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Foreword 
When it comes to model development and deployment, organizations should have the freedom to choose different 
programming languages, tools, techniques, and run-time environments because only a modeling melting pot is what 
can fuel innovation and creativity.  

Data Scientists develop models using different interfaces, algorithms, and tools. IT leaders adopt different 
environments and paradigms to execute analytics – on-premises, cloud, hybrid, through APIs, in real-time, in 
database, on server, on edge. It’s what I like to call analytical heterogeneity, a status where analytics is not limited 
to one single methodology, tool, or algorithm but is able to leverage the full potential of the fast-growing and rapidly 
changing ecosystem of analytical solutions and technologies available, both open source and commercial. 

However, a result of this differentiated ecosystem has been the increasing complexity of model life cycle 
management, and the difficulty of operationalizing models and start getting value from them. According to IDC, only 
35% of organizations indicate that analytical models are fully deployed in production. Gartner states that over 60% 
of models developed with the intention of operationalizing them were never actually operationalized. Recent 
research by SAS indicates that 90% of models take more than three months to get into production. And 44% of 
models take over seven months. Too few models are getting into production, and for those models that do, it takes 
too long to influence decision making. 

Without a structured and standardized process to integrate and coordinate all the different pieces of the model life 
cycle, analytical heterogeneity can turn into analytical entropy, a status where the usage of a diversified number of 
tools and technologies lacks governance, collaboration, traceability, oversight, monitoring and operationalization of 
models, thus resulting in chaos, cost increases and missed business opportunities. 

Imagine what happens when the creator of a model moves into a new role or leaves the organization. How do you 
effectively maintain, monitor, and improve upon their work?  

Imagine a company that has hundreds or even thousands of models for different business problems or use cases in 
different programming languages. How do you effectively manage versioning, reproducibility, deployment, 
scalability, testing, and governance? 

The need to streamline and operationalize analytical models is the focus of the SAS Model Management solution. It 
enables organizations to adopt a model management strategy into their analytics life cycle that allows users to 
register, test, deploy, monitor, and retrain analytical models, uniting Data Scientists, IT/DevOps, and Business 
Analysts.  

The goal is to provide analytical heterogeneity with the structure, standardization, coordination, and technology 
needed to turn it into a competitive advantage, thus enabling ongoing governance, traceability, transparency, and 
the ability to leverage any technology available.  

Several groundbreaking papers have been written to demonstrate these techniques using SAS Model Management 
solutions. We have carefully selected a handful of these from recent SAS Global Forum papers to show how a 
modeling melting pot can become long-term business value using SAS. Enjoy! 
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The Aftermath What Happens After You Deploy Your Models and Decisions 

By David Duling 

We’re making it easy to deploy your models and decisions to numerous run-time environments. However, the model 
life cycle doesn’t end once the model is created. Rather, it is just the beginning of the important phases of model 
monitoring and analysis. This need extends to SAS models and open-source and Predictive Model Markup Language 
(PMML) models. In this demonstration, you learn techniques for analyzing model performance, integration with 
business metrics, and root cause analysis. 
 

Turning the Crank: A Simulation of Optimizing Model Retraining 

By David Duling 

Model retraining is a common practice in the advanced model life cycle. However, the critical question is how do 
you know when you need to retrain the model? Once the model is retrained, how do we determine when we need 
to redeploy the model? Can we predict how long the model will be relevant? The answers can depend on one or 
more of many factors including calendar fluctuations, business cycles, data drift, model performance, expected 
benefit, and many others. Given those factors, we want to find the optimal points in time to retrain and redeploy a 
predictive model. This paper presents a simulation study of different strategies and techniques for optimizing model 
retraining with the goal of maintaining optimal business performance. 

 

Open-Source Model Management with SAS® Model Manager 

By Glenn Clingroth, Hongjie Xin, and Scott Lindauer 

Open-source models that are developed in Python, R, TensorFlow, and so on, are increasingly important to 
organizations that produce and deploy analytical and machine learning models. Not only are the models created 
using open-source tools, they are deployed to open-source environments that use Docker and Kubernetes in place 
of more traditional environments. SAS Model Manager is evolving to be a management platform that handles 
traditional SAS models and open-source models as equal partners. This paper discusses strategies for managing 
the life cycles of Python, R, and TensorFlow models using SAS Model Manager. 

