

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2019. Exploring SAS® Viya®: Data Mining and
Machine Learning. Cary, NC: SAS Institute Inc.

Exploring SAS® Viya®: Data Mining and Machine Learning

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

978-1-64295-588-0 (Paperback)
978-1-64295-587-3 (Web PDF)

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the
time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher
is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage
electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication,
or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under
U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this
provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation.
The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

August 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software
distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

Contents

About This Book ... v

Chapter 1: Programming in SAS Studio and the Python Interface 1
Introduction ... 1
Programming in SAS Studio ... 1
Programming with the Python Interface ... 10
Conclusion .. 22
Resources .. 23

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 25

Introduction ... 25
Decision Tree ... 25
Neural Network ... 31
Forest Model .. 35
Gradient Boosting ... 39
Resources .. 43

Chapter 3: Advanced Data Mining and Machine Learning Procedures 45
Introduction ... 45
Factorization Machines... 45
Text Mining ... 49
Community Detection ... 54
Resources .. 59

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 61
Introduction ... 61
Impute Missing Values ... 63
Feature Engineering ... 71
Variable Selection .. 78
Gradient Boosting Model .. 80
Manage Variables .. 87
Add Custom Code .. 88
Save Data for Use in Other Applications .. 93
Resources .. 97

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 99

Introduction ... 99
Factorization Machine .. 101
Forest ... 103
Gradient Boosting ... 107
Neural Network ... 110
Support Vector Machine ... 113
Model Comparison ... 117
Resources .. 118

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2019 SAS Institute Inc. All rights reserved. M1913158 US.0419

For 20% off these e-books, visit sas.com\books and use code WITHSAS20.

sas.com/books
for additional books and resources.

For more information on this topic,
check out the books below in the

SAS® bookstore:

About This Book

What Does This Book Cover?
Data mining is the process of finding anomalies, patterns and correlations within large data sets to predict
outcomes. Using a broad range of techniques, you can use this information to increase revenues, cut costs,
improve customer relationships, reduce risks and more. Machine learning is a method of data analysis that uses
data mining techniques to automate analytical model building. Using algorithms that iteratively learn from data,
machine learning allows computers to find hidden insights without being explicitly programmed where to look.
SAS® Visual Data Mining and Machine Learning is a powerful analytical solution that enables you to solve
your most complex problems in a single, integrated solution powered by SAS® Viya®.

SAS Viya is an open analytics platform that can handle any data type, volume, or speed. A cloud-enabled, in-
memory analytics engine, it is elastic, scalable, and fault-tolerant. It contains a standardized code base that
supports programming in SAS and other languages, such as Python, R, Java and Lua. In addition, it can deploy
seamlessly to any infrastructure or application ecosystem with support for cloud, on-site, or hybrid
environments. The high-performance processing power of SAS Viya is provided by SAS Cloud Analytics
Services (CAS). CAS is an in-memory engine that can dramatically accelerate data management and analytics
with SAS.

In this book, we will explore some of the features of SAS Visual Data Mining and Machine Learning,
including:

● Programming in SAS® Studio

● Programming in the Python interface

● Data mining and machine learning tasks

● New, advanced data mining and machine learning procedures available in SAS Viya

● Pipeline building in Model Studio

● Model building and comparison in SAS® Visual Analytics

The extreme flexibility of SAS Visual Data Mining and Machine Learning means that users of all skill levels
can visually explore data on their own in these programs while drawing on powerful in-memory technologies
for faster analytic computations and discoveries. These programs offer an easy-to-use self-service environment
that can scale on an enterprise-wide level. You can manually program with custom code or use the features in
SAS Studio, Model Studio, and SAS Visual Analytics to automate your data manipulation and modeling.

The content in this book is based on SAS® Viya® Enablement, a free course available from SAS Education.
This book covers how to explore, train, and model data in the SAS Studio, Model Studio, and SAS Visual
Analytics environments. This book only begins to show what these programs can do. More information is
available in the documentation for specific procedures and features.

If you want to learn more about the features of SAS Viya, how to load data into the CAS server, how to write
new code, and how to perform data management and administrative tasks, then you might be interested in
reading Exploring SAS® Viya®: Programming and Data Management. You might also want to read
Exploring SAS® Viya®: Visual Analytics, Statistics, and Investigations, which introduces how to use data
mining and machine learning tasks in SAS Studio and SAS Visual Analytics, as well as how to access all of
your enabled features in SAS Viya and configure your home page.

https://vle.sas.com/course/view.php?id=733
https://support.sas.com/en/books/free-books-viya.html
https://support.sas.com/en/books/free-books-viya.html

vi About this Book

Is This Book for You?
SAS Data Mining and Machine Learning software is designed for anyone in your organization who wants to
use and derive insights from data – data scientists, business analysts, management, and other analytics
professionals. From data management to model development and deployment, everyone works in the same
integrated environment.

SAS Visual Data Mining and Machine Learning automatically generates insights that enable you to identify the
most common variables across all models, the most important variables selected across models, and assessment
results for all models. Natural language generation capabilities are used to create a project summary written in
simple language, enabling you to easily interpret reports. Analytics team members can add project notes to the
insights report to facilitate communication and collaboration among team members.

Even if you don’t know SAS code, SAS Visual Data Mining and Machine Learning lets you embed open-
source code within an analysis and call open-source algorithms seamlessly within a Model Studio flow. This
facilitates collaboration across your organization because users can program in the language of their choice.
You can also take advantage of SAS Deep Learning with Python (DLPy), our open-source package on GitHub,
to use Python within Jupyter notebooks to access high-level APIs for deep learning functionalities.

What Should You Know about the Examples?
The content in this book is based on SAS® Viya® Enablement, a free course available from SAS Education.
You can follow along with the examples in real time by watching the videos if you prefer.

This book includes tutorials for you to follow to gain hands-on experience with SAS Studio, Model Studio, and
SAS Visual Analytics. Wherever possible, the source of the sample data or similar data is provided in a link.
Some features shown might be available only if your site has licensed that feature in SAS Viya. Therefore, the
options in your version of SAS might look different.

We Want to Hear from You
Do you have questions about a SAS Press book that you are reading? Contact us at saspress@sas.com.

SAS Press books are written by SAS Users for SAS Users. Please visit sas.com/books to sign up to request
information about how to become a SAS Press author.

Learn about new books and exclusive discounts. Sign up for our new books mailing list today at
https://support.sas.com/en/books/subscribe-books.html.

https://vle.sas.com/course/view.php?id=733
http://www.sas.com/books
https://support.sas.com/en/books/subscribe-books.html

Chapter 1: Programming in SAS Studio and the
Python Interface
Introduction ..1
Programming in SAS Studio ..1

Load and Explore Data ... 2
Partition Data .. 3
Impute Missing Values ... 4
Variable Selection ... 5
Model Building .. 6
Model Assessment ... 8
Score New Data .. 10

Programming with the Python Interface ...10
Import Packages ... 11
Connect to the CAS Server and Start CAS Session... 11
Import Action Sets .. 11
Load Data into CAS .. 11
Explore Data .. 12
Impute Missing Values ... 14
Partition Data .. 15
Model Building .. 15
Model Assessment ... 20
Create ROC and Lift Plots Using Validation Data .. 20

Conclusion ..22
Resources ...23

Introduction
SAS Viya is a new product offering from SAS that showcases a rich set of data mining and machine learning
capabilities that run on a robust, in-memory distributed computing infrastructure. This product provides a single
environment for data scientists to perform necessary tasks associated with data preparation, feature engineering,
model training, assessment, and deployment.

With SAS Viya, you can access SAS analytics through programmatic actions written in SAS or through
interfaces with other programming languages such as Python, Java, and Lua. In this section, we will look at
some of the capabilities of SAS Visual Data Mining and Machine Learning that can be programmed manually
using SAS Studio, then look at another example using the Python interface.

The main interface for SAS Viya is SAS Studio, a web-based user interface that offers an array of utilities and
conveniences for composing your applications in the SAS programming language. First, let’s look at some of
the capabilities of SAS Viya through an example of programming in SAS Studio.

Programming in SAS Studio
In this section, we will look at a simple, start-to-finish machine learning solution that can be programmed
manually in SAS Viya through the SAS Studio interface. This code loads and prepares the data, builds and
compares three models, and provides score code for new data. In the next chapter, we will look at how some of
these steps can be automated using the Data Mining and Machine Learning tasks in SAS Studio.

The data source used in this example contains a list of donors to an organization. This data source has a target
variable, TARGET_B, which is a binary variable that has the value 1 for a person who has donated during a
mailing. The example data is available to download from the SAS Visual Data Mining and Machine Learning
documentation. See the link in the Resources section.

2 Exploring SAS Viya: Data Mining and Machine Learning

Load and Explore Data
Program 1.1 shows a program that loads the data into CAS, then runs PROC CARDINALITY to produce an
output table that contains information about the levels of nominal variables, basic statistics, and an accounting
of missing values.

Program 1.1: Loading and Exploring Data
/******************************/
/* Setup Environment */
/******************************/

options cashost=”&cashost.” casport=&casport.;
libname mylib “/opt/sasinside/DemoData”;
%let outdir=/opt/sasinside/DemoData;

libname mycaslib cas “/opt/sasinside/DemoData”;
/******************************/
/* Copy local data into CAS */
/******************************/

data mycaslib.donor_raw_data; 
 Set mylib.donor_raw_data;
run;

/******************************/
/* Data Exploration */
/******************************/
proc cardinality data=mycaslib.donor_raw_data outcard=mycaslib.donor_raw card;
run; 

proc print data=mycaslib.donor_raw_card(where(_NMISS_>0));
run;

data donor missing;
 set mycaslib.donor_raw_card(where=(_nmiss_>0) keep=_varname_ _nmiss_ _noobs_);
 percentmiss = (_nmiss_/_noobs_)*100;
 Label _percentmiss_ = ‘Percent Missing’;

proc sgplot data=donor_missing;
 vbar _varname_ / response=_percentmiss_ datalabel categoryorder=respdesc;
run; 

As previously mentioned, SAS Viya runs on an in-memory distributed computing infrastructure, which
is called CAS. So the first things we need to do in Program 1.1 are to specify the host and port
information to the CAS server and start a session, which creates a workspace for our code to run in. In
the CAS environment, data must be loaded in a CAS data set to allow efficient distributed
management of the data.

 Here we specify a library location within our current session.
 Here we load a data set into CAS from an existing SAS data set on our local disk. There are numerous

options for loading data from various file formats and data sources, including different data
management systems, such as Hadoop and Amazon S3.

 As with any data analysis project, we start by examining the data regarding the nature of the variables
through an analysis of all of the values. Executing PROC CARDINALITY produces an output table
that contains information about the levels of nominal variables, basic statistics, and an accounting of
missing values.

 Here we are specifically printing a table of all variables with missing values so that we can deal with
them properly. The results of the PROC PRINT and PROC SGPLOT are shown in Output 1.1.

Chapter 1: Programming in SAS Studio and the Python Interface 3

Output 1.1: Results of Program 1.1

Partition Data
Armed with knowledge about the nature of our data from Output 1.1, we next use PROC PARTITION to
partition the data set into training and validation subsets, specifying the target of interest in our modeling
problem to ensure appropriate stratification.

Program 1.2: Partitioning into Training and Validation
proc partition data=mycaslib.donor_raw_data partition samppct=70;
 by target_b;
 output out=mycaslib.donor_raw_partind copyvars=(_ALL_);
run;
data mylib.donor_raw_partind;
 set mycaslib.donor_raw_partind;
run;

Program 1.2 creates a new data set with a partition index, as shown in Output 1.2. Note that some modeling
procedures have partitioning as an integrated option, so doing this up front might not always be necessary.

Output 1.2: Results of Program 1.2

4 Exploring SAS Viya: Data Mining and Machine Learning

Impute Missing Values
Because we have missing values, we next run PROC VARIMPUTE in Program 1.3 to impute the missing
values through any of a number of methods. In this case, we are simply using the median. This creates score
code that can then be run against the original data set or any future data set to impute the missing values, as
shown in Output 1.2.

We can also see by running PROC CONTENTS that a new variable, IM_DONOR_AGE, now represents the
donor age in our data set, as shown in Output 1.3.

Program 1.3: Imputation
proc varimpute data=mycaslib.donor_raw_partind;
 input donor_age /ctech=median;
 code file=”&outdir./impute1.sas”;
 output out=mycaslib.donor_raw_partind copyvars=(_ALL_);
run;

proc contents data=mycaslib.donor_raw

Output 1.3: Results of Program 1.3

Because we will need to provide lists of variables as inputs in some of the procedures, it is convenient to define
macro variables to hold this information as shown in Program 1.4 for class in interval variables.

Chapter 1: Programming in SAS Studio and the Python Interface 5

Program 1.4: Macro Variable Definition
%let class_var=in_house urbanicity ses cluster_code home_owner donor_gender

income_group published_phone overlay_source wealth_rating pep_star
recency_status_96NK frequency_stsatus_97NK

%let interval_var=months_since_origin im_donor_age mor_hit_rate median_home_value
median_household_income pct_owner_occupied per_capita_income pct_attribute1
pct_attribute2 pct_attribute3 pct_attribute4 recent_star_status
recent_response_prop recent_avg_gift_amt recent_card_respone_prop
recent_avg_card_gift_amt recent_response_count recent_card_response_count
months_since_last_prom_resp lifetime_card_prom lifetime_prom lifetime_gift_amount
lifetime_gift_count lifetime_avg_gift_amt lifetime_gift_range
lifetime_max_gift_amt lifetime_min_gift_amt last_gift_amt card_prom_12
number_prom_12 months_since_last_gift months_since_first_gift file_avg_gift
file_card_gift;

Variable Selection
Before proceeding to build models, we can run PROC VARRREDUCE to perform supervised variable
selection that identifies the most important features relative to our specified target.

Program 1.5: Variable Selection
proc varreduce data=mycaslib.donor_raw_partind technique=dsc
/*Discriminant analysis for class target*/
 class target_b &class_var.;
 reduce supervised target_b=&class_var. &interval_var. /maxeffects = 20;
 ods output selectionsummary=summary;
run;

data out_iter (keep=Iteration VarExp Base Increment Variable);
 set summary;
 Increment=dif(VarExp);
 If Increment =’.’ Then
 Increment=0;
 Base=VarExp – Increment;
run;

proc transpose data=out_iter_trans;
 label _NAME_=’Group’;
 by _NAME_;
run;

title “Variance Explained by Interation”;

proc sgplot data=out_iter_trans;
 yaxis label=”Variance Explained”;
 vbar Iteration / response=COL1 group=_NAME_;
run;

6 Exploring SAS Viya: Data Mining and Machine Learning

Output 1.5: Partial Results of Program 1.5

Output 1.5 indicates the top 20 variables that are identified as significant and should be used as inputs for
modeling.

Model Building
Now we are ready to build some models. We use PROC LOGSELECT to create a logistic regression model in
Program 1.6.

Program 1.6: Logistic Regression Modeling
proc logselect data=mycaslib.donor_raw_partind;
 class target_b &class_var.;
 model target_b (event=’1’)=&class_var. &interval_var.;
 selection method=forward /*(choose=validate stop=validate)*/
 partition rolevar=_partind_(train=’1’ validate=’0’)
 code file=”&outdir./logselect1.sas”;
* output data=mycaslib.logselect_scored copyvars=(_ALL_);
 ods output FitStatistics=fitstats(rename=(Ntrees=Trees));
run;

/* Score the data using the generated model */
data mycaslib.donor_scored_forest;
 set mycaslib.donor_raw_partind;
 %include “&outdir./forest1.sas”;
 p_target_b0=1-p_target_b;
run;

Next, we run PROC FOREST to generate a random forest model.

Program 1.7: Random Forest Modeling
proc forest data=mycaslib.donor_raw_partind ntrees=50 intervalbins=20 minleafsize=5;
 input &interval_var. / level = interval;
 input &class_var. / level = nominal;
 target target_b / level = nomial;
 partition rolevar=_partind_ (train=’1’ validate=’0’);
 code file=”&outdir./forest1.sas”;
* output data=mycaslib.forest_scored copyvars=(_ALL_);
 ods output FitStatistics=fitstats(rename=(Ntrees=Trees));
run;

/*Score the data using the generated model */

Chapter 1: Programming in SAS Studio and the Python Interface 7

data mycaslib.donor_scored_forest;
 set mycaslib.donor_raw_partind;
 %include ”&outdir./forest1.sas”;
run;

/* create data set from forest state output */
data fitstats;
 set fitstats;
 label Trees = ‘Number of Trees’;
 label MiscTrain = ‘Training’;
 label MiscValid = ‘Validation’;
run;

/*plot misclassification as function of number of trees */
proc sgplot data=fitstats;
 title “Training vs Validation”;
 series x=Trees y=MiscTrain;
 series x=Trees y=MiscValid/lineattrs=(pattern=shortdash thickness=2);
 yaxis label=’Misclassification Rate’;
run;
title;

Output 1.7: Partial Results of Program 1.1G

We also run PROC GRADBOOST to create a gradient boosting model.

Program 1.8: Gradient Boosting Modeling
proc gradboost data=mycaslib.donor_raw_partind ntrees=50 intervalbins=20 maxdepth=5;
 input &interval_var. / level = interval;
 input &class_var. / level = nominal;
 target target / level=nominal;
 partition rolevar=_partind_(train=’1’ validate=’0’);
 code file=”&outdir./gradboost.sas”;
run;

/*Score the data using the generated model */

data mycaslib.donor_scored_gradboost;
 set mycaslib.donor_raw_partind;
 %include ”&outdir./gradboost1.sas”;
run;

8 Exploring SAS Viya: Data Mining and Machine Learning

Notice that in each case, we generate score code that can be used to score future data, which of course is the
whole goal of our application.

Model Assessment
Now that we have trained some models, we can assess them using PROC ASSESS to provide fit statistics,
specifying that it should write output to specific data sets that can then be used for graphing.

Program 1.9: Model Assessment
%macro assess_model(prefix=, var_evt=, var_nevt=);

proc assess data=mycaslib.donor_scored_&prefix.;
 input &var_evt.;
 target target_b / level=nominal event=’1’;
 fitstat pvar=&var_nevt. / pevent=’0’;
 by _partind_;

* ods select fitstat rocinfo liftinfo;
* ods html exclude fitstat rocinfo liftinfo;

 ods output
 fitstat=mylib.&prefix._fitstat
 rocinfo=mylib.&prefix._rocinfo
 liftinfo=mylib.&prefix._liftinfo;
run;

%mend assess_model;

%assess_model(prefix=logistic, var_evt=p_target_b, var_nevt=p_target_b0);
%assess_model(prefix=forest, var_evt=p_target_b1, var_nevt=p_target_b0);
%assess_model(prefix=gradboost, var_evt=p_target_b1, var_nevt=p_target_b0);

/******************************/
/* ROC and Lift Charts */
/******************************/

ods graphics on;

proc format;
 value partind1b1
 0 = ‘Validation’
 1 = ‘Training’
 ;
run;

data mylib.all_rocinfo;
 set mylib.logistic_rocinfo (keep=sensitivity fpr _partind_ in=l)
 mylib.forest_rocinfo(keep=sensitivity fpr _partind_ in=f)
 mylib.gradboost_rocinfo(keep=sensitivity fpr _partind_ in=g);

 length model $ 16;
 select;
 when (l) model=’Logistic’;
 when (f) model=’Forest’;
 when (g) model=’GradientBoosting’:
 end;
run;

data mylib.all_liftinfo;
 set mylib.logistic_liftinfo(keep=depth lift cumlift _partind_ in=l)
 set mylib.forest_liftinfo(keep=depth lift cumlift _partind_ in=f)
 set mylib.gradboost_liftinfo(keep=depth lift cumlift _partind_ in=g);

Chapter 1: Programming in SAS Studio and the Python Interface 9

length model $ 16;
 select;
 when (l) model=’Logistic’;
 when (f) model=’Forest’;
 when (g) model=’GradientBoosting’:
 end;
run;

proc sgpanel data=mylib.all_rocinfo aspect=1;
 panelby model / layout=columnlattice spacing=5;
 title “ROC Curve”;
 rowaxis values=(0 to 1 by 0.25) grid offsetmin=.05 offsetmax=.05;
 colaxis values=(0 to 1 by 0.25) grid offsetmin=.05 offsetmax=.05;
 lineparm x=0 y=0 slope=1 / transparency=.7;
 series x=fpr y=sensitivity / group=_partind_;
 format _partind_ partind1b1.;
run;

proc sgpanel data=mylib.all_liftinfo;
 panelby model / layout=columnlattice spacing=5;
 title “Lift Chart”;
 colaxis lael= ‘ ‘ grid;
 series x=depth y=lift / group=_partind_ markers marerattrs=(symbol=circlefilled);
 format _partind_ partind1b1.;
run;

title;

ods graphics off;

Output 1.9: Results of Program 1.9

10 Exploring SAS Viya: Data Mining and Machine Learning

In Output 1.9, you can see that we have used PROC SGPANEL to plot the ROC curves and lift charts for the
models that we have created.

Score New Data
Finally, as previously mentioned, the goal of all this is to deploy the models in such a way that they can be used
to score new observations. And of course, this must account for every step in the process, including data
preparation, such as the imputation that we performed. The score code generated from each of these steps can
be included and executed in a DATA step, as shown in Program 1.10 for the gradient boosting model.

Program 1.10: Score New Data
/* On CAS */
data mycaslib.donor_score_data;
 set mylib.donor_score_data;
run;

data mycaslib.donor_scored;
 set mycaslib.donor_score_data;

 %include “outdir./impute1.sas”;
 %include “outdir./gradboost1.sas”;
run;

Programming with the Python Interface
With SAS Viya, you can access SAS analytics through programmatic actions written in SAS or through
interfaces with other programming languages such as Python, Java, and Lua. In this section, we will look at
some of the capabilities of SAS Visual Data Mining and Machine Learning that can be accessed using Python.

