: Rectified Linear Function
	Figure 1.4: Exponential Linear Function
	Batch Gradient Descent
	Figure 1.5: Batch Gradient Descent

	Stochastic Gradient Descent
	Figure 1.6: Stochastic Gradient Descent

	Introduction to ADAM Optimization
	Weight Initialization
	Figure 1.7: Constant Variance (Standard Deviation = 1)
	Figure 1.8: Constant Variance (Standard Deviation =,,𝟔-𝟐𝟓+𝟐𝟓..≈.𝟑𝟒)

	Regularization
	Figure 1.9: Regularization Techniques

	Batch Normalization
	Batch Normalization with Mini-Batches

	Traditional Neural Networks versus Deep Learning
	Table 1.2: Comparison of Central Processing Units and Graphical Processing Units
	Deep Learning Actions

	Building a Deep Neural Network
	Table 1.3: Layer Types
	Training a Deep Learning CAS Action Model

	Demonstration 1: Loading and Modeling Data with Traditional Neural Network Methods
	Table 1.4: Develop Data Set Variables
	Figure 1.10: Results of the FREQ Procedure
	Figure 1.11: Results of the NNET Procedure
	Figure 1.12: Score Information

	Demonstration 2: Building and Training Deep Learning Neural Networks Using CASL Code
	Figure 1.13: Transcription of the Model Architecture
	Figure 1.14: Model Shell and Layer Information
	Figure 1.15: Model Information
	Figure 1.15: Optimization History Table
	Figure 1.16: Model Information Details

	Convolutional Neural Networks
	Introduction to Convoluted Neural Networks
	Input Layers
	Figure 2.1: Convolutional Neural Network
	Figure 2.2: Grayscale Image Channel
	Figure 2.3: Color Image Channels

	Convolutional Layers
	Figure 2.4: Single-channel Convolution Without Kernel Flipping

	Using Filters
	Figure 2.5: Starting Position of the Filter
	Figure 2.6: Products of the Entries Between the Filter and Input
	Figure 2.7: Range Movement Due to STRIDE Hyperparameter
	Figure 2.8: Feature Map with Filter Response at Every Spatial Position
	Figure 2.9: Filter Weights and Nonlinear Transformation

	Padding
	Figure 2.10: Feature Map Without Padding
	Figure 2.11: Feature Map with Padding
	Figure 2.12: Without Padding
	Figure 2.13: Automatic Padding with SAS
	Figure 2.14: SAS Automatically Adjusts for Non-Integer Feature Maps

	Feature Map Dimensions
	Figure 2.15: Feature Map Dimensions

	Pooling Layers
	Figure 2.16: Pooling Layers
	Figure 2.17: Feature Map with Stride = 2
	Figure 2.18: Completed Feature Map

	Traditional Layers
	Fully Connected Layer
	Output Layer
	Types of Skip-Layer Connections
	Figure 2.19: Skip-Layer Connection
	Figure 2.20: Concatenation Layers
	Figure 2.21: Residual Layers

	Demonstration 1: Loading and Preparing Image Data
	Demonstration 2: Building and Training a Convolutional Neural Network
	Examining the Image Data and Specifying the Model
	Figure 2.22: Model Generated by Code

	Fitting and Assessing the Model
	Figure 2.23: Model Convnn Information Details Table
	Figure 2.24: Misclassification Rate
	Figure 2.25: Performance of Model’s Misclassification Rates

	Scoring with the Fitted Model
	Figure 2.26: Score Information Table
	Figure 2.27: Histogram of Misclassified Images
	Figure 2.28: Code Output
	Figure 2.29: Small Sample
	Figure 2.30: Large Sample

	Improving Accuracy
	Introduction
	Architectural Design Strategies
	Figure 3.1: 1 x 1 Convolutions
	Figure 3.2: Dimensional Depth Reduction Before Feature Extraction
	Figure 3.3: Using 1 x 1 Convolutions to Expand Dimensional Depth
	Spatial Exploration
	Creating Blocks
	Figure 3.4: A Block
	Figure 3.5: ResNet Type Residual Block
	Figure 3.6: Cardinality
	Figure 3.7: Transformation Sets Within a Block
	Figure 3.8: ResNet Type with Average Pooling