For this example, we will use a data set of anonymized bank data that contains observations from a large
Financial Services firm. It is available to download from GitHub from https://github.com/
sassoftware/sas-viya-machine-learning/tree/master/data/bank. We will use this data to try to classify whether an
account holder would make at least one purchase. The observations contain account information for consumers
of home equity lines of credit, automobile loans, and other types of short- to medium-term credit instruments.
The target variable B_TGT quantifies account responses over the current campaign season. A value of 1
indicates at least one purchase. A value of 0 indicates no purchases.

Chapter 1: Programming in SAS Studio and the Python Interface 11

You can access the same SAS Analytics on SAS Viya using a variety of different Python development
environments. In this case, we will build the model and access machine learning actions using a Jupyter
notebook. Our program will load and prepare the data. Then we will build a few different machine-learning
models and evaluate them.

Import Packages
Visual Data Mining and Machine Learning runs on an in-memory distributed computing infrastructure. The
first thing that we need to do is specify the information for connecting to the in-memory server and start a
session. This process will create a workspace for our code to run in. To connect to the server, we’ll import the
SWAT package, as shown in Program 1.11.

Program 1.11: Import Packages

from swat import 
from matplotlib import pyplot as plt 
import pandas as pd 
from swat.render import render_html 
%matplotlib inline

SWAT stands for SAS Scripting Wrapper for Analytics Transfer. It’s the general name given to the
modules that can be used to access and interact with the SAS Viya platform using Python syntax.

 We also import the matplotlib package for plotting purposes.
 The pandas package is imported to help explore our data.
 The RENDER_HTML function is imported for viewing the output from our models.

Connect to the CAS Server and Start CAS Session
We are ready to connect to the CAS server using the specified server details and our user and password
credentials, which are contained within the authinfo file, as shown in Program 1.12. Then we start our CAS
session.

Program 1.12: CAS Server Connection Details and Start Session
cashost=”cloud.example.com”
casport=5570
casauth=’-/.authinfo’

sess = CAS(cashost, casport, authinfo=”-/.authinfo”, caslib=”casuser”)

Import Action Sets
Now that we have connected, we can import the action sets that we need to build our model. In Program 1.13,
you can see we are importing a variety of action sets to help us with data pre-processing and for building
different types of machine learning models.

Program 1.13: Import Action Sets
sess.loadactionset(actionset=”dataStep”)
sess.loadactionset(actionset=”dataPreprocess”)
sess.loadactionset(actionset=”cardinality”)
sess.loadactionset(actionset=”sampling”)
sess.loadactionset(actionset=”decisionTree”)
sess.loadactionset(actionset=”neuralNet”)
sess.loadactionset(actionset=”svm”)
sess.loadactionset(actionset=”astore”)
sess.loadactionset(actionset=”percentile”)

Load Data into CAS
We need to load our data in to SAS Cloud Analytics Services (CAS), using the upload_file action in Program
1.14. Notice the note. It indicates that the table BANK_RAW has been added to the caslib.

12 Exploring SAS Viya: Data Mining and Machine Learning

Program 1.14: Load Data into CAS
indata_dir=”/opt/sasinside/DemoData”
indata=”bank_raw”
if not sess.table.tableExists(table=indata).exists:
 tbl = sess.upload_file(indata_dir+”/”+indata+.”.sas7bdat”, casout=”name”:indata))

NOTE: Cloud Analytic Services made the uploaded file available as table BANK_RAW in

caslib CASUSER(viyauser).
NOTE: The table BANK_RAW has been created in caslib CASUSER(viyauser) from binary
data uploaded to Cloud Analytic Services.

We can also check the tables in our library by calling the TABLEINFO function, as shown in Program 1.15.

Program 1.15: TABLEINFO function
sess.tableinfo()

Output 1.15: TABLEINFO function output

We can see in Output 1.15 that the BANK_RAW table was added to our CAS library and that it has 25 columns
and approximately 1 million rows.

Explore Data
We can now begin to explore our data. Let’s look at a sample of five observations in our data set using the
HEAD function in Program 1.16.

Program 1.16: View First Five Observations from Data Set
tbl.head()

Output 1.16: Output from Program 1.16

If you want to see more than 5 observations, you can enter a parameter of your choice in the HEAD statement.
For example, if you enter 10 for the HEAD function—tbl.head(10)—you will see 10 observations.

We can also check information about the columns in the table using the COLUMNINFO function, see the
dimensions of the table using the SHAPE function, and get summary statistics for the table using the
DESCRIBE function, as shown in Program 1.17.

Program 1.17: View Table Column Information
tbl.columninfo()

tbl.shape

tbl.describe()

In the output of the DESCRIBE function, we can see the mean, standard deviation, min, max, and quartile
values for the different features.

Chapter 1: Programming in SAS Studio and the Python Interface 13

Next, we use the CARDINALITY action set in Program 1.18 to calculate the percentage of missing values by
variable and display that information using a bar chart created with matplotlib.

Program 1.18: Explore Data and Plot Missing Values
sess.cardinality.summarize(
 table=(“name”: indata),
 cardinality=(“name”:”data_card”, “replace”: True)
)

tbl_data_card=sess.CASTable(‘data_card’)
tbl_data_card.where=’_NMISS_>0’

tbl_data_card.vars=[‘_VARNAME_’, ‘_NMISS_’, ‘_NOBS_’]
df_data_card=tbl_data_card.to_frame()
df_data_card[‘PERCENT_MiSSING’]=(df_data_card[‘_NMISS_’/df_data_card[‘_NOOBS_’])*100
df_data_card = df_data_card.sort_values(by=[‘PERCENT_MISSING’], ascending=False)
df_data_card = df_data_card[~df_data_card._VARNAME_.isin([‘int_tgt’, ‘cnt_tgt’])

tbl_forplot=pd.Series(list(df_data_card[‘PERCENT_MISSING’]),
 index=list(df_data_card[‘_VARNAME_’]))
ax=tble_forplot.plot(
 kind=’bar’,
 title=’Percentage of Missing Values’
)
ax.set_ylabel(‘Percent Missing’)
ax.set_xlabel(‘Variable Names’);

Output 1.18: Output of Program 1.18

The chart in Output 1.18 shows us that the demog_age, r_demog_inc, and rfm3 features all have between 20%
and 25% of their observations missing, and the r_demog_homeval feature has approximately 1% of its values
missing.

14 Exploring SAS Viya: Data Mining and Machine Learning

Impute Missing Values
You can use the DATA PREPROCESS action set to impute the missing values through several methods such
as the mean, median, or mode. In this case, we will impute the demog_age variable using the mean and the
remaining variables using the median. Note that we output the new table with the imputed variables as
bank_prepped_pr, as shown in Program 1.19.

Program 1.19: Impute Missing Values
Pipelined imputation using transform action
sess.dataPreprocess.transform(
 table=(“name”:indata),
 casOut={“name”:”bank_prepped_pr”, “replace”:True},
 copyAllVars=True
 outVarsNameGlobalPrefix=”IM”,
 requestPackages=[
 {“impute”:{“method”:”MEAN”}, “inputs”:{“demog_age”}},
 {“impute”:{“method”:”MEDIAN}, “inputs”:{“r_demog_inc”, “r_demog_homeval”,
 “rfm3”}}
]
)

Output 1.19: Output from Program 1.19

You can also add new features to a data set. In Program 1.20, we use a dataStep action to execute SAS code
that adds an indicator variable to our data set based on whether the RFM3 observation is missing.

Program 1.20: Create New Indicator Variable for Missing RFM3 Values
sess.dataStep.runcode(code =”””
 data bank_prepped;
 set bank_prepped_pr;
 if missing(rfm3) then RFM3_IND = 1;
 else RFM3_IND = 0;
 run;
 ”””)

Now that we have created some imputed variables and added a new feature to our data set, let’s take a quick
look at the table using a HEAD statement again in Program 1.21. We can see that our variables have been
added.

Chapter 1: Programming in SAS Studio and the Python Interface 15

Program 1.21: View Table and Columns
tbl_tmp = sess.CASTable(“bank_prepped”)
tbl_tmp.head()

tbl_tmp.columns

Output 1.21: Output from Program 1.21

Partition Data
Now that we have explored our data, we can set up some variables for the features in the data set to reference
while building our models. We can also partition the data into training and validation subsets using the
sampling action set as shown in Program 1.22.

Program 1.22: Partition Data
target = “b_tgt”
class_inputs = [“cat_input1”, “cat_input2”, “rfm3_ind”, “dmog_ho”]
class_vars = [target] + class_inputs
interval_inputs = [“dmog_age”, “rfm1”, “rfm2”, “rfm4”, “rfm5”, “rfm6”, “rfm7”,

“rfm8”, “rfm9”, “rfm10”, “rfm11”, “rfm12”, “IM_demog_age”,
“IM_r_demog_homeval”, “IM_r_demog_inc”, “IM_rfm3”]

all_inputs = interval_inputs + class_inputs

sess.sampling.stratified(
 table=(“name”:”bank_prepped”, “groupBy”:”b_tgt”),
 output=(“casOut”: (“name”:”bank_part”, “replace”:True), “copyVars”:”ALL”),
 samppct=70,
 partind=True
)

 Let’s specify the target of interest in our modeling problem to ensure appropriate stratification. In this
example, we are using stratified sampling based on the target variable b_tgt and setting the sampling
percentage to 70%.

 This creates a new data set named bank_part with a partition index that we will use for building and
evaluating our models.

Model Building
We are ready to begin building our models. We’ll start with a random forest model, then show the code to build
a gradient boosting model, neural net model, and support vector machine model.

16 Exploring SAS Viya: Data Mining and Machine Learning

Random Forest
The random forest model is in the decisionTree action set. To see what action we need to use, we can use the
HELP action and specify the decisionTree action set, as shown in Program 1.23. This gives us a list and
description of the actions within that action set, as shown in Output 1.23.

Program 1.23: HELP Action
render_html(sess.help(actionset=”decisionTree”))

Output 1.23: Results of Program 1.23

In Output 1.23 we can see that forestTrain is used to build a FOREST model. We will use this action to build a
random forest model as shown in Program 1.24.

Program 1.24: Random Forest Model

rf=sess.decisionTree.forestTrain(
 table={
 “name”:”bank_part”, 
 “where”:”strip(put(_partind_, best.))=’1’”
},
inputs=all_inputs, 
nominals=class_vars, 
target=”b_tgt”, 
nTree=30,
nBins=20,
leafSize=5,
maxLevel=21, 
crit=”GAINRATIO”,
varImp=True,
seed=100,
OOB=True,
Vote=”PROB”,
casOut={“name”:”forest_model”, “replace”:True}
)

Output model statistics
render_html(rf)

Score
sess.decisionTree.forestScore(
 table={“name”:”bank_part”},
 modelTable={“name”:”forest_model”},
 casOut={“name”:”_scored_rf”, “replace”:True},

Chapter 1: Programming in SAS Studio and the Python Interface 17

 copyVars={“b_tgt”, “_partind_”},
 vote=”PROB”
)

Create p_b_tgt0 and p_b_tgt1 as _rf_predp_ is the probability of event in
_rf_predname_
sess.dataStep.runCode(
 code=”””data _scored_rf; set _scored_rf; if _rf_predname_=1 then do;
 p_b_tgt1=_rf_predp_; p_b_tgt0=1-p_b_tgt1; end; if _rf_predname_=0 then do;
 p_b_tgt0=_rf_predp_; p_b_tgt1=1-p_b_tgt0; end; run;”””
)

 For the input table, we will use the bank_part table and specify only those observations within our
partitioned data set that are selected for training.

 Now we’ll choose the all_inputs variable that we created earlier as the input for our model.
 Select the class variables for the nominal parameter and set the target variable as b_tgt.
 We can set additional parameters for our model such as the number of trees, the number of possible bins

for splitting features, the minimum number of observations for relief, and the maximum levels for the
tree. We can easily change these parameters and rebuild the model if we choose. For example, you
could change the number of trees to 50.

 Let’s also score the partition’s data using the forestScore action to create the _scored_rf table.
In the output of this program, we can see some fit statistics for the model as well as a table showing the variable
importance. If we would like to reference any of those tables, we can see the table names by looking at the keys
of the model, as shown in Program 1.25.

Program 1.25: Model Keys
rf.keys()

Output 1.25: Results of Program 1.25

In this case, we want to look at the variable importance table, so we will access it using the DTreeVarIMpInfo
key as shown in Program 1.26 and Output 1.26.

Program 1.26: View Table
rf[‘DTreeVarImpInfo’]

18 Exploring SAS Viya: Data Mining and Machine Learning

Output 1.26: Results of Program 1.26

Now let’s run through similar exercises to create a gradient boosting model, a neural net model, and a support
vector machine model.

Gradient Boosting

Program 1.27: Gradient Boosting Model
gb=sess.decisionTree.gbtreeTrain(
 table={
 “name”:”bank_part”,
 “where”:”strip(put(_partind_, best.))=’1’”
},
inputs=all_inputs,
nominals=class_vars,
target=”b_tgt”,
nTree=10,
nBins=20,
maxLevel=6,
varImp=True,
casOut={“name”:”gb_model”, “replace”:True}
)

Output model statistics
render_html(gb)

Score
sess.decisionTree.gbtreeScore(
 table={“name”:”bank_part”},
 modelTable={“name”:”gb_model”},
 casOut={“name”:”_scored_gb”, “replace”:True},
 copyVars={“b_tgt”, “_partind_”},
)

Create p_b_tgt0 and p_b_tgt1 as _gbt_predp_ is the probability of event in
_gbt_predname_
sess.dataStep.runCode(
 code=”””data _scored_gb; set _scored_gb; if _gbt_predname_=1 then do;
 p_b_tgt1=_gbt_predp_; p_b_tgt0=1-p_b_tgt1; end; if _gbt_predname_=0 then do;
 p_b_tgt0=_gbt_predp_; p_b_tgt1=1-p_b_tgt0; end; run;”””

Chapter 1: Programming in SAS Studio and the Python Interface 19

Neural Network

Program 1.28: Neural Network Model
nn=sess.neuralNet.annTrain(
 table={
 “name”:”bank_part”,
 “where”:”strip(put(_partind_, best.))=’1’”
},
inputs=all_inputs,
nominals=class_vars,
target=”b_tgt”,
hiddens={2},
acts={“TANH”},
combs={“LINEAR”},
targetAct=”SOFTMAX”,
errorFunc=”ENTROPY”,
std=”MIDRANGE”,
randDist=”UNIFORM”,
scaleInit=1,
nloOpts={
 “optmlOpt”:{“maxIters:250, “fConv”:1e-10},
 “lbfgsOpt”:{“numCorrections”:6},
 “printOpt”:{“printLevel”:”printDetail”},
 “validate”:{“frequency”:1}
},
casOut={“name”:”nnet_model”, “replace”:True}
)

Output model statistics
render_html(nn)

Score
sess.neuralNet.annScore(
 table={“name”:”bank_part”},
 modelTable={“name”:”nnet_model”},
 casOut={“name”:”_scored_nn”, “replace”:True},
 copyVars={“b_tgt”, “_partind_”},
)

Create p_b_tgt0 and p_b_tgt1 as _nn_predp_ is the probability of event in
_nn_predname_
sess.dataStep.runCode(
 code=”””data _scored_nn; set _scored_nn; if _nn_predname_=1 then do;
 p_b_tgt1=_nn_predp_; p_b_tgt0=1-p_b_tgt1; end; if _nn_predname_=0 then do;
 p_b_tgt0=_nn_predp_; p_b_tgt1=1-p_b_tgt0; end; run;”””

Support Vector Machine

Program 1.29: Support Vector Machine Model
sv=sess.svm.svmTrain(
 table={
 “name”:”bank_part”,
 “where”:”strip(put(_partind_, best.))=’1’”
},
inputs=all_inputs,
nominals=class_vars,
target=”b_tgt”,
kernel=”POLYNOMIAL”,
degree=2,
id={“b_tgt”, “_partind_”},
savestate={“name”:”svm_astore_model”, “replace”:True}
)

Output model statistics
render_html(sv)

Score using ASTORE
sess.astore.score(
 table={“name”:”bank_part”},

20 Exploring SAS Viya: Data Mining and Machine Learning

 rstore={“name”:”svm_astore_model”},
 out={“name”:”_scored_svm”, “replace”:True}
)

As you can see, we can access all the latest machine learning algorithms in SAS Viya using Python. Notice that
in the support vector machine model, we are scoring the data using the ASTORE action set. This scoring action
helps to efficiently score models that can contain complex scoring code, such as support vector machines,
random forest, and factorization machines.

Model Assessment
Now that we have trained our models, we can assess them using the PERCENTILE action set. In Program 1.30,
we create a function named ASSESS MODEL so that we can apply the same action to the different models in
order to evaluate and compare them. We will take the subset of our data that is assigned to our validation set
and then retrieve the predicted probabilities of an event occurring for each of the four models that we’ve built.

Program 1.30: Assess Models
def assess_model(prefix):
 return sess.percentile.assess(
 table={
 “name”:”_scored_” + prefix,
 “where”: “strip(put(_partind_, best.))=’0’”
 },
 inputs=[{“name”:”p_b_tgt1”}],
 response=”b_tgt”,
 event=”1”,
 pVar={“p_b_tgt0”),
 pEvent={“0”}
)

rfAssess=assess_model(prefix=”rf”)
rf_fitstat =rfAssess.FitStat
rf_rocinfo =rfAssess.ROCInfo
rf_liftinfo=rfAssess.LIFTInfo

gbAssess=assess_model(prefix=”gb”)
gb_fitstat =gbAssess.FitStat
gb_rocinfo =gbAssess.ROCInfo
gb_liftinfo=gbAssess.LIFTInfo

nnAssess=assess_model(prefix=”nn”)
nn_fitstat =nnAssess.FitStat
nn_rocinfo =nnAssess.ROCInfo
nn_liftinfo=nnAssess.LIFTInfo

svmAssess=assess_model(prefix=”svm”)
svm_fitstat =svmAssess.FitStat
svm_rocinfo =svmAssess.ROCInfo
svm_liftinfo=svmAssess.LIFTInfo

Create ROC and Lift Plots Using Validation Data
Let’s compare the models using their Area Under the ROC Curve (AUC) metric, ROC curves, and LIFT charts.

Program 1.31: Prepare Assessment Results for Plotting
Add new variable to indicate type of model
rf_liftinfo[“model”]=”Forest”
rf_rocinfo[“model”]=”Forest”
gb_liftinfo[“model”]=”GradientBoosting”
gb_rocinfo[“model”]=”GradientBoosting”
nn_liftinfo[“model”]=”NeuralNetwork”
nn_rocinfo[“model”]=”NeuralNetwork”
svm_liftinfo[“model”]=”SVM”
svm_rocinfo[“model”]=”SVM”

Chapter 1: Programming in SAS Studio and the Python Interface 21

Append data
all_liftinfo=rf_liftinfo.append(gb_liftinfo, ignore_index=True) \
 .append(nn_liftinfo, ignore_index=True) \
 .append(svm_liftinfo, ignore_index=True)
all_rocinfo=rf_rocinfo.append(gb_rocinfo, ignore_index=True) \
 .append(nn_rocinfo, ignore_index=True) \
 .append(svm_rocinfo, ignore_index=True)

We will print the AUC scores as shown in Program 1.32 and Output 1.32 and then plot the ROC curves and
LIFT charts for each of the models.

Program 1.32: Print AUC
print(“AUC (using validation data)”.center(80, ‘-‘))
all_rocinfo[[“model”, “C”]].drop_duplicates(keep=”first”).sort_values(by=”C”,
 ascending=False)

Output 1.32: AUC

Program 1.33: Draw ROC and Lift Plots
#/* Draw ROC charts */
plt.figure()
for key, grp in all_rocinfo.groupby([“model”]):
 plt.plot(grp[“FPR”], grp[“Sensitivity”], label=key)
plt.plot([0,1], [0,1], “k—“)
plt.xlabel(“False Positive Rate”)
plt.ylabel(“True Positive Rate”)
plt.grid(True)
plt.legend(loc=”best”)
plt.title(“ROC Curve (using validation data)”)
plt.show()

#/* Draw lift charts */
plt.figure()
for key, grp in all_liftinfo.groupby([“model”]):
 plt.plot(grp[“Depth”], grp[“Lift”], label=key)
plt.xlabel(“Depth”)
plt.ylabel(“Lift”)
plt.grid(True)
plt.legend(loc=”best”)
plt.title(“Lift Curve (using validation data)”)
plt.show()

End CAS session
sess.close()

22 Exploring SAS Viya: Data Mining and Machine Learning

Output 1.33: ROC and Lift Plots

In this case, we can see that the NeuralNetwork model seems to perform slightly better on the validation data
for the models that we have constructed.

Conclusion
This chapter presented two simple, start-to-finish machine learning solutions. One was programmed in SAS
Viya through the SAS Studio interface and the other accessed the analytics within SAS Viya through the
Python interface, using the Jupyter notebook.

Although this can all be written completely manually, SAS Studio provides tasks and code snippets that
generate much of this code for you so that you don’t have to worry about the appropriate syntax or structure
and all of the options are clearly presented to you. The next chapter will explore some of these Data Mining and
Machine Learning tasks.

Chapter 1: Programming in SAS Studio and the Python Interface 23

Resources
This chapter is based on the “Data Mining and Machine Learning on SAS Viya” videos in SAS® Viya®
Enablement, a free course available from SAS Education.

You might find the following documentation and resources helpful as you learn more about programming in
SAS Visual Data Mining and Machine Learning:

● SAS Visual Data Mining and Machine Learning 8.4 in SAS Viya 3.4

● SAS® Viya® 3.2 Programming: Getting Started with SAS Viya for Python

● Link to donor data set available to download from SAS Visual Data Mining and Machine Learning
documentation: https://support.sas.com/documentation/prod-p/vdmml/zip/567885_donor_data.zip

● Link to download Bank data set link: https://github.com/sassoftware/sas-viya-machine-
learning/tree/master/data/bank

https://vle.sas.com/course/view.php?id=733
https://vle.sas.com/course/view.php?id=733
https://support.sas.com/en/software/visual-data-mining-and-machine-learning-support.html#documentation
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.11&docsetId=caspg3&docsetTarget=titlepage.htm&locale=en

24 Exploring SAS Viya: Data Mining and Machine Learning

Chapter 2: Data Mining and Machine Learning Tasks
in SAS Studio
Introduction ..25
Decision Tree ...25
Neural Network ...31
Forest Model ...35

Adjust Ensemble Parameters Manually .. 36
Auto-tune Options .. 37

Gradient Boosting ...39
Resources ...43

Introduction
As you have seen in the previous chapter, you can use your existing SAS programming knowledge in SAS Viya
to efficiently and effectively analyze your data. SAS Viya also offers several new data mining and machine
learning procedures that are available for sites with SAS Viya installed. You can see a complete list of the
procedures with explanations in the documentation.

In this chapter, we will look at several data mining and machine learning tasks in SAS Studio that use these
procedures. A predefined task in SAS Studio is an XML and Apache Velocity code file that generates SAS
code and formats the results for you. Tasks include SAS procedures from simple data listings to complex
analytical procedures. You might already be familiar with tasks in SAS Studio that use SAS 9. If you license
SAS Visual Analytics, SAS Visual Data Mining and Machine Learning, or any other SAS Viya products, you
will have access to certain predefined tasks in SAS Studio.

This chapter is by no means a comprehensive guide to all of the data mining and machine learning procedures,
tasks, or features in SAS Viya. It is an introduction to using SAS Viya for your statistical programming so that
you can begin to take advantage of the scalability, elasticity, and flexibility of this modern analytics platform.

The data source used in the examples contains a list of donors to an organization. This data source has a target
variable, TARGET_B, which is a binary variable that has the value 1 for a person who has donated during a
mailing. The example data is available to download from the SAS® Visual Data Mining and Machine Learning
documentation. See the Resources section for the link.

Decision Tree
In this section, you will learn how to use the Auto-tune option when developing a supervised learning model in
SAS Viya. This particular example is focused on the decision tree.

The data source for this example contains a list of donors and non-donors to an organization and has a binary
target variable named TARGET_B, which has a value “1” for those who donated during a mailing, and a value
“0” for those who did not.

To begin, in SAS Studio click the Tasks and Utilities option on the left panel. Then, expand the Tasks option
and expand the Supervised Learning option. From that folder, double-click the Decision Tree option as
shown in Figure 2.1. This opens the Decision Tree panel at the center of your screen. You can see four tabs in
the center panel: DATA, OPTIONS, OUTPUT, and INFORMATION.

26 Exploring SAS Viya: Data Mining and Machine Learning

Figure 2.1: Decision Tree Task

Now let’s learn how to configure the Decision Tree by using the Auto-tune option. Click the DATA tab in the
center panel. In the DATA property, click the Select a table button to select the table that we are going to use
for this example. Your table should be available in Libraries  My Libraries  MYCASLIB. Select the table
named DONOR_RAW_DATA, as shown in Figure 2.2. Click OK.

Figure 2.2: Select a Table

Keep Validation and Test data deselected in the Partition Data option, as shown in Figure 2.3 outlined in a
green box.

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 27

Figure 2.3: Partition Data Option

Let’s look at the Roles property next. On the TARGET option, select Use a nominal target. On Nominal
target, click the Add a column button that appears as a + sign in the upper right. In the Columns window that
opens, select the variable TARGET_B. Click OK in the Columns window. Let’s go now to the Input options.
On Interval inputs, click the Add columns button (+). A pop-up menu will show all the interval variables.
Click MONTHS_SINCE_ORIGIN. Scroll down to the end of the variable window selection. Press the shift key
and click the variable FILE_CARD_GIFT. This will select all interval variables except TARGET_D. Click OK
in the Columns window.

Notice that the CODE panel on the right begins to populate the TREESPLIT procedure. On Nominal Inputs,
click the Add columns button (+). A pop-up menu will show all the nominal variables. Click URBANICITY.
Scroll down to the end of the variable selection window, press shift, and click the variable
RECENCY_STATUS_96NK. This will select all nominal variables except TARGET_D and
CONTROL_NUMBER. Click OK in the Columns window. Your screen should now look like Figure 2.4.

28 Exploring SAS Viya: Data Mining and Machine Learning

Figure 2.4: DATA Tab Options

Click the OPTIONS tab in the left panel. Under the METHODS property, select the option Automatically
tune selected options. The auto-tune procedure initially sets the depth of the tree as 6 with a lower bound at 2
and an upper bound at 20. We will leave these settings as they are. It means that the Auto-tune method will try
different depths in order to achieve the best performance according to the target variable.

Also, the Auto-tune procedure sets the number of bins used for interval variables to 20 with a lower bound at 20
and an upper bound at 200. It means that the Auto-tune method will try different bins along the tuning, always
aiming for the best performance in relation to the particular target variable selected.

The Auto-tune procedure will use different splitting criteria methods. Information gain ratio is the default
method, but CHAID, Chi-square, Entropy, and Gini index also will be tried. You can change this setting by
clicking the Edit button and change both the order and the method itself that will be used. For now, we will
leave the default selected.

At the initial settings, the Auto-tune process does not prune the tree. You might want to change this and use the
C4.5 pruning method. However, that option can increase the running time. In this example, we will leave it as-
is.

As splitting criteria, the Auto-tune procedure sets the minimum number of observations for a leaf to 5 and the
maximum branches of a node to 2. In other words, there will be no leaves with fewer than five observations,
and the splitting process will be binary, that is, a two-way split.

The METHODS property section in the left tab should now look like Figure 2.5.

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 29

Figure 2.5: OPTIONS METHODS Properties

Under the Autotune Optimization Settings section, the Auto-tune procedure sets the validation method as
Partition and the proportion of validation cases as 0.3 or 30%. You also have the option to use the K-fold cross
validation as a validation method. Do not select K-fold cross validation.

Under Tuning Controls, the Auto-tune procedure sets the maximum time of 60 minutes for the optimization
process based on five iterations evaluating 50 functions. The number of evaluations per iteration will be 10
according to these defaults.

Finally, on the PLOTS option, you can select to output particular plots. The default is the whole tree and the
zoom tree. Or you can select the ones that you like in addition to the whole tree and the zoom tree. For
example, the depth of the sub-tree and the variable importance chart. Or you can even suppress all the plots.

After selecting these options in the OPTIONS tab, your screen should look like Figure 2.6.

30 Exploring SAS Viya: Data Mining and Machine Learning

Figure 2.6: OPTIONS METHOD Properties, continued

Click the OUTPUT tab. On the OUTPUT DATA SET property, check the option Create score data set. For
the Data set name option, set your library and data set names. For example, enter
MYCASLIB.Treesplit_scores. Notice how the CODE panel on the right populates the TREESPLIT procedure
with the SCORE OUT= option.

For Include variables from the input data set, select Variables used in the analysis. Check the option Save
variable importance measures. Enter the data set name for your variable importance table. If you don’t enter
any library name, SAS Viya will set it as the Work library. Let’s enter just the data set name as
Treesplit_varimp. If the file already exists in the Work library, you are going to be asked to overwrite it.

Check the option Save scoring code. Leave the File name and the Folders as they are. Your screen should now
look like Figure 2.7.

Figure 2.7: OUTPUT Properties

Click the Run shortcut button to run the task. While the code is running, notice the CODE tab changes to the
LOG tab, meaning that the running process is being populated, including errors, warnings, and notes.

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 31

When the run is over, the RESULTS tab shows up with the model information where it can be seen that chi-
square was selected by Auto-tuning as the Split Criterion, as shown in Figure 2.8. It also shows the
classification tree for the target, the sub-tree, the fit statistics for the selected tree, the variable importance table,
the output table containing the scores, and a series of tables summarizing the results of auto-tuning.

Figure 2.8: Partial Results of TREESPLIT Procedure

Neural Network
In this section, you will learn how to use the Auto-tune option when developing a supervised learning model in
SAS Viya. This particular example is focused on the neural network.

The data source for this example contains a list of donors and non-donors to an organization and has a binary
target variable named TARGET_B, which has a value “1” for those who donated during a mailing, and a value
“0” for those who did not.

To begin, in SAS Studio, click the Tasks and Utilities option on the left panel. Then, expand the Tasks option
and expand the Supervised Learning option. From that folder, double-click the Neural Network option as
shown in Figure 2.9. This opens the Neural Network panel at the center of your screen. You can see four tabs in
the center panel: DATA, OPTIONS, OUTPUT, and INFORMATION.

32 Exploring SAS Viya: Data Mining and Machine Learning

Figure 2.9: Neural Network Task

We will learn how to configure the Neural Network by using the Auto-tune option.

On the DATA tab in the DATA property, click the Select a table button to select the table that will be used in
this example. The table should be available in Libraries  My Libraries  MYCASLIB. Select the table
named DONOR_RAW_DATA. Click OK. On the Partition Data option, do not select Validation data or Test
data.

Let’s go to the ROLES property. On the TARGET option, select Use a nominal target. On Nominal target,
click the Add a column button (+) and select the variable TARGET_B in the Column window. Click OK. On
Interval inputs, click the Add columns button (+). A pop-up menu shows all the interval variables. Click
MONTHS_SINCE_ORIGIN, scroll down to the end of the variable window selection, hold down the Shift key,
and click the variable FILE_CARD_GIFT. This selects all the interval variables except TARGET_D. Click OK
in the Columns window. Notice that the CODE panel to the right begins to populate the NNET procedure, as
shown in Figure 2.10.

Figure 2.10: DATA Tab Options

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 33

On Nominal inputs, click the Add columns button. A pop-up menu shows all the nominal variables. Click
URBANICITY. Scroll down to the end of the variable window selection, hold down the Shift key, and click the
variable RECENCY_STATUS_96NK. Click OK in the Columns window.

Click the OPTIONS tab. Under the METHODS property, select the option Automatically tune selected
options. As a default, under the Data Preparation option, the Auto-tune procedure does not include the
missing values, as they will be discarded during the training process. If you select the Include missing values
option, be aware that for nominal variables, the missing values are treated as only another level of the input. For
interval variables, missing values are treated as the mean of all observations in the data set.

The initial settings for the Auto-tune procedure in terms of the number of hidden layers is one, with a lower
bound of zero (no hidden layers) and an upper bound of two (two hidden layers). Also, the initial value for the
hidden units, or neurons, is 50, with a lower bound of 50 and an upper bound of 500.

Notice under the Training Details section that the auto-tune does not use the prediction error weights as a
default during the training process. We will leave it as-is.

Under Optimization, the default optimization method is based on limited memory. You also have the option
based on stochastic gradient descent. You could also set a maximum time to run the auto-tune process. For
now, we will keep it cleared, which means there is no time limit for the optimization process. You can also set
the maximum number of iterations. Let’s keep it as 250. Finally, the auto-tune process uses regularization as a
method to avoid over-fitting the model during the training. You can set L1 and L2 regularization parameters,
including initial values, lower bounds, and upper bounds. Let’s leave the default settings.

The default validation method for the optimization is based on partition, and the proportion of validation cases
is set to 0.3, or 30% of the observations. You also have the K-fold cross validation option, but let’s leave it as
partition in this example.

Under the Tuning Controls option, a few parameters are set as default. There is a maximum time of 60
minutes for the entire training process, a maximum of 5 iterations, a maximum of 50 evaluations, and a
maximum of 10 evaluations per iteration. Let’s leave these options as the default.

Click the OUTPUT tab. On the OUTPUT DATASETS property, select the Create scored data set option.
When you select that option, notice that the code for PROC NNET disappears from the code panel. Also, the
Run shortcut (F3) button is disabled. On the Data set name option, set your library and data set names. For
example, enter MCASLIB.Nnet_scores. Notice that when you populate that information, the Run shortcut
button is enabled and the code returns to the CODE panel. Now, the score OUT= option in the code is
populated with MYCASLIB.Nnet_scores.

In the Include variables from the input data set option, select Variables used in the analysis. Select the
Create model parameters data set option. When you select that option, notice again that the code for PROC
NNET disappears from the CODE panel and the Run shortcut button is disabled. For the Data set name
option, set your library and data set names. For example, enter MYCASLIB.Nnet_modelparms. Notice that
when you populate that information, the Run shortcut button is enabled and the code returns to the CODE
panel. Now the train OUTMODEL= option is populated with MCASLIB.Nnet_modelparms in the NNET
procedure.

Select the Save scoring code option. Do not change the filename and the folder. Your screen should now look
like Figure 2.11.

34 Exploring SAS Viya: Data Mining and Machine Learning

Figure 2.11: OUTPUT properties

Click the Run shortcut button. When the code is running, notice that the CODE tab changes to the LOG tab.
This means that the running process activity is populated including errors, warnings, and notes. If you get any
error during the process, the LOG panel will be visible with the proper information. Otherwise, if you don’t get
any errors, the run is over.

The RESULTS panel shows you the Iteration history for the neural network training process. Either the model
converges, or it does not. A summary of the model information, a tuner information table, information about the
tuner results with defaults or best configurations, and the score table information, which includes the
misclassification are shown, as seen in Figure 2.12.

Figure 2.12: Partial Results of NNET Procedure

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 35

You have now learned how to develop a supervised learning model based on a neural network to predict future
donors.

Forest Model
In this section, you will learn how to use ensemble and auto-tune methods to develop a supervised learning
model. This particular example is focused on a Forest model.

The data source for this example contains a list of donors and non-donors to an organization and has a binary
target variable named TARGET_B, which has a value “1” for those who donated during a mailing, and value
“0” for those who did not.

To begin, in SAS Studio, click the Tasks and Utilities option on the left panel. Then, expand the Tasks option
and expand the Supervised Learning option. From that folder, double-click the Forest option as shown in
Figure 2.13. This opens the Forest panel at the center of your screen. You can see four tabs in the center panel:
DATA, OPTIONS, OUTPUT, and INFORMATION.

Figure 2.13: Forest Task

Now let’s learn how to configure the Forest and programmatically edit Forest options. On the DATA tab, in the
DATA property, click the Select a table button to select the table that we are going to use in this example.
Your table should be available in Libraries  My Libraries  MYCASLIB. Select the table named
DONOR_RAW_DATA. Click OK to close the Select a Table window. Keep Validation data and Test data
de-selected on the Partition Data option.

Let’s go to the ROLES property. On the TARGET option, select Use a nominal target. On Nominal target,
click the Add a column button (+) and select the variable TARGET_B in the Columns window. Click OK.

Let’s go now to the Inputs. On Interval inputs, click the Add columns button (+). A pop-up menu will show
all the interval variables. Click MONTHS_SINCE_ORIGIN. Scroll down to the end of the variable window
selection, press Shift, and click the last variable, FILE_CARD_GIFT. This will select all interval variables,
except TARGET_D. Click OK in the Columns window.

On Nominal inputs, click the Add columns button (+). A pop-up menu will show all the nominal variables.
Click URBANICITY. Scroll down to the end of the variable window selection, press Shift, and click the last
variable, RECENCY_STATUS_96NK. This will select all the nominal variables, except TARGET_D and
CONTROL_NUMBER. Click OK in the Columns window.

Notice that the code window begins to populate with the Forest procedure as shown in Figure 2.14.

36 Exploring SAS Viya: Data Mining and Machine Learning

Figure 2.14: DATA Tab Options

Click the OPTIONS tab, then click the Run shortcut button. This action will create a Forest with the default
properties of 100 trees, where each tree is trained on 60% of the available data. Upon completion, notice that
the results appear in the RESULTS panel.

In the Results, we see the summary of model information, which contains the Out of Bag (OOB)
Misclassification Rate of 0.24958. In addition, we can observe a summary of observation counts. As you scroll
down through the Results, you will see the Variable Importance Table. The last table is the Fit Statistics Table,
which provides a summary of common fit statistics based on the number of trees in the forest.

Adjust Ensemble Parameters Manually
Let’s attempt to improve the model performance by adjusting some ensemble parameters by editing the PROC
FOREST code. The first step in editing the code is to click the CODE tab so that the code appears. Click the
Edit SAS Code shortcut button to edit the code. It is the button labeled Edit on the toolbar as shown in Figure
2.15.

Figure 2.15: Edit SAS Code Shortcut Button

After you click the Edit button, notice that a new program tab appears. Program 2.1 shows the current code.

Program 2.1: PROC FOREST Code
ods noproctitle;

proc forest data=MYCASLIB.DONOR_RAW_DATA;
 target TARGET_B / level=nominal;
 input MONTHS_SINCE_ORIGIN DONOR_AGE IN_HOUSE INCOME_GROUP PUBLISHED_PHONE

MOR_HIT_RATE WEALTH_RATING MEDIAN_HOME_VALUE MEDIAN_HOUSEHOLD_INCOME
PCT_OWNER_OCCUPIED PER_CAPITA_INCOME PCT_ATTRIBUTE1 PCT_ATTRIBUTE2
PCT_ATTRIBUTE3 PCT_ATTRIBUTE4 PEP_STAR RECENT_STAR_STATUS
FREQUENCY_STATUS_97NK RECENT_RESPONSE_PROP RECENT_AVG_GIFT_AMT
RECENT_CARD_RESPONSE_PROP RECENT_AVG_CARD_GIFT_AMT RECENT_RESPONSE_COUNT
RECENT_CARD_RESPONSE_COUNT MONTHS_SINCE_LAST_PROM_RESP LIFETIME_CARD_PROM
LIFETIME_PROM LIFETIME_GIFT_AMOUNT LIFTEIME_GIFT_COUNT LIFETIME_AVG_GIFT_AMT
LIFETIME_GIFT_RANGE LIFETIME_MAX_GIFT_AMT LIFETIME_MIN_GIFT_AMT
LAST_GIFT_AMT CARD_PROM_12 NUMBER_PROM_12 MONTHS_SINCE_LAST_GIFT
MONTHS_SINCE_FIRST_GIFT FILE_AVG_GIFT FILE_CARD_GIFT / level=interval;

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 37

 input URBANICITY SES CLUSTER_CODE HOME_OWNER DONOR_GENDER OVERLAY_SOURCE
RECENCY_STATUS_96NK / level=nominal;

run;

Let’s now adjust the properties of the Forest procedure by adding two options after the DATA= statement.
Program 2.2 shows the adjusted code with additions highlighted in gray.

Program 2.2: Adjusted PROC FOREST Code
ods noproctitle;

proc forest data=MYCASLIB.DONOR_RAW_DATA ntrees=200 minleafsize=12;
 target TARGET_B / level=nominal;
 input MONTHS_SINCE_ORIGIN DONOR_AGE IN_HOUSE INCOME_GROUP PUBLISHED_PHONE

MOR_HIT_RATE WEALTH_RATING MEDIAN_HOME_VALUE MEDIAN_HOUSEHOLD_INCOME
PCT_OWNER_OCCUPIED PER_CAPITA_INCOME PCT_ATTRIBUTE1 PCT_ATTRIBUTE2
PCT_ATTRIBUTE3 PCT_ATTRIBUTE4 PEP_STAR RECENT_STAR_STATUS
FREQUENCY_STATUS_97NK RECENT_RESPONSE_PROP RECENT_AVG_GIFT_AMT
RECENT_CARD_RESPONSE_PROP RECENT_AVG_CARD_GIFT_AMT RECENT_RESPONSE_COUNT
RECENT_CARD_RESPONSE_COUNT MONTHS_SINCE_LAST_PROM_RESP LIFETIME_CARD_PROM
LIFETIME_PROM LIFETIME_GIFT_AMOUNT LIFTEIME_GIFT_COUNT LIFETIME_AVG_GIFT_AMT
LIFETIME_GIFT_RANGE LIFETIME_MAX_GIFT_AMT LIFETIME_MIN_GIFT_AMT
LAST_GIFT_AMT CARD_PROM_12 NUMBER_PROM_12 MONTHS_SINCE_LAST_GIFT
MONTHS_SINCE_FIRST_GIFT FILE_AVG_GIFT FILE_CARD_GIFT / level=interval;

 input URBANICITY SES CLUSTER_CODE HOME_OWNER DONOR_GENDER OVERLAY_SOURCE
RECENCY_STATUS_96NK / level=nominal;

 The ntrees=200 option will increase the number of trees in the Forest to 200. The minleafsize=12 option
will require that greater than or equal to 12 observations be present in the leaf node following the split. The
value is approximately 0.1% of the training sample used to construct each tree.

After you have adjusted the code, click the Run shortcut button. Notice in the Results that the Out of Bag
Misclassification rate has improved to 0.24912.

Auto-tune Options
Close the Program window and return to the OPTIONS tab in the left pane to make adjustments to the code
using the options in the task. Under the METHODS property, select the option Automatically tune selected
options.

The auto-tune process sets the initial number of trees to 20 with a lower bound at 20 and an upper bound at 150.
It means that several different numbers of trees between 20 and 150 will be tried in order to find the best
configuration. Let’s leave it as it is.

The initial bootstrap sample rate is 0.1, meaning that only 10% of the cases will be included in the bootstrap
sample for the training process. The lower bound is set to 0.1 and the upper bound is set to 0.9, meaning the
bootstrap sampling will consider up to 90% of the cases on the training process. Let’s keep the default settings.

During the auto-tune process, the number of inputs to be used during the training process can vary from 1 to
100 – as defined by the lower and upper bounds. Let’s keep the default settings for the bounds, and set the
initial value to 1.

The default splitting criteria is based on the information gain ratio. You also have criteria options based on
CHAID, Chi-square, Entropy, and Gini index. Let’s leave it as is.

By default, the maximum depth of a tree is 20, the minimum number of observations for a leaf is 5, and the
maximum number of branches is 2. In other words, the tree will have a maximum depth of 20, there will be no
leaves with fewer than 5 observations, and the splitting process will be a two-way split – a binary split.

The default variable importance method is Gini, which means that all input variables will be measured
important to the model contributing to the prediction or decision based on the Gini criterion. The method to
calculate the predicted nominal target levels will be based on the average posterior probability of each level
considering all trees. You can also set it as the majority, which is the percentage of trees that predict each level.
Let’s leave it as probability.