	Comparing Structural Depth to Cardinality
	Table 3.1: ResNet versus ResNext Architectures
	Figure 3.9: ResNet versus ResNext, 10,000 observations for 60 Epochs
	Table 3.2: ResNet versus ResNext, 10,000 Observations for 60 Epochs
	Figure 3.10: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs
	Table 3.3: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs
	Figure 3.11: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs with 10% Dropout Rate in First Convolution Layer
	Table 3.4: ResNet versus ResNext, 10,000 Observations for 1,500 Epochs with 10% Dropout Rate in First Convolution Layer
	Figure 3.12: ResNet versus ResNext, 50,000 Observations, 1,500 Epochs
	Table 3.5: ResNet versus ResNext, 50,000 Observations, 1,500 Epochs

	Image Preprocessing and Data Enrichment
	Data Augmentation Techniques
	Figure 3.13: Examples of Image Transformations

	Process Image Action
	Gaussian Filters
	Figure 3.14: Gaussian Filter
	Figure 3.15: Gaussian Kernel Filter

	Sharpen
	Figure 3.16: Sharpen
	Figure 3.17: High-Pass Filter

	Inverting Pixels
	Figure 3.18: Inverting Pixels

	Pyramid Down
	Figure 3.19: Pyramid Down and Cropping Transformations

	Rotating
	Figure 3.20: Image Rotation

	Flipping
	Figure 3.21: Flipping
	Figure 3.22: Multiple Data Augmentation Techniques

	Transfer Learning Introduction
	Figure 3.23: Similar Distributions
	Figure 3.24: Dissimilar Distributions

	Domains and Subdomains
	Figure 3.25: Example of Domains and Subdomains
	Tasks
	Figure 3.26: Domain versus Task

	Types of Transfer Learning
	Figure 3.27: Homogeneous Transfer Learning
	Heterogenous Transfer Learning and Domain Adaptation
	Figure 3.28: Heterogeneous Transfer Learning with Tabular and Image Data

	Transfer Learning Biases
	Frequency Bias

	Transfer Learning Strategies
	Supervised Pretraining
	Unsupervised Pretraining

	Customizations with FCMP
	Tuning a Deep Learning Model
	Selecting Hyperparameters
	Sampling the Hyperparameter Space
	Figure 3.29: Simple Random Sample
	Figure 3.30: Latin Hypercube Sample
	Figure 3.31: Hyperband Tuning
	Figure 3.32: Hyperband Tuning Over One or Several Epochs
	Figure 3.33: Poor Performing Model Resource Reallocation
	Figure 3.34: Champion Model

	Hyperparameter Selection
	Hyperband Properties
	Figure 3.35: Current Iteration Plot
	Figure 3.36: Setting Maxepochs to a Small Value
	Figure 3.37: Setting Maxepochs to a Larger Value

	Object Detection
	Introduction
	Figure 4.1: Object Classification

	Types of Object Detection Algorithms
	Data Preparation and Prediction Overview
	Non-Normalized Data

	Normalized Locations
	Figure 4.2: Normalized Locations, objectn_x and objectn_y
	Figure 4.3: Normalized Locations, objectn_width and objectn_height

	Multi-Loss Error Function
	Figure 4.4: YOLOv2 Multi-Loss Error Function
	Figure 4.5: Intersection over Union

	Error Function Scalars
	Anchor Boxes
	Final Convolution Layer
	Demonstration: Using DLPy to Access SAS Deep Learning Technologies: Part 1
	Figure 4.6: Jupyter Notebook
	Figure 4.7: Documents
	Figure 4.8: jpynb Selection
	Figure 4.9: Run All

	Demonstration: Using DLPy to Access SAS Deep Learning Technologies: Part 2
	Figure 4.10: Successfully Defined caslib
	Figure 4.11: Output of Code Cell
	Figure 4.12: Output of Code Cell
	Figure 4.13: Target Variables
	Figure 4.14: Sampling of Anchor Box Shapes
	Figure 4.15: Log
	Figure 4.16: Print_summary Results
	Figure 4.17: Log
	Figure 4.18: Log
	Figure 4.19: Results.

	Computer Vision Case Study
	Figure 5.1: Synthetic Images
	Figure 5.2: Labeled Images
	Figure 5.3: Model Table
	Figure 5.4: Tiny-Yolov2 Model, DLTRAIN 250 Epochs with Losses Partition Plotted
	Figure 5.5: Results
	Figure 5.6: Results

	References