38 Exploring SAS Viya: Data Mining and Machine Learning

In the Sampling section, you can specify a random number seed. For this example, do not select it.

The default validation method used by the auto-tune process is based on the partition data. The default
proportion is 0.3 or 30% of the cases. You can also set the validation method to k-fold cross validation. For
now, let’s leave it as partition.

The tuning options for the auto-tune process are set at 60 minutes as the maximum running time – considering 5
iterations, 50 evaluations, and 10 evaluations per iteration. Let’s keep the default options.

In the PLOTS section, you can request that plots be created for misclassifications by the number of trees and
by variable importance. Do not select either condition for this example.

Click the OUTPUT tab. In the OUTPUT DATASETS section, select the Create scored data set option.
When you select that option, notice that the code for PROC FOREST disappears from the code panel. Also, the
Run (F3) shortcut button is disabled. On the Data set name option, set your library and data set names. For
example, enter MYCASLIB.Forest_scores. Notice that when you populate that information, the Run shortcut
button is enabled and the code returns to the CODE panel. Now the score OUT= option in the code is populated
with MYCASLIB.Forest_scores. In the Include variables from the input data set option, select Variables used
in the analysis.

Select the Create model data set option. When you select that option, notice again that the code for PROC
FOREST disappears from the CODE panel and the Run shortcut button is disabled. On the data set name
option, set your library and data set names. For example, enter MYCASLIB.Forest_model. Notice that when
you populate that information, the Run shortcut button is enabled and the code returns to the CODE panel. Now
the OUT= model option is populated with MYCASLIB.Forest_model after the DATA= option in the FOREST
procedure.

Select the Saving scoring model option. When you select that option, notice that the code for PROC FOREST
disappears from the code panel. Also, the Run (F3) shortcut button is disabled. On the Scoring model data set
name option, set your library and data set names. For example, enter MYCASLIB.ForestScoringModel. Notice
that when you populate that information, the Run shortcut button is enabled and the code returns to the CODE
panel. In the Include variables from the input data set option, select Variables used in the analysis. Now
the SAVESTATE RSTORE= option in the code is populated with MYCASLIB.ForestScoringModel. Notice
that the ID option in the code is populated with the variables used in the analysis.

Select the Save fit statistics option. Do not change the data set name. Select the Save variable importance
measures option. Do not change the data set name here either.

Click the Run shortcut button. While the code is running, notice that the CODE tab changes to the LOG tab.
This means that the running process activity is populated including errors, warnings, and notes. If you get any
errors during the process, the LOG panel will be visible with the proper information. Otherwise, if you don’t
get any errors, when the run is over the Results show you the model information.

The Results (Figure 2.16) include information about the number of trees, variables per tree, bootstrap
percentage, and some additional information about the final forest – a variable importance table describing the
importance of each input for the final forest; a fit statistics table, including average squared error and
misclassification error for out-of-bag and training; and a series of tuning information, including a summary of
the model, time consumed for the tasks, the best configurations achieved, tuner results, and the output tables.

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 39

Figure 2.16: Partial Results of FOREST Procedure

Gradient Boosting
In this section, you will learn how to use ensemble methods when developing a supervised learning model in
SAS Viya. This particular example is focused on gradient boosting.

The data source for this example contains a list of donors and non-donors to an organization, and has a binary
target variable named TARGET_B, which has a value “1” for those who donated during a mailing, and a value
“0” for those who did not.

To begin, in SAS Studio click the Tasks and Utilities option on the left panel. Then, expand the Tasks option
and expand the Supervised Learning option. From that folder, double-click the Gradient Boosting option as
shown in Figure 2.17. This opens the Gradient Boosting panel at the center of your screen. You can see four
tabs in the center panel: DATA, OPTIONS, OUTPUT, and INFORMATION.

40 Exploring SAS Viya: Data Mining and Machine Learning

Figure 2.17: Gradient Boosting Task

In this section, you will learn how to configure the Gradient Boosting task and programmatically edit some
options in an attempt to improve model performance. On the DATA tab, in the DATA section, click the Select
a table shortcut button to select the table that will be used in this example. Your table should be available in
Libraries  My Libraries  MYCASLIB. Select the table named DONOR_RAW_DATA. Click OK to close
the Select a Table window.

In the Partition Data section, select the Validation data check box. Enter 0.4 for Proportion of validation
cases. These actions partition the raw data so that 60% is available for training and 40% is available for
validation. Set a random seed by selecting the check box next to Random number seed. Enter the value 12345
for the random seed.

Under the ROLES section, in the Target properties, select Use a nominal target. Next to the Nominal target
property, click the Add a column button (+) and select the variable TARGET_B. Click OK to select the target.

Let’s go now to the Inputs. On Interval inputs, click the Add columns button (+). A pop-up menu will show
all the interval variables. Click MONTHS_SINCE_ORIGIN. Scroll down to the end of the variable window
selection, press Shift, and click the last variable, FILE_CARD_GIFT. This will select all interval variables,
except TARGET_D. Click OK in the Columns window. Notice that the code window begins to populate with
the Gradient Boosting procedure.

On Nominal inputs, click the Add columns button (+). A pop-up menu will show all the nominal variables.
Click URBANICITY. Scroll down to the end of the variable window selection, press Shift, and click the last
variable, RECENCY_STATUS_96NK. This will select all the nominal variables, except TARGET_D and
CONTROL_NUMBER. Click OK in the Columns window.

The code window further populates, as shown in Figure 2.18.

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 41

Figure 2.18: DATA tab options

Click the OPTIONS tab. Under the Methods property, as shown in Figure 2.19 notice that by default 100
iterations are performed. This is equivalent to the number of trees that are constructed. The learning rate is 0.1.

Figure 2.19: OPTIONS Tab Options

Click the running man icon or press F3 to run the task. Notice in the right window that the log file is initially
shown until the run is complete. If there are no errors, the results are shown. At the top of the results, you will
see a table summarizing the model information. Under this table is a summary of observation counts. Next is a
table providing variable importance information. And finally, at the end of the results is a table of Fit Statistics.
Notice that the validation misclassification rate for the 100th iteration is approximately 0.253.

42 Exploring SAS Viya: Data Mining and Machine Learning

Let’s see if we can reduce the misclassification rate by changing a few of the settings for the Gradient Boosting
model by changing the code. In the right window, click the CODE tab. Click the Edit button to view the code
in an Editor window.

After you click the Edit button, notice that a new program tab appears. Program 2.3 shows the current code.

Program 2.3: PROC GRADBOOST
ods noproctitle;

proc gradboost data=MYCASLIB.DONOR_RAW_DATA;
 partition fraction(validate=0.4 seed=12345);
 target TARGET_B / level=nominal;
 input MONTHS_SINCE_ORIGIN DONOR_AGE IN_HOUSE INCOME_GROUP PUBLISHED_PHONE

MOR_HIT_RATE WEALTH_RATING MEDIAN_HOME_VALUE MEDIAN_HOUSEHOLD_INCOME
PCT_OWNER_OCCUPIED PER_CAPITA_INCOME PCT_ATTRIBUTE1 PCT_ATTRIBUTE2
PCT_ATTRIBUTE3 PCT_ATTRIBUTE4 PEP_STAR RECENT_STAR_STATUS
FREQUENCY_STATUS_97NK RECENT_RESPONSE_PROP RECENT_AVG_GIFT_AMT
RECENT_CARD_RESPONSE_PROP RECENT_AVG_CARD_GIFT_AMT RECENT_RESPONSE_COUNT
RECENT_CARD_RESPONSE_COUNT MONTHS_SINCE_LAST_PROM_RESP LIFETIME_CARD_PROM
LIFETIME_PROM LIFETIME_GIFT_AMOUNT LIFTEIME_GIFT_COUNT LIFETIME_AVG_GIFT_AMT
LIFETIME_GIFT_RANGE LIFETIME_MAX_GIFT_AMT LIFETIME_MIN_GIFT_AMT
LAST_GIFT_AMT CARD_PROM_12 NUMBER_PROM_12 MONTHS_SINCE_LAST_GIFT
MONTHS_SINCE_FIRST_GIFT FILE_AVG_GIFT FILE_CARD_GIFT / level=interval;

 input URBANICITY SES CLUSTER_CODE HOME_OWNER DONOR_GENDER OVERLAY_SOURCE
RECENCY_STATUS_96NK / level=nominal;

run;

In an attempt to improve the performance of the model, we will increase the number of iterations or trees to 200
and decrease the learning rate to 0.01. To do this, at the beginning of the GRADBOOST procedure, next to the
DATA= option, type NTREES=200 and LEARNINGRATE=0.01, as shown highlighted in gray in Program
2.4.

Program 2.4: Adjusted PROC GRADBOOST
ods noproctitle;

proc gradboost data=MYCASLIB.DONOR_RAW_DATA ntrees=200 learningrate=0.01;
 partition fraction(validate=0.4 seed=12345);
 target TARGET_B / level=nominal;
 input MONTHS_SINCE_ORIGIN DONOR_AGE IN_HOUSE INCOME_GROUP PUBLISHED_PHONE

MOR_HIT_RATE WEALTH_RATING MEDIAN_HOME_VALUE MEDIAN_HOUSEHOLD_INCOME
PCT_OWNER_OCCUPIED PER_CAPITA_INCOME PCT_ATTRIBUTE1 PCT_ATTRIBUTE2
PCT_ATTRIBUTE3 PCT_ATTRIBUTE4 PEP_STAR RECENT_STAR_STATUS
FREQUENCY_STATUS_97NK RECENT_RESPONSE_PROP RECENT_AVG_GIFT_AMT
RECENT_CARD_RESPONSE_PROP RECENT_AVG_CARD_GIFT_AMT RECENT_RESPONSE_COUNT
RECENT_CARD_RESPONSE_COUNT MONTHS_SINCE_LAST_PROM_RESP LIFETIME_CARD_PROM
LIFETIME_PROM LIFETIME_GIFT_AMOUNT LIFTEIME_GIFT_COUNT LIFETIME_AVG_GIFT_AMT
LIFETIME_GIFT_RANGE LIFETIME_MAX_GIFT_AMT LIFETIME_MIN_GIFT_AMT
LAST_GIFT_AMT CARD_PROM_12 NUMBER_PROM_12 MONTHS_SINCE_LAST_GIFT
MONTHS_SINCE_FIRST_GIFT FILE_AVG_GIFT FILE_CARD_GIFT / level=interval;

 input URBANICITY SES CLUSTER_CODE HOME_OWNER DONOR_GENDER OVERLAY_SOURCE
RECENCY_STATUS_96NK / level=nominal;

run;

Click the Run shortcut button or press F3 to run the code. When the code is finished running, the results will be
displayed. Notice that by scrolling to the end of the Results window, the performance of the model did improve
when the validation misclassification rate dropped to 0.239 on the 200th iteration.

Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio 43

Resources
This chapter is based on the “Data Mining and Machine Learning on SAS Viya” videos in SAS® Viya®
Enablement, a free course available from SAS Education.

You might find the following documentation and resources helpful as you learn more about programming in
SAS Visual Data Mining and Machine Learning:

● SAS Visual Data Mining and Machine Learning 8.1: Data Mining and Machine Learning Procedures
● Link to Donor data set available to download from SAS Visual Data Mining and Machine Learning

documentation: https://support.sas.com/documentation/prod-p/vdmml/zip/567885_donor_data.zip

https://vle.sas.com/course/view.php?id=733
https://vle.sas.com/course/view.php?id=733
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.11&docsetId=casml&docsetTarget=titlepage.htm&locale=en

44 Exploring SAS Viya: Data Mining and Machine Learning

Chapter 3: Advanced Data Mining and Machine
Learning Procedures
Introduction ..45
Factorization Machines ...45

Data Exploration ... 46
Modeling .. 47
Scoring... 48

Text Mining ...49
PROC TEXTMINE .. 49
PROC TMSCORE .. 53

Community Detection ...54
Introduction to Networks ... 54
PROC NETWORK .. 55

Resources ...59

Introduction
SAS offers a collection of new, high-performance CAS procedures that are compatible with a multi-threaded
approach. In the previous chapter, we looked at tasks in SAS Studio that help automate your programming so
that you do not have to manually write your code. However, there are three options for manually writing your
programs in SAS Viya:

● SAS Studio provides a SAS programming environment for developing and submitting programs to the
server.

● Batch submission is also still an option.

● Open-source languages such as Python, Lua, and Java can submit code to the CAS server.

In this chapter, you will learn the syntax for three of the new, advanced data mining and machine learning
procedures: factorization machines, text mining, and community detection with the NETWORK procedure.

Factorization Machines
In this section, you will learn about factorization machines. What are factorization machines? They are a
relatively new and powerful tool that enables you to model high-dimensional, sparse data. For example,
consider a recommendation problem where users rate items that they have purchased. You have a matrix with
rows that correspond to users and columns that correspond to items. There are many users and many items, so
the matrix is large, but the ratings are very sparse. Most of the entries in the matrix are missing. Our purpose
would be to predict missing entries so that we can find items that each user is likely to rate highly and then
recommend those items to each user.

To accomplish our purpose, we will model the ratings using factorization machines. Each rating is assumed to
be the sum of the following:

● a global bias

● the average rating over all users and items

● a per-user bias

● the average of the ratings given by the user

● a per-item bias

46 Exploring SAS Viya: Data Mining and Machine Learning

● the average of the ratings given to that item

● a pairwise interaction term that accounts for the affinity between the user and that particular item

The affinity between users and items is modeled as the inner product between a two vector of features, one for
the user and one for the item. The factorization machine’s procedure learns the biases and the features for all
users and all items. These features are collectively known as factors.

This example uses a data set based on the MovieLens data set developed by the GroupLens project at the
University of Minnesota. Data sets are available to download at http://grouplens.org/datasets/movielens. In this
example, we will look at the MOVLENS10K data set, which has already been loaded in the MYCASLIB
library.

Data Exploration
Our first objective is to use PROC PRINT to explore the data. Run just the first PROC PRINT statement shown
in Program 3.1 to view a subset of the variables.

Program 3.1: Data Exploration Part 1
proc print data=mycaslib.movlens10k(obs=50);
run;

The Movie Lens 10k data set contains information about ratings given by users to movies. Users are identified
by anonymous numeric IDs. The same happens with movies in the item variable. A rating is a numeric value
between 1 (hated the movie) and 5 (loved the movie), as shown in Output 3.1.

Output 3.1: Partial Results of Program 3.1

Again, if you think of users and movies as a matrix, you will find that the data consists of one observation per
rating, or one entry in the matrix. Let’s use PROC CARDINALITY to gauge the size of the problem as shown
in Program 3.2.

Program 3.2: Data Exploration Part 2
proc cardinality data=mycaslib.movlens10k maxlevels=254 outcard=movlens10k_card;
 vars user item rating;
run;

proc print data=movlens10k_card;
run;

Chapter 3: Advanced Data Mining and Machine Learning Procedures 47

proc print data=mycaslib.movlens10k(where=(user=99));
run;

There are 385 users and 1,254 movies in this example. This means a total of 482,790 possible ratings, but we
only know 10,000. This is a very sparse data set. For example, looking at user 99, we can see that he or she has
rated only 45 out of all 1254 movies.

Modeling
We will now use PROC FACTMAC to learn a factorization machine model.

Program 3.3: Factorization Machine Model

proc factmac data=mycaslib.movlens10k outmodel=movlens10k_factors 
 maxiter=20 
 nfactors=20 
 learnstep=0.15 
 seed=12345;

 input user item / level=nominal;
 target rating / level=interval;

 output data=mycaslib.movlens10k_scored copyvar=(user item rating);
 code file=”&outdir./factmac1.sas”;
run;

 The model itself is saved in a data set specified by the OUTMODEL= option.
 You need to select a maximum number of iterations. Set MAXITER= to 20. You can increase the

MAXITER= value until you are satisfied with the solution.
 You can decide how many factors to learn. NFACTORS=20 is a good value for this example.
 You also need to select a learning step parameter. Set LEARNSTEP= to 0.15.

After running the procedure, you are able to look at the Iteration History Table to see how rapidly the
approximate loss decreases, as shown in Output 3.3. This is a good way to assess whether the learning step is
adequate. Also importantly, you can look at the final exact loss to determine whether the MSE and RMSE are
satisfactory. For example, if RMSE is less than 1 on ratings between 1 and 5 stars, that means that, on average,
the model is off by one star or less.

48 Exploring SAS Viya: Data Mining and Machine Learning

Output 3.3: Partial Results of Program 3.3

Scoring
You can also see how closely the model predicted the ratings from the training set by looking at the score
output in the data set specified by the OUTPUT statement from Program 3.3. Back to our User 99. You are now
able to predict how he or she would rate every movie in our data set. You can do this by running the score code
automatically generated by PROC FACTMAC in the file specified in the CODE statement as shown in
Program 3.4. This enables you to recommend new movies. For example, you could sort by decreasing order and
show only the top 10 highest predicted ratings, excluding the movies already rated by the same user.

Program 3.4 also shows how to use PROC SGPLOT to visualize the quality of the predictions by plotting
actual versus predicted ratings for the same user, as shown in Output 3.4.

Program 3.4: Score and Plot Predicted Versus Actual Ratings
/* Score all items for user=99*/
data mycaslib.movlens10k_user99_scored;
 set mycaslib.movlens10k_user99;
 %include “outdir./factmac1.sas”;
run;

data recommendations99;
 set mycaslib.movlens10k_user99_scored;
 where rating is not missing;
run;

/* Plot the predicted vs actual ratings*/
proc sgplot data=MYCASLIB.MOVLENS10K_USER99_SCORED;
 title ‘Movie Ratings for User 99’;

Chapter 3: Advanced Data Mining and Machine Learning Procedures 49

 scatter x=rating y=p_rating / transparency=0.0 name=’Scatter’
 xaxis grid label=’Actual Rating’;
 yaxis grid label=’Predicted Rating’ min=0 max=6;
run;
title;

Output 3.4: Results of Program 3.4

In conclusion, you can use factorization machines for recommendations or, more generally, for predictive
modeling with interval targets when you have very sparse data organized as a matrix.

Text Mining
The TEXTMINE and TMSCORE procedures integrate the functionalities from both natural language
processing and statistical analysis to provide essential functionalities for text mining. The procedures support
essential natural language processing (NLP) features such as tokenizing, stemming, part-of-speech tagging,
entity recognition, customized stop list, and so on. They also support dimensionality reduction and topic
discovery through Singular Value Decomposition.

In this example, you will learn about some of the essential functionalities of PROC TEXTMINE and PROC
TMSCORE by using a text data set containing 1,830 Amazon reviews of electronic gaming systems. The data
set is named Amazon. You can find similar data sets of Amazon reviews at https://snap.stanford.edu/data/web-
Amazon.html.

PROC TEXTMINE
The Amazon data set has already been loaded into CAS. The review content is stored in the variable
ReviewBody, and we generate a unique review ID for each review. In the proc call shown in Program 3.5 we
ask PROC TEXTMINE to do three tasks:

1. parse the documents in table reviews and generate the term by document matrix
2. perform dimensionality reduction via Singular Value Decomposition
3. perform topic discovery based on Singular Value Decomposition results

50 Exploring SAS Viya: Data Mining and Machine Learning

Program 3.5: PROC TEXTMINE
data mycaslib.amazon;
 set mylib.amazon;
run;
data mycaslib.engstop;
 set mylib.engstop;
run;

proc textmine data=mycaslib.amazon;
 doc_id id;
 var reviewbody;
  parse reducef=2 entities=std stoplist=mycaslib.engstop
 outterms=mycaslib.terms outparent=mycaslib.parent
 outconfig=mycaslib.config;
  svd k=10 svdu=mycaslib.svdu outdocpro=mycaslib.docpro
 outtopics=mycaslib.topics;
run;

 The first task (parsing) is specified in the PARSE statement. Parameter “reducef” specifies the minimum
number of times a term needs to appear in the text to be included in the analysis. Parameter “stop”
specifies a list of terms to be excluded from the analysis, such as “the”, “this”, and “that”. Outparent is
the output table that stores the term by document matrix, and Outterms is the output table that stores
the information of terms that are included in the term by document matrix. Outconfig is the output
table that stores configuration information for future scoring.

 Tasks 2 and 3 (dimensionality reduction and topic discovery) are specified in the SVD statement.
Parameter K specifies the desired number of dimensions and number of topics. Parameter SVDU is the
output table that stores the U matrix from SVD calculations, which is needed in future scoring.
Parameter OutDocPro is the output table that stores the new matrix with reduced dimensions.
Parameter OutTopics specifies the output table that stores the topics discovered.

Click the Run shortcut button or press F3 to run Program 3.5. The terms table shown in Output 3.5 stores the
tagging, stemming, and entity recognition results. It also stores the number of times each term appears in the
text data.

Chapter 3: Advanced Data Mining and Machine Learning Procedures 51

Output 3.5: Results from Program 3.5

SQL Queries
The SQL queries in Program 3.6 show examples of stemming, topic discovery, and entity recognition.

Program 3.6: SQL Queries
proc SQL;
select * from mycaslib.terms where term in (‘games’, ‘game’) and role=’Noun’; 

proc SQL outobs=10;
select * from mycaslib.terms where role in (‘Noun’)
 order by numdocs descending; 

proc SQL outobs=10;
select * from mycaslib.terms where attribute=’Entity’
 order by numdocs descending; 

proc print data=mycaslib.docpro (obs=5);
run;

proc print data=mycaslib.topics;
run;

 The first SQL query in Program 3.6 shows an example of stemming. We can see that when the term
“games” is used as a noun, it stems the term “game.” By using stemming, variations of the same parent
term can be grouped together. Stemming helps alleviate the data sparsity problem and also serves as a
mechanism for dimensionality reduction. The results in Output 3.6 include a table that shows the
stemming results for the term “game”. You can get an idea of the general content of a document
collection by examining the terms that appear in the most documents.

 The next SQL query shows the top 10 Noun terms that appear in the reviews. Based on the query
results shown as the second table in Output 3.6, we can tell the reviews are mostly about games and
gaming consoles.

52 Exploring SAS Viya: Data Mining and Machine Learning

 Taking advantage of language features such as parts of speech and entities, you can continue to
enhance your understanding of the nature of the document collection. The last SQL query shows the
top 10 entities that appear in the reviews. Based on the query results shown as the third table in Output
3.6, we can tell if the reviews are mostly about gaming systems and other electronic items.
PROP_MISC in the second column represents a miscellaneous proper noun.

Output 3.6: Results from Program 3.6

Entities are based on complex rules that exploit context to derive additional information about the nature of the
term. As you can see from the Amazon entry in the third table in Output 3.6, the Role has a value of
“Location”. Some of the rules are hardcoded based on common usage, so the location “Amazon” as a region in
South America can get confused with a company called Amazon. The user can usually help correct such
classification errors by supplying synonym tables or custom entity rules. However, this has not been done in
this example.

Representing Data
One of the major challenges with unstructured text data is that most existing statistical methods (such as
random forest and logistic regression) cannot be applied directly. PROC TEXTMINE overcomes this problem
by using a dimensionality reduction technique, Singular Value Decomposition (SVD) to convert unstructured
text data to structured data with a specified number of dimensions.

In our previous PROC TEXTMINE call in Program 3.5, dimensionality was specified to be 10. So in the new
structured representation of the documents, each document is represented by 10 values.

Chapter 3: Advanced Data Mining and Machine Learning Procedures 53

Once unstructured text data is converted to structured data representation, many existing statistical methods can
be applied to perform other tasks, such as prediction and forecasting. The first PROC PRINT statement in
Program 3.7 shows the representation of five documents from the data set created by Program 3.5. This is
displayed as the first table in Output 3.7. Based on the SVD results, PROC TEXTMINE is also able to derive
topics and assign a list of descriptive terms to each topic. The second table in Output 3.7 shows the 10 topics
found by PROC TEXTMINE.

Program 3.7: PROC PRINT of Program 3.5 Output
proc print data=mycaslib.docpro(obs=5);
run;

proc print data=mycaslib.topics;
run;

Output 3.7: Results of Program 3.7

One of the interesting topics in the first row of the second table in Output 3.7 is about Guitar Hero and the
gaming industry. If some of the topics seem confusing or ambiguous, you can often peruse individual
documents to learn how a topic might have been derived. For example, in the second row of the second table,
you can read that “facebook” is a feature for Xbox 360.

PROC TMSCORE
PROC TEXTMINE is used with large training data sets. When you have new documents coming in, you do not
need to re-run all the parsing and SVD computations with PROC TEXTMINE. Instead, you can use PROC
TMSCORE to score new text data. The scoring procedure parses the new document(s) and projects the text data
into the same dimensions using the SVD weights derived from the original training data.

In order to use PROC TMSCORE to generate results consistent with PROC TEXTMINE, you need to provide
the following tables generated by PROC TEXTMINE:

● SVDU table – provides the required information for projection into the same dimensions.

● Config table – provides parameter values for parsing.

● Terms table – provides the terms that should be included in the analysis.

Program 3.8 shows an example of TMSCORE. It uses the same input data layout used for the PROC
TEXTMINE code in Program 3.5, so it will generate the same docpro and parent output tables, as shown in
Output 3.8.

54 Exploring SAS Viya: Data Mining and Machine Learning

Program 3.8: PROC TMSCORE
Proc tmscore data=mycaslib.amazon svdu=mycaslib.svdu
 config=mycaslib.config terms=mycaslib.terms
 svddocpro=mycaslib.score_docpro outparent=mycaslib.score_parent;
 var reviewbody;
 doc_id id;
run;

Output 3.8: Results from Program 3.8

Community Detection
In this section, we will look at how PROC NETWORK, a component of SAS Visual Data Mining and Machine
Learning, can help identify communities that exist within network structured data.

Introduction to Networks
Networks consist of nodes connected in pairs by links, and links can indicate directed (A  B) or undirected
(A — B) connections between nodes. You can think of directed links as permitting one-way connections and
undirected links, two-way. To represent two-way connections with directed links, you use pairs of links, for
example, from A to B (A  B) and from B to A (B  A). Networks contain either directed or undirected links,
not a mix.

Each link typically has a weight assigned to it. The weight designates the significance or magnitude of the flow
across the link. We can describe relationships between individual people, companies, or organizations. The
links could represent phone calls, purchases, legal transactions, and so on. We could be talking about links
between books, research papers, or social media accounts that refer to each other in some way, perhaps
reference citations, or retweets.

PROC NETWORK contains 11 different types of network analysis algorithms that enable you to explore
various aspects of network structure, how nodes group together into cliques or communities, the relative
importance or centrality of individual nodes, how many nodes can be reached from any given starting node, and
so on. Community detection is one of the algorithms available in PROC NETWORK.

Community detection is used with undirected networks. If you want to analyze a directed network, then you
will need to convert directed links into undirected links first. There are many ways to process the link weights
of “A to B and B to A” pairs of directed links during this process. For example, averaging the weights or adding
them together. In community detection, the end result is that each node is assigned to exactly one community.

Chapter 3: Advanced Data Mining and Machine Learning Procedures 55

The communities are detected by examining patterns among the links. Nodes within the same community are
more densely connected than nodes in different communities. The weights on the links factor into these
calculations.

Modularity is the metric used to assess how effectively a set of communities divides a network. It measures
how well community detection reflects the varying density of the weighted links in the network. The
modularity is the weighted fraction of all links that are within any defined community minus the weighted
fraction of links that would be in the same community if the links were randomly distributed among the nodes.

PROC NETWORK
Let’s see what communities we can detect in a data set on collaboration in physics research. The ARXIV
example data set is available from Stanford University at this link: https://snap.stanford.edu/data/ca-
AstroPh.html. In this example, each node in the network is a researcher, and a link represents a collaboration
between two researchers. There are almost 9,400 nodes and just over 24,000 links in this undirected network.

Program 3.9: PROC NETWORK
cas sascas1;

libname mycas cas sessref=’sascas1’;
libname local “/u/sasuser/community/”;

data mycas.arxiv(partition=(from));
 set local.arxiv(rename=(from_node=from to_node=to));
run;

proc network links=mycas.arxiv outnodes=mycas.arxivOutNodes
 outlinks=mycas.arxivOutLinks;
 community; 
run;

title ‘Communities Detected’;
proc sgplot data=mycas.arxivOutNodes;
 vbar community_1;
 xaxis label=’Community’ fitpolicy=thin;
 yaxis label=’Number of Nodes’;
run;

 If we run PROC NETWORK with the default Louvain algorithm, according to the Log, it detects 58
communities with modularity just over 0.81, which is very good.

56 Exploring SAS Viya: Data Mining and Machine Learning

Output 3.9: Results of Program 3.9

The bar chart of the community sizes in Output 3.9 shows that one community has well over 800 nodes.
Another has over 400, and the rest are below 400. We would like to even out the community sizes if we can.

PROC NETWORK provides two ways to reduce unusually large communities. The first option runs the
community detection algorithm recursively, processing the largest communities repeatedly. The second option
is supplying a list of resolution values. In this example, the second option works best, as shown in Program
3.10, which modifies the code from Program 3.9.

Program 3.10: Modified PROC NETWORK Code
proc network links=mycas.arxiv outnodes=mycas.arxivOutNodes321
 outlinks=mycas.arxivOutLinks;
 community resolutionlist= 3 2 1; 
run;

title ‘Communities Detected with Resolution=1’;
proc sgplot data=mycas.arxivOutNodes321;
 vbar community_3;
 xaxis label=’Community’ fitpolicy=thin;
 yaxis label=’Number of Nodes’;
run;

title ‘Communities Detected with Resolution=2’;
proc sgplot data=mycas.arxivOutNodes321;
 vbar community_2;
 xaxis label=’Community’ fitpolicy=thin;
 yaxis label=’Number of Nodes’;
run;

title ‘Communities Detected with Resolution=3’;
proc sgplot data=mycas.arxivOutNodes321;
 vbar community_1;
 xaxis label=’Community’ fitpolicy=thin;
 yaxis label=’Number of Nodes’;
run;

Chapter 3: Advanced Data Mining and Machine Learning Procedures 57

 The resolution level, which is 1 by default, influences the likelihood that two communities will be
merged to form a larger community. Both of PROC NETWORK’s algorithms form communities from
the bottom up by starting with communities of 1 node each and then iteratively merging nearby
communities. A higher resolution value makes large communities less likely and smaller communities
more likely. So in addition to the default resolution of 1, we will also run PROC NETWORK with
resolution values of 2 and 3. PROC NETWORK runs with the highest resolution first and then speeds
up its analysis by using those results as a starting point for the run with the next lowest resolution.

Log 3.10: Log for Program 3.10

According to the Log, with resolution 1, we get 57 communities. That is slightly different from the previous run
because PROC NETWORK ran first with resolution 3, then 2, and then 1, instead of starting with 1. For
resolution 2, we get 95 communities and a slightly lower modularity. With resolution 3, there are 120
communities, and there was a further slight drop in modularity.

Let’s look at community size in Output 3.10.

Output 3.10: Results of Program 3.10

58 Exploring SAS Viya: Data Mining and Machine Learning

For resolution 1, much the same as before, 2 communities are dominant, with the largest near 800 in size. For
resolution 2, we see more uniformity, and a peak just above 400. For resolution 3, the peak drops below 400,
and there is even more uniformity among community sizes. This warrants further investigation. But with only a
slight drop in modularity so far, things are moving in a good direction.

PROC NETWORK provides many more forms of network analysis, all of which complement the other
capabilities in SAS Visual Data Mining and Machine Learning.

Chapter 3: Advanced Data Mining and Machine Learning Procedures 59

Resources
This chapter is based on the “Data Mining and Machine Learning on SAS Viya” videos in SAS® Viya®
Enablement, a free course available from SAS Education.

You might find the following documentation and resources helpful as you learn more about programming in
SAS Visual Data Mining and Machine Learning:

● SAS® Viya® 3.2 Programming: Data Mining and Machine Learning Procedures

● Data Mining and Machine Learning Procedures: The FACTMAC Procedure

● Data Mining and Machine Learning Procedures: The TEXTMINE Procedure

● Data Mining and Machine Learning Procedures: The TMSCORE Procedure

● SAS® Viya® 3.2 Programming: Data Mining and Machine Learning: The NETWORK Procedure

● Link to download MovieLens data set: http://grouplens.org/datasets/movielens

● Link to download Amazon review data set: https://snap.stanford.edu/data/web-Amazon.html

● Link to download ARXIV data set: https://snap.stanford.edu/data/ca-AstroPh.html

https://vle.sas.com/course/view.php?id=733
https://vle.sas.com/course/view.php?id=733
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.11&docsetId=casml&docsetTarget=titlepage.htm&locale=en
https://go.documentation.sas.com/?docsetId=casml&docsetTarget=viyaml_factmac_toc.htm&docsetVersion=8.1&locale=en
https://go.documentation.sas.com/?docsetId=casml&docsetVersion=8.1&docsetTarget=viyaml_textmine_syntax01.htm&locale=en
https://go.documentation.sas.com/?docsetId=casml&docsetVersion=8.1&docsetTarget=viyaml_textmine_syntax01.htm&locale=en
https://go.documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.11&docsetId=casmlnetwork&docsetTarget=titlepage.htm&locale=en

60 Exploring SAS Viya: Data Mining and Machine Learning

Chapter 4: SAS Visual Data Mining and Machine
Learning in Model Studio
Introduction ..61

Pipelines .. 61
Accessing Model Studio .. 61

Impute Missing Values ..63
Assign a Target Variable .. 64
Manage Variables ... 65
Impute Missing Values Method ... 67
Set Sampling Criteria.. 68
Build Pipeline .. 69
Results ... 71

Feature Engineering ...71
Data Exploration ... 72
Transformation ... 73
Feature Extraction .. 75

Variable Selection ...78
Build Pipeline .. 78
Results ... 79

Gradient Boosting Model ..80
Train Model ... 80
Autotune Model ... 84

Manage Variables ...87
Add Custom Code ...88
Save Data for Use in Other Applications ...93

Build Pipeline .. 93
Results ... 94
Save Data Node .. 95
SAS Visual Analytics ... 96

Resources ...97

Introduction
Model Studio is a central, web-based platform that includes a suite of integrated data mining tools. The data
mining tools that appear in Model Studio are determined by your site's licensing agreement. Model Studio can
be used with SAS Visual Data Mining and Machine Learning, SAS Visual Forecasting, or SAS Visual Text
Analytics.

Pipelines
SAS Visual Data Mining and Machine Learning facilitates a process-workflow approach to analytics. This
approach includes pipelines. Pipelines are structured flows of analytic actions. Pipelines offer repeatability and
can serve as best-practice templates for building large-scale projects. This functionality is provided in the
Model Studio application as part of SAS Viya.

Accessing Model Studio
Model Studio is accessed by selecting Build Models from the SAS home page, as shown in Figure 4.1.

62 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.1: Build Models Tile

You will then be taken to the Model Studio home page (see Figure 4.2) where you can open an existing project
or start a new project.

Figure 4.2: Model Studio Home Page

Once you have started or opened a project and selected your data, new pipelines can be created from scratch or
by starting with an existing template. A number of templates are provided with the product or you can create
your own. The default Nodes menu shown in the left pane of Figure 4.3 includes preprocessing tools for data
exploration, feature extraction, transformation, and selection. Supervised learning tools include a selection of
algorithms for building classification and regression models. Post-modeling capabilities, such as ensemble
modeling, are available, as well as other nodes for exploring your data, saving results, or inserting custom code
into your pipeline.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 63

Figure 4.3: Nodes Menu

New nodes can be added to a pipeline by dragging and dropping them into the Pipeline window to create a
custom pipeline.

Champion models from all pipelines that you have run are listed on the Pipeline Comparison tab. You can
select and compare any models that have been created. Then, you can proceed to the next steps in the analytics
life cycle by registering the champion model to SAS Model Manager or publishing it to a database.

All nodes and pipeline templates can be viewed and managed via the Exchange, which is on the right side of
the home screen when you open Model Studio. (See Figure 4.2.)

Now that you are familiar with the basics of Model Studio, let’s learn how to perform specific actions.

Impute Missing Values
In this section, we will learn how to impute missing values in Model Studio. We will use the banking data set
VS_BankData. This data set identifies customers that have purchased a banking product. The target will be
whether the customer purchased a particular project. The data consists of 1.1 million rows and 23 columns. It is
available to download from GitHub from https://github.com/sassoftware/sas-viya-machine-
learning/tree/master/data/bank.

We will start on the Model Studio home page. The first step is to create a new project. Click the New Project
button in the center of the screen, as shown in Figure 4.4.

https://github.com/sassoftware/sas-viya-machine-learning/tree/master/data/bank
https://github.com/sassoftware/sas-viya-machine-learning/tree/master/data/bank

64 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.4: Model Studio Home Page

The New Project window appears, as shown in Figure 4.5. Let’s call this project My Analysis. Assign the Type
as Data Mining and Machine Learning. For the Data Source, click Browse and navigate to VS_BankData (you
should have already loaded your data source into CAS). We are going to build a predictive model; therefore, we
will keep the default settings checked for Partition data and Event-based sampling. Click Save to create the
project.

Figure 4.5: New Project Window

Assign a Target Variable
Model Studio populates the variables table from the specified data source, as shown in Figure 4.6. Here, you
must assign a target variable. Our target variable is b_tgt. Under the Role column, right-click the value for the
b_tgt variable and select Assign target from the drop-down menu.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 65

Figure 4.6: Data Tab

The Assign Target window will appear. Select b_tgt from the variable name list, then click Save. In the Role
column of b_tgt, it should now say TARGET.

Manage Variables
The Data tab shows all the variables that exist in the data set used by this project, along with metadata for each
variable. The metadata includes the variable type, level, and role, which control how the variable should be
used in your project. We can also see descriptive statistics and information about missing values and the
number of unique values.

There are many columns that are not shown by default. You can configure which columns to show using the
Options button in the upper right of the Data table, as shown outlined in a box in Figure 4.7.

Figure 4.7: Data Tab – Options Button

66 Exploring SAS Viya: Data Mining and Machine Learning

Click the Options button, and then select Manage columns from the menu. The Manage Columns window
will appear, showing the hidden columns and the displayed columns. You can use this window to configure the
columns in the Data tab.

For example, if we want to show the Transform column, click Transform and then add Transform by clicking
on the single arrow in the center of the window. Then, you can move it up so that it appears just after Comment,
by using the up and down arrows, as show in Figure 4.8.

Figure 4.8: Manage Columns Window

Let’s hide the columns Label, Order, and Comment. Select these columns and then click the single arrow in the
center to move them into the hidden columns section. Click OK to exit the window.

In the Data tab, you can also select variables and edit the metadata associated with them to control how they
should be used in the pipelines in this project. For example, you might decide that the variable DEMOG_AGE
should not be used as a model input, so you can set its role to Rejected. Right-click on the variable name, then
select Edit Variable from the menu. The Edit Variable window appears, as shown in Figure 4.9.

Figure 4.9: Edit Variable Window

In this window, you can change the role if you would like. In addition, you might know that certain variable
needs a transformation applied to it, whether it’s to standardize the values, adjust the distribution, or to bin
values. You can also define a specific method for imputing missing variables for this individual variable, which

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 67

will be discussed in the next section. You can enter lower and upper limits to use for filtering or replacing
values. Click Cancel to exit the window.

Note that none of these settings are applied to the data immediately. Rather, we are simply defining metadata,
or information about the variables, to be used by nodes in your pipeline. This metadata is used by the nodes to
perform preprocessing actions on the data. By defining metadata on the Data tab, you avoid the need to define it
within all of your pipelines.

If you want the metadata for a certain variable to be applied to variables with this same name and type in future
projects, you can add this variable to a global metadata registry. Right-click on the variable name and select
Add to global metadata from the menu. Global metadata can be managed in the toolbox, which is accessed
from the Model Studio project home screen. Click the return button in the upper left corner of the screen to
return to the projects home page. In the Toolbox panel on the right, click the View My Tools button. This
opens the Toolbox window. In the upper right, click the Global Metadata button. Notice that the metadata for
demog_age has been added to the global metadata list, as shown in Figure 4.10.

Figure 4.10: Global Metadata List

Click the return button and open the My Analysis project again to view the Data tab.

Impute Missing Values Method
The variables table provides general summary statistics. One statistic is the percentage of missing values for
each variable. Scroll all the way to the right to see the Missing column. Notice that approximately 25% of the
values for Customer Age (demog_age) and approximately 21% of the values for average sales (rfm3) in the
past three years are missing.

To impute the missing values for Customer Age, right-click the row and select Edit variable from the drop-
down menu. In the Edit Variable window, under Impute, select Median, as shown in Figure 4.11. Click Save to
save the changes.

68 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.11: Edit Variable Window

Setting the imputation method at this stage in the process does not implement the imputation. Instead, it
specifies the method to be used when the Imputation node is run. The purpose of setting the imputation method
at this stage in the process is to allow the use of different imputations for different input variables.

To impute the missing values for average sales in the past three years (rfm3), right-click the row and select Edit
variable from the drop-down menu. Under the Impute option in the Edit Variable window, this time select
Mean as the imputation method. Notice that in addition to different imputations, you could also specify
different transformation methods for each variable under the Transformation option. Click Save to save the
changes in the window.

Let’s also change the level of two count variables that were designated as Nominal to the Interval measurement
level. Right-click the Level column for the rfm5 variable. Select Edit variable from the drop-down menu. In
the Edit Variable window, change the Level option from Nominal to Interval. Click Save. Repeat this process
for the rfm7 variable.

Set Sampling Criteria
When we observe the Mean column for the target variable (b_tgt), notice that the event rate is approximately
20%. Given that only 20% of the observations experienced the event, we are going to take a balanced sample of
the target for data efficiency purposes.

To set the sampling criteria, select the project Settings. Click on your user name in the upper right corner and
click Settings from the drop-down menu. In the Settings window, we want to view the partition allocations. To
do that, select Partition Data, as shown in Figure 4.12. The window shows that we are going to allocate 60%
of our data to the Training partition, 30% to Validation, and 10% to Test.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 69

Figure 4.12: Settings Window – Partition Data

To set the event-based sampling, select the Event-Based Sampling option, as shown in Figure 4.13. We are
going to keep the defaults of 50% Events and 50% Non-Events. Note that 100% of the events will be selected.
Close the Settings window.

Figure 4.13: Settings Window – Event-Based Sampling

Build Pipeline
Now we are ready to begin building our pipeline. To get to the pipeline, click the Pipelines tab near the top of
the screen. Notice that the data are already loaded in the pipeline, as shown in Figure 4.14.

70 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.14: Pipeline Tab

Select Nodes on the farthest left panel. We will select Nodes to customize the features of the pipeline. Given
that we know the data have missing values, we will select the Imputation node under the Data Mining
Preprocessing group.

There are several ways to add a node to the pipeline. In this instance, we will select the Imputation node and
drag it on top of the data source in the Pipeline window. Notice that the Imputation node options appear to the
right, as shown in Figure 4.15.

Figure 4.15: Imputation Node

We will leave the Missing percentage cutoff at 50%. The box for Reject original variables is selected by
default. We will select the box for the Summary statistics option, which generates summary statistics. There
are imputation methods for both class and interval variables. Given that we already selected the imputation
methods in the variables table, we will select None for both class and interval variables under default method.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 71

If we had not selected the imputation method in the variables table, then we would select them in the
Imputation node, which allows only one imputation method for the class variables and only one for the interval
variables. However, the Imputation node does enable you to create Single indicator and Unique indicator
variables to model input missingness as it relates to the target. This functionality is not available in the variables
table. The Single indicator option creates a variable that counts the number of inputs that were imputed. The
Unique indicator option creates a separate variable for each input being imputed. Select both check boxes,
then set the Indicator subject property to Missing variables and the Indicator role property to Input.

Now we are ready to run the analysis. Right-click the Imputation node in the pipeline and select Run from the
drop-down menu. When the analysis is finished, right-click the Imputation node again and select Results from
the drop-down menu.

Results
The Results load in a new window, as shown in Figure 4.16. Click on the expand button in the upper right
corner of any table to view it in the full window.

Figure 4.16: Imputation Results

The Input Variable Statistics table shows the number of missing values and the percent missing for the
variables. The demog_age and rfm3 variables were the only variables that were imputed. They are imputable
because the percent missing was less than 50%.

The Imputation Summary for Interval Variables table shows the new imputed variables, the imputed method
used on each variable, the indicator variables that were created, and the value the missing value was replaced
with. The Score Code window shows the score code that was generated to impute the missing values. The
Properties table shows information such as the random seed value and whether the missing indicator variables
were created. Finally, scroll down to see the Output table, which shows descriptive statistics of the input
variables.

Feature Engineering
In this section, we will learn how to use Model Studio to transform your variables and create new features. To
begin, on the Home Page, open the My Analysis project that we created in the previous section. Data has
already been uploaded into the project.

72 Exploring SAS Viya: Data Mining and Machine Learning

Select the Pipelines tab to go to the pipeline. We can see that data has been uploaded and that imputations have
already been applied. Select Nodes from the far left panel and then select the Data Exploration node under the
Miscellaneous group.

Data Exploration

Build Pipeline
There are several ways to add a node to the pipeline. In this instance, select the Data Exploration node and
drag it on to the Imputation node. Notice that the Data Exploration options appear on the right, as shown in
Figure 4.17.

Figure 4.17: Data Exploration Node

To run the node, right-click the Data Exploration node in the pipeline and then select Run from the drop-
down menu. When the node is finished running, right-click again and select Results from the drop-down menu.

Results
The Results window is populated with graphs that describe variable distributions and tables that provide
summary statistics, as shown in Figure 4.18.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 73

Figure 4.18: Data Exploration Results

The Relative Importance bar chart provides an indication of important predictors. When you hover your cursor
over the tallest bar, you can see that RMF5 is the most important predictor.

The Class Variables Summaries chart provides the cardinality of categorical variables by default. It appears that
CAT_INPUT2 has the largest number of distinct class values. We can also use the Class Variables Summaries
chart to explore mode percentages. In the drop-down menu in the upper right corner of the chart, select Mode
Percent to view a bar chart of the mode percentages.

Scroll down to the Interval Variable Summaries graph to observe the deviation from normality. The variables
RFM1, IMP_RFM3, and RFM4 appear to have a high kurtosis and skewness.

Transformation
Now we are going to apply a log transformation to our input variables. Return to the Pipeline tab.

Build Pipeline
Select the Transformations node under the Data Mining Preprocessing group. Click and drag the
Transformations node on to the Imputation node to create a link between the two nodes, as shown in Figure
4.19.

74 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.19: Transformation Node

If we wanted to apply a different transformation to each variable, we would have to assign the transformations
in the variables table. You can do this by editing a variable on the Data tab before you have run a pipeline that
includes a Transformations node, or from a Manage Variables node in your pipeline before the Transformations
node.

Notice that the Transformations node options appear to the right of the pipeline. Change the Default interval
inputs method property from None to Log. The original variables will be rejected as indicated by the selected
check box for the property Reject original variables.

Right-click the Transformations node and select Run. When the Transformations node is finished running,
right-click on the node again and select Results to see the results.

Results
The Results window contains information about the log transformations, summary statistics, and score code, as
shown in Figure 4.20.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 75

Figure 4.20: Transformation Results

The Transformed Variables Summary table provides detailed information about the transformation, including
the formula. Notice the offset applied to each log transformation. The imputed demographic age variable has an
offset of 2, implying that the minimum value for age is -1. The oddity is confirmed when we examine the Input
Variable Statistics table. This is an indication of a possible data issue.

Close the Results window to return to the pipeline.

Feature Extraction
We are now going to create two new sets of features. The first set of features will be extracted using singular
value decomposition. The second set of features will be extracted using an auto encoder neural network.

Build Pipeline
Select Nodes, then select the Feature Extraction node under the Data Mining and Preprocessing group.
Click and drag the Feature Extraction node on top of the Transformations node to create a link between the two
nodes, as shown in Figure 4.21.

76 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.21: Feature Extraction Node

In the right-hand pane, we can see the options for the Feature Extraction node. Let’s change the Feature
extraction method from Automatic to Singular value decomposition. Notice that the original variables will be
rejected as indicated by the selected check box for the property Reject original input variables.

Under the Additional RCPA and SVD options, use the Maximum rank property to choose the maximum
number of latent variables to pass forward in the pipeline. We will leave the property set to 100. The
Component prefix property sets the prefix for the latent variables created by the singular value decomposition
transformation.

We need to add a second Feature Extraction node. Click and drag the Feature Extraction node on top of the
existing Feature Extraction node in the pipeline to create a link between the two nodes, as shown in Figure
4.22.

Figure 4.22: Second Feature Extraction Node

This time, we will use the Feature Extraction node to create encoders. Therefore, in the Feature Extraction
options, change the Feature extraction method from Automatic to Autoencoder. This time, we will not reject
the incoming variables. Deselect the check box for the Reject original input variables property. Under the

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 77

Autoencoder Options section, we will leave the Input standardization method set to Range. The Feature
prefix property specifies the prefix used for the encoders. We will leave this property set to Hidden. The
Number of hidden layers property specifies the number of hidden layers to use. We will leave this property set
to 3. We will change the number of hidden neurons in the Middle hidden layer property from 10 to 25. This
means that as many as 25 encoders will be passed forward in the pipeline. Next, change the Hidden layer
activation function from the hyperbolic tangent denoted as Tanh to the rectified linear activation function
denoted as ReLU.

Under the Stochastic Gradient Decent Optimization (SGD) options, change the Minibatch size property from
10 to 100. This means the weight vector be updated each iteration using 100 observations sampled from the
data. Assign the momentum rate to be .9 to ensure a smoother progression to the error minimum.

Lastly, we need to add a Manage Variables node to the pipeline that we can use to reject any encoders that
have a unary measurement level. Select Nodes, then select the Manage Variables node under the Data Mining
Preprocessing group. Drag it on to the last Feature Extraction node in the pipeline, as shown in Figure 4.23.

Figure 4.23: Manage Variables Node

Right-click the Manage Variables node in the pipeline and select Run. When the node is finished running,
right-click it again and select Results.

Results
The Manage Variables results open in a new window, as shown in Figure 4.24.

78 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.24: Manage Variables Results

Notice that the variables created by the singular value decomposition method are designated with the prefix
COMP in the Incoming Variables table. Scroll down in the Incoming Variables table to see that the encoders
that were created have the prefix Hidden. Close the Results window.

Now you have seen how to transform your variables and create new features in Model Studio.

Variable Selection
In this section, we will learn how to use Model Studio to select variables for a predictive analysis. To begin, on
the Home Page, open the My Analysis project that we created in the previous sections. Data has already been
uploaded into the project.

Select the Pipelines tab to go to the pipeline. We can see that data has been uploaded, imputations have already
been applied, and the data has been enriched with additional features. To select useful inputs, we are going to
add a Variable Selection node.

Build Pipeline
Select Nodes from the far-left panel. Then choose the Variable Selection node under the Data Mining
Preprocessing group. Click and drag the Variable Selection node on top of the Manage Variables node to
create a link between the two nodes, as shown in Figure 4.25.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 79

Figure 4.25: Variable Selection Node

Notice in the Variable Selection panel, there are six variable selection methods that be used individually or
combined. Given that we are going to combine multiple methods, we need to specify a rule that will determine
the final selection of inputs. For example, the default rule as given under the Combination criterion is to pass
forward any input that was chosen by at least one method. We are going to use three methods:

● Unsupervised Selection

● Fast Supervised Selection

● Forest Selection

First, switch on the Unsupervised Selection property. Expand the Unsupervised Selection section and change
the Selection process property from Perform sequential selection, which specifies to use Unsupervised
Selection before Supervised Selection, to Combine with supervised method(s). The Combine with supervised
method(s) property combines unsupervised selection with supervised selection methods via the combination
criterion.

Fast Supervised Selection is selected by default. Therefore, no changes are needed to that property. The fast
supervised selection identifies a set of variables that jointly explain the maximum amount of variance contained
in the target.

Next, switch on Forest Selection. Notice when you expand the section that the Relative importance cutoff
property is set to .25. This property specifies the relative importance cutoff used to determine whether an input
is rejected. Any input with a relative importance below this cutoff is rejected. Let’s reduce the threshold from
.25 to .1.

Now we are ready to run the Variable Selection Node. Right-click the node and select Run from the drop-down
menu. When the node is finished running, right-click it again and select Results.

Results
In the Variable Selection results, each variable selection generates a table describing the respective results, as
shown in Figure 4.26.

80 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.26: Variable Selection Results

The Variable Selection Combination Summary table displays a summary of the variables selected by all of the
specified methods. We can sort by the Unsupervised column by clicking on the column header. We can see that
the Unsupervised method selected a number of variables. We can also sort by the Fast and Forest columns to
examine the inputs chosen for each method. The Input column shows the number of methods that chose an
input. Sorting the Input column from largest to smallest shows that feature COMP13 was chosen by all three
methods! The last column in the table, labeled Output Role, indicates which variables are going to be passed
forward as inputs in the pipeline. Sorting by this column shows the variables that were selected and will be
passed forward in the pipeline.

Since we used the Combination criterion Selected by at least 1, a variable would have to be rejected by all
methods to have its output role set to Rejected. If one method flags a variable as an input in our example, it will
be kept.

Gradient Boosting Model
In this section, you will learn how to build a gradient boosting model in Model Studio and use the autotune
feature to build a better gradient boosting model. To begin, let’s start in the Model Studio home page. Double-
click on the existing project called My Analysis that was created in a previous section. Recall that the data set
used for this project is called VS_BANKDATA and it identifies customers who have purchased a banking
product. The binary target variable is b_tgt.

Train Model

Build Pipeline
Click the Pipelines tab to view the pipeline that was created in the previous sections. In preparation for model
building, imputation of missing values, feature extraction, and variable selection have already been performed.

Click Nodes in the panel on the left. Expand the Supervised Learning group. Drag and drop the Logistic
Regression node onto the last node in the pipeline, the Variable Selection node. Notice that in addition to the
Logistic Regression node, a Model Comparison node also appears at the end of the pipeline by default, as
shown in Figure 4.27. All modeling nodes that you add to the pipeline will automatically feed results into this
node for easy comparison of models.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 81

Figure 4.27: Logistic Regression Node

Next, let’s build a gradient boosting model, which is based on a more sophisticated machine learning algorithm
compared to the logistic regression model. Then we can compare the two models.

To create a gradient boosting model, return to the Nodes panel in the left pane and choose Gradient Boosting
from the Supervised Learning group. Drag and drop the Gradient Boosting node on top of the Variable
Selection node, as shown in Figure 4.28.

Figure 4.28: Gradient Boosting Node

Notice that when the Gradient Boosting node is added, it’s automatically connected to the Model Comparison
node. Click the Gradient Boosting node. The Gradient Boosting options panel appears to the right. Some of the
general properties define:

● Number of trees – specifies the number of iterations in the boosting series. The default is 100.

● Learning rate – specifies the step size for gradient descent optimization. The default is 0.1.

82 Exploring SAS Viya: Data Mining and Machine Learning

● Subsample rate – specifies the proportion of observations used to train a single tree. The default is
0.5.

● L1 and L2 regularization terms – specify the L1 and L2 regularization parameters, respectively. The
default for each is 0. Regularization is a process used during model training to avoid overfitting the
model to the training data. The L1 term is also known as the Lasso regularization. It penalizes the
absolute value of the weights. Analogously, the L2 term is also known as the Ridge regularization, and
it penalizes the square value of the weights.

● Seed – used for generating random numbers. The default is 12345. Note that specifying the Seed does
not guarantee repeatability when the training is performed on data distributed among a grid of worker
nodes.

Let’s run the model with the default settings. This means that 100 trees will be used in the series. Click the Run
shortcut button () in the box in the upper right corner of the Pipeline window. When the run is complete,
right-click the Gradient Boosting node, then select Results from the drop-down menu.

Results
In the Results window (Figure 4.29), we see an error plot, a table showing variable importance, plots for lift and
ROC, a table of fit statistics, and output from the GRADBOOST procedure.

Figure 4.29: Gradient Boosting Results

The Fit Statistics table shows that Average Squared Error for the final model on the test data set is 0.1844. Let’s
see if we can make a few changes to the node properties and beat the default gradient boosting model. Close the
Results window to return to the pipeline.

Modify Node Properties
In the Gradient Boosting properties panel, change the Number of trees to 200, and increase the Learning rate
to 0.2. We will re-run the pipeline from the Model Comparison node. Right-click the Model Comparison node
and select Run. When the run is complete, right-click the Gradient Boosting node and select Results.

Modified Results
Scroll down in the results to see the Fit Statistics table. As shown in Figure 4.30, the changes that we made did
improve the performance of the model. Average Squared Error on the test data set dropped to 0.1692. Close the
Results window.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 83

Figure 4.30: Modified Gradient Boosting Results

Model Comparison
Let’s look at which model has been selected as the champion. Right-click the Model Comparison node and
select Results. The results of the Model Comparison node in Figure 4.31 show that the Gradient Boosting
model is selected as the champion. Close the Results window to return to the pipeline.

Figure 4.31: Model Comparison Results

When you are satisfied with your model, you can download the score code to use for scoring future data. Right-
click the Gradient Boosting node and select Download score code from the menu. The score code downloads
as a ZIP file for future use.

You can also save a node to reuse the configuration in other pipelines. Right-click the Gradient Boosting node.
Notice that you have the option to Save as… in the menu.

84 Exploring SAS Viya: Data Mining and Machine Learning

Pipeline Comparison Tab
Click the Pipeline Comparison tab at the top of the screen. The best (or champion) model from your pipeline
will show up as a champion on the Pipeline Comparisons tab, as shown in Figure 4.32.

Figure 4.32: Pipeline Comparison Tab

Click the Pipeline tab to return to the pipeline. If you want to include a non-champion model on the Pipeline
Comparison tab, you can add a challenger model for the model that you want to add. Right-click the model
node on the pipeline and select Add challenger model from the menu. When you return to the Pipeline
Comparison tab, you can see that the other model has been added.

Autotune Model
Click the Pipelines tab to view the pipeline that was created in the previous section. Let’s focus just on the
Gradient Boosting model. Right-click on the Logistic Regression node and select Delete from the menu to
remove it from the pipeline.

Autotune Options
Click the Gradient Boosting node. Notice in the Gradient Boosting panel on the right that toward the bottom
of the panel there is an option called Perform Autotuning. Turn this property on to activate a search strategy
that will try many different combinations of option values to attempt to find a better model. Note that when you
select the Perform Autotuning feature, new properties become visible and many of the original properties for
the node become inactive because they are controlled by the autotuning process.

Notice in Figure 4.33 that the autotune feature will try out a range of values for several of the gradient boosting
properties. Autotuning can be turned on or off for each individual property. By default, it is turned on for all
properties.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 85

Figure 4.33: Gradient Boosting Panel – Perform Autotuning Option

All properties that are autotuned have an initial starting value and a range within which to search. The starting
values and the From and To values can be changed for these properties.

The L1 and L2 Regularization terms specify L1 and L2 Regularization parameters. The L1 and L2 terms were
defined in the previous section. The Learning Rate specifies the step size for gradient descent optimization. The
Number of Inputs per Split determines the number of input variables randomly sampled to use per split. The
Number of Iterations determines the number of trees in the boosting series. The Subsample Rate determines the
proportion of training observations to train a tree with.

In addition to these properties, the autotuning process has a number of Search Options and General Options that
can be set. The Search Options enable you to specify the search method and any options associated with the
selected search method. The default search method uses a genetic algorithm optimization method to
intelligently search for the best combination of hyperparameter values. This method and the Bayesian method
evaluate numerous candidate models over multiple iterations. Thus, you can specify the number of evaluations
in each iteration, the maximum number of iterations, and the maximum number of evaluations. The Latin
hypercube sample and Random methods enable you to specify the sample size.

The General Options specify the general properties for autotuning, regardless of the search method used.
Because autotuning works by evaluating each candidate model using validation data, you can specify whether
to use partitioning (along with the corresponding validation data proportion), or cross validation (along with the
number of folds). You can specify the objective function to use for evaluating models for either nominal or
interval targets, and the maximum time that you want the autotuning to run. Notice that for class targets, the
default objective function is Misclassification rate. This means that for the VS_BANKDATA data set with the
binary target b_tgt, the resulting gradient boosting model is the one with the minimum Misclassification rate on
the validation data set. We will leave all properties for autotuning turned on and set at their default values.

Keep in mind that while performing autotuning can substantially increase the run time because it’s training
many candidate models, the autotuning process will attempt to train as many in parallel as your environment
will allow.

To run the Pipeline, click the Run shortcut button (). When the run is complete, right-click the Gradient
Boosting node and then select Results from the menu.

86 Exploring SAS Viya: Data Mining and Machine Learning

Results
The results shown in Figure 4.34 include many fit statistics and charts to describe the best model found by
autotuning including an error plot, a table of variable importance, plots for lift and ROC, a fit statistics table,
and output from the GRADBOOST procedure.

Figure 4.34: Gradient Boosting Results

The Fit Statistics table shows that the final model had an Average Squared Error value of 0.1669 on the test
data set. Recall, however, that by default, misclassification rate is used to select the final model.

The Autotune Best Configuration table shows the resulting values of properties that were autotuned. The table
shows that the best configuration came from evaluation 39, which used 99 trees in the ensemble and where a
random sample of 21 input variables was tried at each split.

The Autotune Results table displays the top 10 models found by the autotuning process, enabling you to
consider tradeoffs among models of varying complexity with similar accuracy. Recall that misclassification
was used to determine the optimal model.

If you want to see the entire history of all candidate models considered in the autotuning process, you can
expand the window showing the ODS output results for the GRADBOOST procedure and scroll down to see
the Tuner History table shown in Figure 4.35.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 87

Figure 4.35: Tuner History Table

Manage Variables
Earlier in this chapter, you learned how to manage variables by using the Edit Variable feature in the Data tab
to edit a variable’s metadata. In cases where you want to use different inputs for some models, or apply custom
metadata that’s different from what is defined on the Data tab, you can use the Manage Variables node to
modify the variable metadata that will be used for subsequent nodes in the pipeline.

In any existing pipeline, click Nodes in the left panel. Under the Data Mining Preprocessing group, select the
Manage Variables node. Drag it between the nodes where you want to place it. In the example shown in
Figure 4.36, we will drag it between the Imputation and Transformation nodes.

Figure 4.36: Manage Variables Node

88 Exploring SAS Viya: Data Mining and Machine Learning

It’s important to note that you must first execute the Manage Variables node after you insert it so that the node
can import the existing variables and their metadata at that point in the pipeline, enabling you to make
modifications to their current definition.

Right-click the Manage Variables node and select Run. After the node has finished running, right-click it
again and select Manage Variables from the menu. Now you can bring up the editor (see Figure 4.37) to
modify the variable metadata to be used for the rest of this branch of the pipeline.

Figure 4.37: Manage Variables Window

Note that just as with the metadata defined on the Data tab, any variable metadata defined in the Manage
Variables node will override the settings in subsequent preprocessing nodes. Close the window to return to the
pipeline.

You can insert multiple Manage Variables nodes in different branches of your pipeline to affect the variables
used in each branch separately. Or, you can build different pipelines that use different sets of variables and
variable metadata for the entire pipeline.

To start a new pipeline from inside the Pipelines tab, click the + sign next to the last existing pipeline to open a
new pipeline. Name your new pipeline using the New Pipeline window. Click Save. Because the Data tab does
not allow editing variables after a pipeline is executed (to ensure consistent results), it’s a good practice to
insert a Manage Variables node at the beginning of new pipelines immediately after the Data node in case you
want to edit the metadata later.

As you can see, by defining variable metadata for the entire project on the Data tab and modifying the variable
metadata within pipelines using the Manage Variables node, you have ultimate flexibility in building automated
machine learning pipelines.

Add Custom Code
In this section, you will learn how to incorporate custom SAS code into your projects in Model Studio. For this
example, we will be using a pipeline that has already been constructed in a project titled “Custom Code.” The
pipeline shown in Figure 4.38 builds two different predictive models using nodes that are available in the
Supervised Learning group category.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 89

Figure 4.38: Example Pipeline

We want to compare these models against a model that’s not supported by any of these existing supervised
learning. To do this, we can use the Code node to write SAS code that will be executed as part of the pipeline.

The Code node can be found in the Miscellaneous category. Drag and drop the Code node onto the Data node
to add it to the pipeline. Notice that it is a different color than the Supervised Learning nodes and is separated
from them. By default, a Code node is considered to be a preprocessing node because you could write any SAS
code to execute it. To indicate that this node produces a model, right-click the node and in the menu select
Move  Supervised Learning. Notice that the appearance of the Code node changes to match the other
supervised learning nodes and is automatically connected to the Model Comparison node, as shown in Figure
4.39.

Figure 4.39: Modified Pipeline

We are ready to enter the code for this node. Right-click the node and select Open from the menu to open the
editor. The Code Editor provides an area for composing your code and includes helpful features such as syntax
coloring, code insight prompting to present supported options, and autocomplete. It also provides a list of

90 Exploring SAS Viya: Data Mining and Machine Learning

macros and macro variables in the left panel to give you access to various data tables, variable metadata, and
other information about the project and pipeline that might be useful in your program.

In this example, we will use an existing procedure, PROC ADAPTIVREG, to build an adaptive regression
spline model to compare with the others. You can enter the code directly or paste it in from an external source,
as shown in Figure 4.40.

Figure 4.40: Code Editor – PROC ADAPTIVREG

In line 5 of the code shown in Figure 4.40, we use the macro variable dm_data to reference the training data
passed into the node. Notice in lines 6 and 7 of the code that the available macros were used to insert lists of
variables based on roles and levels. In line 9, we output the predictions to a “predictions” table in the project
caslib.

The built-in model assessment mechanism in Model Studio requires a predicted probability column for each
target event. However, PROC ADAPTIVREG provide the predictions only for a specified event level, so in line
27 we calculate the non-event probability and add it to the scored data table.

We also want to use this table in a downstream node in our pipeline. Because each node runs its own CAS
session, we need to promote the table so that the downstream node can access it (line 25) and delete any table
of the same name that already exists (lines 20–23).

Finally, in lines 30 and 31, we print 40 observations from the resulting table as a test. Click Save in the upper
right corner of the window to save your code before clicking the Close button to close the Code Editor.

Back in the pipeline, let’s rename the Code node. Right-click the node and chose Rename… from the menu.
Type in the name Adaptive Regression Spline so that its purpose is more obvious.

We also want to see a graphical representation of the model predictions from this node. We can do this by using
a dimension reduction technique and some custom code. Add another Code node branching off the Adaptive
Regression Spline node. Click the Code node in the Miscellaneous group, then drag and drop it on top of the
Adaptive Regression Spline Node. Right-click the new Code node and rename it Prediction Plot. (See Figure
4.41.) Right-click the Prediction Plot node and click Open to open the Code Editor.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 91

Figure 4.41: Modified Pipeline

In the editor, we will paste in the code that we want to execute, shown in Figure 4.42.

Figure 4.42: Code Editor – PROC PCA

In lines 5–9, we run PROC PCA on the scored data set from the previous node to determine the first two
principal components. That way, all our interval input information is represented in two dimensions. In lines
12–18, we want to plot points as correct or incorrect, so we add a variable named “correct” that is calculated for
each observation based on the prediction and the actual target value. Finally, in lines 23–29, we use a specially
provided macro, dmcas_report, to create a scatter plot of the two specified columns in the specified data set.
Click Save, then close the window.

Now let’s run the pipeline. Click the Run shortcut button () in the pipeline window. Note that the supervised
learning nodes that already ran do not re-execute, but the Model Comparison node does because the new
adaptive regression node supplies it with a new model.

92 Exploring SAS Viya: Data Mining and Machine Learning

When the pipeline finishes executing, we can look at the results. First, let’s explore the results for the Adaptive
Regression Spline node. Right-click on the node and choose Results from the menu. Because this node is
designated as a Supervised Learning node, all the assessment plots and fit statistics that are reported for any
supervised learning node are automatically provided, as shown in Figure 4.43. In addition, the ODS output for
all the SAS code is presented, including output from the ADAPTIVREG procedure and the PROC PRINT call.

Figure 4.43: Adaptive Regression Spline Results

Click Close to return to the pipeline.

Now, let’s look at the Prediction Plot node results. Right-click the Prediction Plot node and select Results
from the menu. In the Prediction Plot results (Figure 4.44), we see the results of the PCA procedure and the
scatter plot that we specified. We can see that our model seems to have reasonable prediction power, with many
more correct predictions than incorrect.

Figure 4.44: Prediction Plot Results

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 93

Close the window to return to the pipeline.

Finally, let’s look at the Model Comparison node results. Right-click the Model Comparison node and select
Results from the menu.

In the Model Comparison results in Figure 4.45, we see that the Adaptive Regression Spline has a very good
misclassification rate compared to the other models, but the Decision Tree is still selected as the champion
because our project was specified to use the KS statistic as the metric for selecting a champion model.

Figure 4.45: Model Comparison Results

At this point, we would want to take a closer look at our models and possibly tune and retrain them before
deciding on a model that we are comfortable deploying. As you can see, the Code node provides great
flexibility and functionality in automated machine learning pipelines.

Save Data for Use in Other Applications
In this section, you will learn how to use the Save Data node in Model Studio. After you save a data set, you
can use it later in other applications – for example, in SAS Visual Analytics.

To begin, let’s start in Model Studio and open the My Analysis project that we have been modifying throughout
this chapter. Click the Pipelines tab and click the (+) to open a new pipeline. Currently, the Data node is the
only node in the pipeline. Let’s learn another way to add nodes to a pipeline.

Build Pipeline
Right-click the Data node. From the menu choose Add below  Supervised Learning  Decision Tree to
add a Decision Tree node to the pipeline, as shown in Figure 4.46.

94 Exploring SAS Viya: Data Mining and Machine Learning

Figure 4.46: Adding a Node to a Pipeline

A Decision Tree node is added and connected to the Data node, and a Model Comparison node is added and
connected to the Decision Tree node. Any other models you want to add to the project will automatically be
compared with each other.

Results
Let’s run the Decision Tree model with the default settings. Right-click the Decision Tree node and select Run.
When the execution is done, right-click the Decision Tree node again and select Results. Let’s scroll down in
the results until we see the output for the TREESPLIT procedure (Figure 4.47).

Figure 4.47: Decision Tree Results

The misclassification rate for the test data is 0.2418. That means the model made wrong decisions in almost
25% of the cases. However, out of the 25% of misclassified cases, we don’t know the proportion of false
positives and false negatives.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 95

The target b_tgt refers to the customers who purchased a new bank product (1) and the customers who did not
purchase a new bank product (0). If the model classifies a customer as a 1 (likely to purchase) and the customer
was observed as a 0 (did not purchase), the bank would waste money by sending an offer to that particular
customer – a false positive. On the other hand, if the model classifies a customer as 0 (unlikely to purchase) and
the customer was observed as 1 (actually did purchase), the bank would miss the opportunity to sell a new bank
product to this customer – a false negative. This is illustrated in the confusion matrix in Table 4.1.

Table 4.1: Confusion Matrix

Classified Observed Result Case
1 0 Bank wastes money by sending an offer to a customer

who doesn’t purchase
false positive

0 1 Bank misses the opportunity to sell a new product to
this customer

false negative

Both false cases are important, but they have different financial impacts during a sales campaign. To evaluate
the impact of all possible combinations in terms of predicted and observed cases (false positives, false
negatives, true positives, and true negatives), we need to explore the final output in a different way.

Save Data Node
Let’s save the output from the Decision Tree node so that we can use it in another application. Close the results
of the decision tree model to return to the pipeline. Right-click the Decision Tree node, then select Add Below
 Miscellaneous  Save Data. A Save Data node is added and connected to the Decision Tree node as shown
in Figure 4.48. You can also add nodes by dragging and dropping them from the list in the left pane.

Figure 4.48: Modified Pipeline

Under the Save Data options pane on the right side of the screen, click Browse to choose the Output library.
Expand cas-shared-default. Select CASUSER(student) and then click OK. This is the caslib that we are going
to use to save the data. Later, we’ll use this library to retrieve the data for further analysis.

In the Table name property, enter Treesplit Outcome as the new table name, then select the option for
Replace existing table, which overwrites any existing table with that name. Also select Promote table, which
enables this table to be seen and used in other sessions.

Right-click the Save Data node and select Run. Let’s now look at the saved results data by using SAS Visual
Analytics.

96 Exploring SAS Viya: Data Mining and Machine Learning

SAS Visual Analytics
From Model Studio, you can open Visual Analytics by clicking the applications menu in the top left corner.
Select Explore and Visualize Data.

In the SAS Visual Analytics home screen, select Data from the far left panel. In the Open Data Source
window, select the Data Sources tab. Expand cas-shared-default  CASUSER(student) and then select the
Treesplit Outcome data set, as shown in Figure 4.49. Click OK.

Figure 4.49: Open Data Source Window

Now your data is loaded to memory and is ready to be explored. Notice the categorical variable l_b_tgt in the
Data pane on the left side of the screen. This is the class predicted for each observation by the decision tree
model. Scroll down to the end of the variable list find the observed class, tgt Binary New Product. This variable
is numeric, so it’s automatically defined as a measure.

To create a cross tabulated table to represent a confusion matrix, we need two categorical variables. Let’s
change the level of measurement for tgt Binary New Product from numeric to category. Click the button that
has double downward arrows next to the variable. Select Category under the Classification property. The new
variable now moves to the top of the list under Category.

In the left pane, click Objects. Under Table, double-click Crosstab. In the right pane, under Columns, click
Add. Select l_b_tgt and then click OK. Under Rows, click Add. Select tgt Binary New Product and then click
OK. The cross tabulated results are now ready, as shown in Figure 4.50.

Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio 97

Figure 4.50: Crosstab Table

The observed class is on the left and the predicted class is on the top. For instance, out of the 211,509 cases of
non-purchase (0), the model correctly classified 99% (209,534) and misclassified only 1% (1,975).

Thinking about the confusion matrix, we only have 0.5% false positives out of the entire population. That
means the bank would send a promotion to a small number of customers who would not be willing to purchase
the product.

However, out of the 211,509 customers who actually did purchase, the model correctly classified only 12%
(24,349). That means the model incorrectly classified 88% of the cases (187,160). Therefore, we have 44%
false negatives based on the population data. Those cases are assigned to the missing opportunity. The bank
would think that those customers were unlikely to purchase and would not add them to the campaign. Because
of these results, we might consider building a different model in an attempt to improve performance.

In this section, you have seen how easy it is to save data in Model Studio and use model prediction results to
perform additional analysis and data exploration in SAS Visual Analytics.

Resources
This chapter is based on the “Data Mining and Machine Learning on SAS Viya” videos in SAS® Viya®
Enablement, a free course available from SAS Education.

You might find the following documentation and resources helpful as you learn more about SAS Visual Data
Mining and Machine Learning in Model Studio:

● SAS® Visual Data Mining and Machine Learning 8.4: User’s Guide
Model Studio 8.4: Getting Oriented

● Link to download VS_BankData data set link: https://github.com/sassoftware/sas-viya-machine-
learning/tree/master/data/bank

https://vle.sas.com/course/view.php?id=733
https://vle.sas.com/course/view.php?id=733
https://go.documentation.sas.com/?docsetId=vdmmlug&docsetTarget=titlepage.htm&docsetVersion=8.4&locale=en

98 Exploring SAS Viya: Data Mining and Machine Learning

Chapter 5: SAS Visual Data Mining and Machine
Learning in SAS Visual Analytics
Introduction ..99

Predictive Models ... 99
SAS Visual Analytics Quick-Start Guide ... 100

Factorization Machine ..101
Overview .. 101
Data Source ... 101
Build Model ... 101
Modify Model... 103

Forest ...103
Overview .. 104
Data Source ... 104
Build Model ... 104
Modify Model... 105

Gradient Boosting ...107
Overview .. 107
Build Model ... 107
Modify Model... 109
Export Model ... 110

Neural Network ...110
Overview .. 110
Build Model ... 110
Modify Model... 111
Export Model ... 113

Support Vector Machine ...113
Overview .. 113
Data Source ... 113
Build Model ... 113
Modify Model... 115

Model Comparison ..117
Resources ...118

Introduction
In this chapter, you will learn about key features of SAS Visual Data Mining and Machine Learning in SAS
Visual Analytics. SAS Visual Data Mining and Machine Learning is an integrated add-on to SAS Visual
Analytics that offers rich data mining and machine learning capabilities. This solution provides forward-
looking insights with more information to support better decisions.

In this single, web-based environment, data scientists, citizen data scientists, and business analysts can prepare
data, train models, and assess models. Multiple users have concurrent access to the same in-memory data with
no conflicts. In this easy-to-use, drag-and-drop interface, you can interact with and analyze complex and large
data sets visually, create predictive models without writing code, and see results instantly.

Predictive Models
The predictive models available in SAS Data Mining and Machine Learning in SAS Visual Analytics are:

● Factorization Machines

● Forest

● Gradient Boosting

100 Exploring SAS Viya: Data Mining and Machine Learning

● Neural Networks

● Support Vector Machines (SVM)

SAS Visual Data Mining and Machine Learning is designed to make model development easy and
straightforward.

SAS Visual Analytics Quick-Start Guide
To begin, sign in to SAS. Click the SAS Visual Analytics tile on your home screen to access a single interface
for designing reports and exploring data.

In the Welcome to SAS Visual Analytics window, click Data. In the Open Data Source window, make sure
that the All option is selected. All the data sources available for analysis and model development are listed in
this window. Find and select the data source that you want to use. Then click OK.

Data and Objects
In general, data-related tasks are initiated from the left-hand pane, also called the Data pane, as shown in Figure
5.1. In the Data pane, you can see all of the columns for the data source, grouped by categorical variables
(under Category) and interval variables (under Measure).

Figure 5.1: Data Pane

In the far left pane, select Objects. You can see all of the different types of objects available in SAS Visual
Analytics. These objects represent actions that you can perform for data preparation, data analysis, descriptive
statistics, statistical tasks, and data mining and machine learning procedures.

Scroll down to find the SAS Visual Data Mining and Machine Learning group. You can see all of the models
available, which we will discuss in this chapter. Using a particular predictive model against the selected data is
quite easy. Just select a model and drag it into the workspace in the center pane. Some graphs are displayed
along with an alert indicating that you need to select the target variable (or response) and the input variables (or
predictors).

Roles and Options
In general, presentation-related tasks are initiated from the right-hand pane. Under Roles, you need to define
the response and the predictors. Once you have defined these variables, the results of the model will be
displayed in the workspace. After you have adjusted all of your options the way you would like, you can save
your report.

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 101

You have now learned the basics of how to use SAS Visual Analytics to develop a predictive model using the
SAS Visual Data Mining and Machine Learning capabilities. Let’s take a deeper dive into each of the models in
the rest of this chapter.

Factorization Machine
In this section, you will learn how to build a factorization machine using the SAS Visual Data Mining and
Machine Learning feature in SAS Visual Analytics.

Overview
A factorization machine is a relatively new and powerful tool for modeling high-dimensional, sparse data. For
example, consider a recommendation problem where users rate items that they have purchased. This data
produces a matrix where the rows correspond to users and the columns correspond to items. There are many
users and many items, so the matrix is large. However, the ratings can be very sparse because not all of the
users give ratings for all of the items. As a consequence, the matrix can have several missing values, as shown
in Figure 5.2.

Figure 5.2: Sparse Matrix

The main goal of factorization machines is to predict the missing entries in the matrix so that it is possible to
find items that each user is likely to rate highly and then recommend those items to each user. Factorization
machines model the ratings by summing the average rating over all users and items, the average ratings given
by a user, the average ratings given to an item, and a pairwise interaction term that accounts for the affinity
between a user and a particular item.

The affinity between users and items is modeled as the inner product between two vectors of features: one for
the users, and another for the item. These features are collectively known as factors.

Data Source
The data source REVIEW contains information about ratings given by users to items. Both users and items are
identified by an anonymous numeric ID. A rating is a numeric value between 0 (very bad) and 5 (very good).
The data source contains 10,000,000 rows and 3 columns. There are 10,000 users and 10,000 items, so
10,000,000 reviews out of 100,000,000 are possible. The matrix produced by this data contains 90% missing
values, so it is very sparse. A similar data set of movie ratings is available to download at
http://grouplens.org/datasets/movielens.

Build Model
To begin, sign in to SAS. Select the Visual Analytics tile on the home screen. In the Welcome to SAS Visual
Analytics window, click Data. In the Open Data Source window, make sure that the All option is selected.
Select the REVIEW data source (which has already been loaded into CAS) and then click OK.

In the Data pane, you can see all of the columns in the REVIEW data source, grouped by categorical variables
(under Category), and interval variables (under Measure), as shown in Figure 5.3. Notice that item and user are

102 Exploring SAS Viya: Data Mining and Machine Learning

categorical variables, and each has 10,000 values. Rating and Frequency are interval variables or, in other
words, measures.

Figure 5.3: Data Pane

In the left pane, select Objects. Scroll down to the SAS Visual Data Mining and Machine Learning group. To
add a factorization machine to the diagram, you can either double-click Factorization Machine or drag and
drop Factorization Machine onto the workspace. Once you have added the object, you can see three graphs with
an alert indicating that it is time to configure the factorization machine model.

In the right pane, under Roles, you need to define the response variable (the target or dependent variable) and
the predictors (the input or independent variables). Under Response, click Add. In the pop-up window, select
the rating variable. Under Predictors, click Add. In the pop-up window, select the item and user variables.
Click OK.

Notice that the model starts running. When it finishes, you can see the results of the factorization machine
model at the top of the workspace, as shown in Figure 5.4.

Figure 5.4: Factorization Machine Model Results

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 103

The results display the target variable rating associated with the factorization machine; the average squared
error (ASE) for the model, which is around 0.084; and the number of observations used during model
development: 10,000,000.

On the left side of the workspace is the iteration plot based on the loss function. The iteration plot shows the
loss function at each step of the optimization process for the factorization machine. During the optimization
process, the task is to minimize the sum of losses over the observed data. In this example, the procedure
computes the biases and the factors by using the stochastic gradient descent (SGD) method. In this method,
each iteration attempts to minimize the root mean square error.

On the right side of the workspace are two assessment plots. On the top, the Scored Response plot shows the
performance of the model by comparing the predicted values and the observed values. This plot is based on 20
bins by default. The plot shows the number of cases that fall in a particular combination of a predicted value
range and an actual value range. On the bottom is the Assessment plot. This plot shows the overall performance
of the model by comparing the predicted average to the observed average. In other words, this plot shows the
difference between how the model estimates a case and what the case was observed to be in reality.

Modify Model
Let’s try to improve the model’s performance. In the far right pane, click Options. Under Factorization
Machine, change Factor count to 20, Max iteration count to 50, and Learn step to .01.

Notice that when you change those options, the model starts running automatically. At the end of the run, you
can see the model’s performance at the top of the workspace, as shown in Figure 5.5.

Figure 5.5: Modified Factorization Machine Model Results

The final ASE for the new model is around 0.079, which is 6.1% better than the original one.

Forest
In this section, you will learn how to build a forest model using the SAS Visual Data Mining and Machine
Learning feature in SAS Visual Analytics.

104 Exploring SAS Viya: Data Mining and Machine Learning

Overview
A forest consists of several different decision trees that differ from each other in two ways:

1. The training data for each tree is a sample without replacement from all available observations.
2. The input variables that are considered for splitting a node are randomly selected from all available

inputs.

In other respects, trees in a forest are trained like standard trees. For an interval target, the procedure averages
the predictions of the individual trees to predict an observation. For a categorical target, the posterior
probabilities in the forest are the averages of the posterior probabilities of the individual trees.

Data Source
We will use a data source named VS_BANK_PARTITION for this example. The data source contains over one
million rows and 57 columns. It consists of observations taken from account holders at a large financial
services firm. The accounts represent consumers of home equity lines of credit, automobile loans, and other
short- to medium-term credit instruments. This data source contains the original data in its raw form and
additional inputs created during data preparation, which includes imputation, replacement, and log
transformation.

The raw data describes both customer and account properties as well as some RFM metrics. The target variable
indicates whether the account holder purchased a new product from the bank in the past year.

Build Model
To begin, sign in to SAS. Select the Visual Analytics tile on the home screen. In the Welcome to SAS Visual
Analytics window, click Data. In the Open Data Source window, make sure that the All option is selected.
Find and select the VS_BANK_PARTITION data source (which has already been loaded into CAS) and then
click OK.

In the Data pane, you can see all of the columns in the VS_BANK_PARTITION data source, grouped by
categorical variables (under Category), and interval variables (under Measure). To avoid overfitting the model,
as a best practice, we train the model based on one data set (called the training partition) and validate the model
based on another data set (called the validation partition).

For this example, we have already created a column named GroupDesc - 2 that splits the data source into
training and validation partitions. For each observation, the value of GroupDesc - 2 is either Training or
Validation.

Now, let’s assign the observations to training or validation based on the value of GroupDesc - 2. Under
Category, right-click GroupDesc - 2 and select Set as partition column from the menu. In the Edit Partition
Column window, make sure that the Training data value is set to Training and the Validation data value is set
to Validation. Click OK to confirm this assignment.

In the far left pane, select Objects. These objects correspond to the actions that you can perform for data
preparation, data analysis, descriptive statistics, statistical tasks, and data mining and machine learning
procedures. Find the SAS Visual Data Mining and Machine Learning group. To add a forest to the diagram,
you can double-click Forest or drag and drop Forest onto the workspace. After you add the object to the
workspace, you can see three graphs with an alert indicating that it is time to configure the forest model.

In the far right pane, click Roles. Under Roles, you need to define the response (the target or dependent
variable) and the predictors (the input or independent variables). Under Response, click Add. In the pop-up
window, select the variable tgt Binary New Product. Under Predictors, click Add. In the pop-up window,
select the predictors from the list. In this example, there are 20 predictors. Click OK. Notice that the model
starts running. When it finishes, you can see the results of the model as shown in Figure 5.6.

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 105

Figure 5.6: Forest Model Results

At the top of the workspace, the results display the target variable tgt Binary New Product; the average squared
error for the model, which is around 0.121; and the number of observations used during model development,
which is over a million.

On the left side of the workspace in Figure 5.6 is the variable importance table, which lists inputs that
contribute most to the classification. You can see that the variable rfm5 Count Purchased Past 3 Years was the
most important variable for this model. Six variables have a reasonable importance, and another six have a
small importance.

On the top right of the workspace is the error plot based on the average squared error and the average squared
error (out-of-bag). The average squared error is the sum of squared errors on the final model divided by the
number of observations. The average squared error (out-of-bag) is the mean of the average squared error for
each tree during the training process. The forest ran based on 100 trees. We see the performance of the final
model during training as more trees are added.

On the bottom right of the workspace is the assessment plot. The assessment shows the overall performance of
the model, comparing the predicted average to the observed average. In other words, this plot shows the
difference between how the model classified the case and how the case was observed in reality.

Modify Model
To improve model performance or make the model more robust or generalized (for example, to avoid
overfitting), you can change some of the model parameters. In the far right pane, click Options. Under Forest,
select Use validation partition. This option tells the model to use all of the cases where the GroupDesc -2
value is Training for the training process, and all of the cases where the GroupDesc - 2 value is Validation for
the validation process. The model runs, and when it finishes, you can see the results as shown in Figure 5.7.

106 Exploring SAS Viya: Data Mining and Machine Learning

Figure 5.7: Modified Forest Model Results

Notice at the top of the workspace that the title now specifies Validation ASE, indicating that the model was
assessed by the average squared error based on the validation data partition. The average squared error is
slightly worse. Let’s try to improve the model’s performance a bit more.

Under Forest, change the Number of trees option to 200 and the Bootstrap option to 0.8. Under Decision
Tree, change Maximum levels to 12, Leaf size to 25, and Predictor bins to 100. When you change these
options, the model runs again. When it finishes running, you can see the results, as shown in Figure 5.8.

Figure 5.8: Further Modified Forest Model Results

The final average squared error for the new model is around 0.100, which is 17.4% better than the first model
without any modifications.

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 107

Gradient Boosting
In this section, you will learn how to build a gradient boosting model for digital clickstream data using the SAS
Visual Data Mining and Machine Learning feature in SAS Visual Analytics. In this example, the business use
case is to identify important attributes that are related to whether a customer wants to download a white paper
from a high-tech company’s website.

Overview
In gradient boosting, the data set is resampled several times to generate results that form a weighted average of
the resampled data. This model creates a series of decision trees that together form a single predictive model. A
tree in the series is fit to the residuals of the predictions from the earlier trees in the series. The residuals are
defined in terms of the derivative of a loss function. The successive samples are adjusted to accommodate
previously computed inaccuracies.

Build Model
To begin, sign in to SAS. Select the Visual Analytics tile on the home screen. In the Welcome to SAS Visual
Analytics window, click Data. In the Open Data Source window, make sure that the All option is selected.
Find and select DIGITAL_CLICK_PART data source (which has already been loaded into CAS) and then click
OK.

In the Data pane, you can see all of the columns in the DIGITAL_CLICK_PART data source, grouped by
categorical variables (under Category), and interval variables (under Measure). Before we build our model, we
are going to set our partition variable so that we can distinguish between training and validation sets. Scroll
down to find the variable Partition Indicator. Right-click and select Set as partition column from the menu. In
the Edit Partition Column window, make sure that the Training data value is set to Training and the
Validation data value is set to Validation. Click OK to confirm this assignment.

Click Objects in the far left pane. Let’s drag the Gradient Boosting model from the SAS Visual Data Mining
and Machine Learning group into the visualization pane. Click Role in the far right pane. The target or response
variable is going to be the white paper download indicator. This is a binary variable that tracks whether a visitor
downloaded a white paper from the website. The values are yes or no. Under Response, click Add. Choose
White Paper DLs ind from the list of variables.

Click Options in the far right pane. Under Gradient Boosting, select Use validation partition. Next, click
Data in the far left pane. We are going to select certain attributes into the model. Use the search bar at the top
of the data pane to search for the word “interest” because in our data, we have several variables that contain the
word interest that we want to include in the model. They include cloud computing, database, Internet of Things,
mobile and wireless, security, and storage. Click the check boxes next to these variable names to select the
variables, as shown in Figure 5.9.

108 Exploring SAS Viya: Data Mining and Machine Learning

Figure 5.9: Adding Predictors from the Data Pane

With the variables selected, click and drag them into the visualization pane. The software will now begin to
build a model for us. But we can still add more variables. Clear out the search in the data pane search bar. Let’s
also add Continent, as well as the duration of how long visitors were on our website (Active 10s to 30m, Active
10 to 30s, and so on) Click and drag these variables into the visualization pane as well.

Now you can see we have built a Gradient Boosting model as shown in Figure 5.10.

Figure 5.10: Gradient Boosting Model Results

But there are still more things that we need to change. Firstly, we need to model our event level as Yes. In the
top row of the diagram, click in the rectangle labeled (event = no). From the drop-down, select Change event
level. In the Select Event Level dialog box, change the radio button selected from no to yes. Click OK to close.

Next, we will look at the misclassification rate. Right now, the top row of the diagram indicates that our
Validation Misclassification is 0.142. You can also look at the training misclassification. Click the rectangle

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 109

labeled Validation Misclassification. From the menu, select Misclassification. That number is 0.144. Reset
the misclassification to show the Validation Misclassification.

Modify Model
Click Options in the far right pane. Under Gradient Boosting, we can see that we are only using 10 trees right
now. Let’s increase that number to 100. Hit enter. The diagram refreshes, and we can see significant
improvement in the Validation Misclassification rate, which is now 0.133. You can also see from the Training
Iteration Plot that the Misclassification Rate is dropping dramatically until we reach about 72 trees, as shown in
Figure 5.11.

Figure 5.11: Modified Gradient Boosting Model Results

We can also change things like the Learning Rate, which is how quickly the model is learning. If you change
that number for 0.1 to 0.2, we can see a little bit more improvement in the misclassification rate. It is now
0.1324.

We can also look at the Subsample Rate, which is the percent of data that is used to build each tree. Change
that number from 0.8 to 0.6, and we can see an even better improvement in the misclassification rate. It is now
0.1319.

Scroll down in the Options pane to see the controls for the individual decision trees – 2 branch splits, a
maximum number of 6 levels deep, and a minimum leaf size of 5. We’ll leave those alone.

Now let’s look at changing some variables. Click Roles in the far right pane to see the list of predictor
variables. Let’s remove the variable Continent. Right-click the variable name and select Remove Continent
from the menu. When the model updates, we can see that it takes a bit of a hit, but not much. The
misclassification rate is now 0.134.

If we wanted to, we could add Continent in as a filter instead. Click Filters in the far right pane. Click Add.
Select Continent from the list of variables. Now we can see what each Continent’s model might look like.
Select only North America from the Continent list to see just those results.

In summary, we can see that the gradient boosting model helps to accurately identify the likelihood of
downloading a white paper.

110 Exploring SAS Viya: Data Mining and Machine Learning

Export Model
Now, what do we do with this model? How do we take action on it? The first thing we can do is export the
model to a table. In the upper right corner of the diagram workspace, click the double arrows (<<) and then
click the three vertical dots to see a drop-down with more options. Choose Export model… from the list. In the
Export Model window, click OK. This creates an Analytical Store table, which is a binary table that represents
the entire model. We can take the intelligence of that model using that table and operationalize it to score new
visitors. We can identify whether the visitor is interested in downloading a white paper, and we can deliver that
information to our marketing peers.

You can also export the data into an Excel spreadsheet. In the upper right corner of the diagram workspace,
click the double arrows (<<) and then click the three vertical dots to see the drop-down with more options.
Choose Export data… from the list. In the Export Data window, click OK.

Neural Network
In this section, you will learn how to build a Neural Network model for digital clickstream data using the SAS
Visual Data Mining and Machine Learning feature in SAS Visual Analytics. In this example, the business use
case is to identify important attributes that are related to whether a customer wants to download a white paper
or not from a high-tech company’s website.

Overview
A neural network is a computational approach that was originally developed by researchers trying to mimic the
neurophysiology of the human brain by combining many simple computing elements (neurons) into a highly
interconnected system. Neural networks incorporate methods from statistics and numerical analysis into their
training process.

Build Model
To begin, sign in to SAS. Select the Visual Analytics tile on the home screen. In the Welcome to SAS Visual
Analytics window, click Data. In the Open Data Source window, make sure that the All option is selected.
Find and select DIGITAL_CLICK_PART data source (which has already been loaded into CAS) and then click
OK.

In the Data pane, you can see all of the columns in the DIGITAL_CLICK_PART data source, grouped by
categorical variables (under Category), and interval variables (under Measure). Before we build our model, we
are going to set our partition variable so that we can use training and validation sets when we model. Scroll
down to find the variable Partition Indicator. Right-click and select Set as partition column from the menu. In
the Edit Partition Column window, make sure that the Training data value is set to Training and the
Validation data value is set to Validation. Click OK to confirm this assignment.

Click Objects in the far left pane. Look through the modeling library until you find Neural Network in the
SAS Visual Data Mining and Machine Learning group. Drag the Neural Network object into the center
Visualization pane.

Now we are ready to add our variables. The target or response variable of the neural network analysis is the
white paper download indicator. Click Roles in the far right pane. Under Response, click Add. Find the
variable White Paper DLs Ind and select it. This is a binary variable that tracks whether a visitor downloaded a
white paper or not from the website. The values are yes and no.

Next, let’s add certain attributes that we want to add into the analysis. These attributes or indicators are mainly
related to what people were interested in when they visited the website. In the far left pane, click Data. In the
search bar, type in the word “interest.” We are quickly presented with all of the variables that have the word
“interest” in their titles. These include cloud computing, database, Internet of Things, mobile and wireless,
security, and storage. Click the check boxes next to all of these variables to select them, then drag them into the
visualization pane.

A neural network model quickly builds, but we are not done adding variables yet. Clear the search bar at the top
of the Data pane. Click on the variable Continent to select it. Scroll down to the Measures group. We want to

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 111

choose variables related to the duration of the visit. We want to include all of the various time buckets. Click all
those variables, then drag them into the visualization pane.

After the model finishes running, you can see it has built a neural network model for us. There are still a few
more things we need to change. Right now, it is modeling on the event=No. We are going to change that to
event=Yes. At the top of the diagram, click on the text event=No. From the menu, select Change event level.
Click the radio button Yes, then click OK.

Next, click Options in the far right pane. Under Neural Network, select the option Use validation partition.
The model now looks like Figure 5.12.

Figure 5.12: Neural Network Model Results

As you can see, we have a Validation Misclassification rate of 0.1477. Let’s zoom in on the network and take a
look. In the Options pane, scroll down to the Network Diagram section. Click Neuron labels to isolate hidden
relationships.

The Iteration Plot indicates that after about 25 iterations, the objective or loss function flattens. For those who
would like to go further in their analysis, there are several model assessment visualizations such as the Lift
chart, ROC curve, and Misclassification chart.

Modify Model
Let’s go back to the Options pane and add another hidden layer. In the Neural Network section under Hidden
Layers, change the number from 1 to 2. Notice how the results update automatically, and the misclassification
rate improves slightly to 0.1429, as shown in Figure 5.13.

112 Exploring SAS Viya: Data Mining and Machine Learning

Figure 5.13: Modified Neural Network Model Results

In the Options pane, you can also change the optimization method and adjust your regularization parameters,
L1 and L2. You can also change the Activation functions by layer. In this case, for the first layer, let’s change
the Activation function property from Hyperbolic tangent to Exponential. For the second layer, let’s change it
from Hyperbolic tangent to Sine. The diagram updates as shown in Figure 5.14.

Figure 5.14: Further Modified Neural Network Model Results

Notice that the Validation misclassification has dropped to 0.1367. This tells us that this neural network model
accurately identified the likelihood to download a white paper.

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 113

Export Model
If we want to download the model, in the upper right corner of the diagram workspace, click the double arrows
(<<) and then click the three vertical dots to see a drop-down with more options. Choose Export model… from
the list. When we export the model, this produces SAS DATA step code representing the entire neural network
model. We can take the intelligence of this neural network model and operationalize it to score new visitors.
We can identify whether the visitor is interested in downloading a white paper, and we can deliver that
information to our marketing peers.

You can also export the data as an Excel spreadsheet. In the upper right corner of the diagram workspace, click
the double arrows (<<) and then click the three vertical dots to see the drop-down with more options. Choose
Export data… from the list. In the Export Data window, click OK.

Support Vector Machine
In this section, you will learn how to build a support vector machine model by using the SAS Visual Data
Mining and Machine Learning feature in SAS Visual Analytics.

Overview
A support vector machine is a supervised machine-learning method that is used to perform a classification
analysis based on slack variables, which create a soft margin classifier. The standard support vector machine
model solves binary classification problems that produce a binary output (positive 1 or -1) by constructing a set
of hyperplanes that maximize the margin between the two classes. Posterior probabilities of the event can also
be estimated.

Data Source
We will use a data source named VS_BANK_PARTITION, which contains observations taken from account
holders at a large financial services firm. The accounts represent consumers of home equity lines of credit,
automobile loans, and other short-to-medium term credit instruments. This data source contains the original
data in its raw form and additional inputs created during data preparation, which includes imputation,
replacement, and log transformations.

The raw data describes both customer and account properties and includes recency, frequency, and monetary
(RFM) metrics. The target variable indicates whether the account holder purchased a new product from the
bank in the past year. The data source contains over a million rows and 57 columns. The original
VS_BANK_DATA data set is available to download from GitHub here: https://github.com/sassoftware/sas-
viya-machine-learning/tree/master/data/bank.

Build Model
To begin, sign in to SAS. Select the Visual Analytics tile on the home screen. In the Welcome to SAS Visual
Analytics window, click Data. In the Open Data Source window, make sure that the All option is selected.
Find and select the VS_BANK_PARTITION data source (which has already been loaded into CAS) and then
click OK.

In the Data pane, you can see all of the columns in the VS_BANK_PARTITION data source, grouped by
categorical variables (under Category), and interval variables (under Measure). To avoid overfitting the model,
as a best practice, we train the model based on one data set (called the training partition) and validate the model
based on another data set (called the validation partition).

For this example, we have already created a column named GroupDesc - 2 that splits the data source into
training and validation partitions. For each observation, the value of GroupDesc - 2 is either Training or
Validation.

Now, let’s assign the observations to training or validation based on the value of GroupDesc - 2. Under
Category, right-click GroupDesc - 2 and select Set as partition column from the menu. In the Edit Partition

114 Exploring SAS Viya: Data Mining and Machine Learning

Column window, make sure that the Training data value is set to Training and the Validation data value is set
to Validation. Click OK to confirm this assignment.

Support vector machines (SVMs) are classifier models. Based on a set of training cases for a binary target, the
SVM algorithm builds a model that assigns new cases to one category or the other. An SVM is, therefore, a
non-probabilistic binary linear classifier. The target in the VS_BANK_PARTITION data source is numeric,
and it has two possible values. SVM models require categorical targets, so you need to convert the binary target
to a categorical target.

In the Data pane, below the VS_BANK_PARTITION data source drop-down, click the Add button, and then
select Add Custom Category. At the top of the Add Custom Category window, for Based on, select the
variable tgt Binary New Product. This target has two values: 0 for non-buyers and 1 for buyers. Therefore, you
need two categories to represent the target. Select + Click or drag values here to add a value group. You will
now see that a Value Group 2 is available. From the left side of the window, select 0 and drag it under the
property Value Group 2. Select 1 on the left and drag it under Value Group 1. Your screen should now look
like Figure 5.15.

Figure 5:15: Add Custom Category Window

Let’s change the names of the groups. Right-click Value Group 1 and select Edit group name. Enter “Yes” for
the Name property and click OK. Right-click Value Group 2 and select Edit group name. Enter “No” for the
Name property and click OK.

Let’s also change the name of the category. In the top left corner of the window, under Name, enter “target
category new product” and click OK in the bottom right of the Add Custom Category Window to close the
window.

In the far left pane, select Objects. These objects correspond to the actions that you can perform for data
preparation, data analysis, descriptive statistics, statistical tasks, and data mining and machine learning
procedures. Find the SAS Visual Data Mining and Machine Learning group. To add a support vector machine
to the diagram, you can double-click Support Vector Machine or drag and drop it onto the workspace. After
you add the object to the workspace, you can see graphs and plots and an alert indicating that it is time to
configure the support vector machine model.

In the far right pane, click Roles. Under Roles, you need to define the response (the target or dependent
variable) and the predictors (the input or independent variables). Under Response, click Add. In the pop-up
window, select the variable tgt category new product. Under Predictors, click Add. In the pop-up window,
select the 12 variables from the list that have a logi_rfm prefix. Click OK. Notice that the model starts running.
When it finishes, you can see the results of the support vector machine model as shown in Figure 5.16.

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 115

Figure 5.16: Support Vector Machine Model Results

The results of the support vector machine model are shown at the top of the workspace. You can see the target
variable tgt category new product; the target level of interest (which was set to No by default due to
alphabetical ordering); the misclassification rate, which is around 0.1764; and the number of observations used
during model development, over one million.

On the left side of the workspace in Figure 5.16 is the Iteration Plot based on Complementarity and Feasibility.
Complementarity conditions are optimization constraints required for optimal nonlinear programming
solutions. The feasibility is a gap tolerance to check for optimization convergence. Slack variables are added to
allow for errors to the objective function, and the approximate the model if the problem is infeasible.

On the right side of the workspace in Figure 5.16 is the Cumulative Lift plot. The cumulative lift shows the
cumulative ratio of the percentage of captured responses within each decile. The percentage captured response
is the proportion of total responders in each decile. In this case, the cumulative lift is shown against the optimal
model, the best possible model instead of the baseline.

Modify Model
To improve model performance or to make the model more robust or generalized (for example, to avoid
overfitting), you can change some of the model parameters. In the right pane, select Options. Under the
Support Machine Vector section, select Use validation partition. This option tells the model to use all of the
cases where the GroupDesc - 2 value is Training for the training process, and all of the cases where GroupDesc
– 2 is Validation for the validation process.

The model updates, and when it finishes, you can see the final results in the workspace, as shown in Figure
5.17.

116 Exploring SAS Viya: Data Mining and Machine Learning

Figure 5.17: Modified Support Vector Machine Model

At the top of the workspace, notice that the title now indicates that the model was assessed by the
misclassification rate based on the validation data partition. The misclassification rate has changed a bit. It is
now 0.1800.

You can also change the event level of the target for the classification model. In the right pane, in the Support
Vector Machine section, scroll down to find the Event level option. Click Change. In the pop-up list of levels
for the categorical target, select Yes, and click OK to close the window. The model runs again. The model’s
performance is exactly the same with a validation misclassification rate of 0.1800.

Let’s try to improve the model’s performance further. In the right pane, in the Support Vector Machine
section, find the Kernel function option. Change it from Linear to Quadratic. After you confirm this option, the
model begins to run. When it finishes, you can see the results in the workspace, as shown in Figure 5.18.

Figure 5.18: Further Modified Support Vector Machine Model

At the top of the workspace, you can see the final results of the model. The final validation misclassification
rate is 0.1620, which is almost 10% better than the initial SVM model.

Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics 117

Model Comparison
In this section, we will look at how to build a model comparison using SAS Visual Data Mining and Machine
Learning in SAS Visual Analytics. In previous sections, we built a Gradient Boosting model and a Neural
Network to predict the likelihood of someone downloading a white paper from a high-tech company’s website.
Now, let’s determine which of those models predicts more accurately.

To get started, make sure that the Gradient Boosting and Neural Network models are each open in a separate
report. Open a new page in a SAS Visual Analytics report. Click Objects. Under the SAS Visual Statistics
section, click Model Comparison and drag it into the workspace. Notice that an error message pops up on the
screen. The message says there are no models in the report that can be compared. We’re going to have to fix
something!

Go back to the Gradient Boosting model page of the report. The first thing you should notice is that the event
level is not the same as the event level for the Neural Network model. In order to successfully perform a model
comparison, the data source, partition, response variable, and event level for all models must match. At the top
of the workspace, click on the button labeled (event=No). In the dialog box, change the event level to Yes.

Return to your new report page. Try again to drag the Model Comparison object into the workspace. This time
it should work. The Add Model Comparison window will appear, as shown in Figure 5.19.

Figure 5.19: Add Model Comparison Window

You can see that we have the same data source, the same partition, the same response variable, and the same
event level. Below that, you can see all of the models that are available for comparison. Select both of them,
and then click OK.

The software immediately starts to run a comparison and produces a comparative Lift chart and Fit Statistic bar
chart, as shown in Figure 5.20.

118 Exploring SAS Viya: Data Mining and Machine Learning

Figure 5.20: Model Comparison Results – Misclassification Rate

In the Options pane on the right side of the screen, you can select from a number of Model Comparison
statistics. Currently, it is set for Misclassification. Click the drop-down menu and select K-S Statistic instead.
According to this statistic, it appears the Gradient Boosting model is going to be our champion.

Notice that you can also select a percentile to compare. Use the slider to move the Percentile to 20. At the 20th
percentile, the gradient boosting model is still the best model. At the 35th percentile, it’s still the winner. At the
50th it’s still the winner, and so on.

Resources
This chapter is based on the SAS Visual Data Mining and Machine Learning videos from the free, online How-
To Tutorials provided by SAS at video.sas.com/category/videos/how-to-tutorials.

You might find the following documentation and resources helpful as you learn more about SAS Visual Data
Mining and Machine Learning in SAS Visual Analytics:

● SAS® Visual Analytics 8.3: Working with SAS® Visual Data Mining and Machine Learning

● Link to download VS_BankData data set link: https://github.com/sassoftware/sas-viya-machine-
learning/tree/master/data/bank

● Link to download MovieLens data set: http://grouplens.org/datasets/movielens

https://video.sas.com/category/videos/sas-visual-data-mining-and-machine-learning__
https://video.sas.com/category/videos/how-to-tutorials
https://go.documentation.sas.com/?cdcId=vacdc&cdcVersion=8.3&docsetId=vaobjdmml&docsetTarget=titlepage.htm&locale=en

Discover more free SAS e-books!
support.sas.com/freesasebooks

Free SAS® Viya® e-Books:
Fundamentals

This series is based on content from SAS® Viya® Enablement,
a free course available from SAS Education. You can follow along

with the examples in real time by watching the videos if you prefer.
Topics covered illustrate the features and capabilities of SAS Viya.

SAS Viya extends the SAS platform to enable everyone –
data scientists, business analysts, developers, and executives alike –

to collaborate and realize innovative results faster.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2019 SAS Institute Inc. All rights reserved. M1913158 US.0419

sas.com/books
for additional books and resources.

	Contents
	More SAS Books
	About This Book
	Chapter 1: Programming in SAS Studio and the Python Interface
	Chapter 2: Data Mining and Machine Learning Tasks in SAS Studio
	Chapter 3: Advanced Data Mining and Machine Learning Procedures
	Chapter 4: SAS Visual Data Mining and Machine Learning in Model Studio
	Chapter 5: SAS Visual Data Mining and Machine Learning in SAS Visual Analytics
	Free SAS e-Books