  

SAS Model Management 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4612-2020.pdf
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Deploying Models Using SAS® and Open Source 

By Jared Dean 

In the excitement and hype around machine learning (ML) and artificial intelligence (AI) most of the time is spent in 
the model building. Much less energy is expended on how to take the insights from models and deploy them 
efficiently to create value and improve business outcomes. This paper will show a complete example using DevOps 
principals for building models and deploying them using SAS in conjunction with opens source projects including 
Docker, Flask, Jenkins, Jupyter, and Python. The reference application is a recommendation engine on a web 
property with a global user base. This use case forces us to confront security, latency, scalability, repeatability. The 
paper will outline the final solution but also include some of the problems encountered along the way that informed 
the final solution. 

 

Cows or Chickens: How You Can Make Your Models into Containers 

By Hongjie Xin, Jacky Jia, David Duling, and Chris Toth 

Models are specific units of work that have one job to perform: scoring new data to make predictions. Containers 
are self-contained workers that can be easily created, destroyed, and reused as needed. They are portable and easily 
integrate into numerous modern cloud and on-premises execution engines. SAS users can now follow a recipe to 
turn advanced model functions into on-demand containers such as Docker for both on-premises and cloud 
deployment. SAS Model Manager can be used to organize the model content from many sources, including SAS and 
open source, to create containers. This presentation presents the basics and shows you how to turn your SAS 
analytical models into modern containers. 

 

Choose Your Own Adventure: Manage Model Development via a Python IDE 

By Jon Walker 

Data scientists often need to work with multiple languages and in multiple analytic environments to solve a problem. 
SAS provides a complete end-to-end environment, but it has traditionally been accessible to users only through GUIs 
and SAS languages. This paper introduces a new tool enabling data scientists to manage components of the analytics 
life cycle from within any Python environment. We first demonstrate how to register a model developed with Python 
using SAS Model Manager, before exploring methods for managing, deploying, and tracking the model. In addition, 
we show how to accomplish supporting tasks such as rendering visualizations and extending the existing 
functionality. 

 

Build Your ML Web Application Using SAS AutoML 

By Paata Ugrekhelidze 

Online loan applications are automated processes that allow people to quickly receive loans without unnecessary 
delays. Nowadays, automated decision-making is dominated by machine learning algorithms. However, algorithms 
require a lot of manual and technical capabilities to be practical and effective. SAS AutoML offers the ability to 
automate the development of machine learning algorithms. This article will demonstrate the implementation of 
AutoML in banking loan applications. 
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Monitoring the Relevance of Predictors for a Model Over Time 

By Ming-Long Lam 

This paper presents a novel approach to monitor model performance over time. Instead of monitoring accuracy of 
prediction or conformity of predictors’ marginal distributions, this approach watches for changes in the joint 
distribution of the predictors. Mathematically, the model predicted outcome is a function of the predictors’ values. 
Therefore, the predicted outcomes contain intricate information about the joint distribution of the predictors. This 
paper proposes a simple metric that is coined the Feature Contribution Index. Computing this index requires only 
the predicted target values and the predictors’ observed values. Thus, we can assess the health of a model as soon 
as the scores are available and raise our readiness for preemptive actions long before the target values are 
eventually observed. 

 

Model Validation  

By Hans-Joachim Edert and Tamara Fischer 

SAS model governance can be integrated into an analytical ecosystem that includes a diverse set of open-source 
tools and many different scripting languages next to SAS analytics. In total, there are four parts to this blog post 
series that describe this modeling scenario in detail. The first post describes some basic principles of the DevOps (or 
ModelOps) approach. The second post discusses the “test pyramid,” which originally is an industry-standard for test 
design in software engineering. However, we think it’s valuable in the area of analytical test design as well. The third 
post is more “hands-on” in nature. It describes how a model validation pipeline can be implemented in real life – 
using tools like Git, Jenkins – and SAS Model Manager of course. Finally, the fourth post addresses a purely analytical 
topic. It contains a detailed explanation of an algorithm called the feature contribution index (FCI), how it works and 
how it can be used with SAS.  

We hope you enjoy this special collection and find valuable ideas to apply in your model management challenges. 
Please join the conversation with your peers by registering in the SAS Developer Community and SAS Support 
Community, where you can ask questions, post answers and comments, and find the latest news, articles, APIs, and 
other resources on how to leverage the full potential of your favorite analytical tool using SAS. In addition, we 
encourage you to visit the SAS GitHub Resources page for the most popular developers repos, code examples, 
libraries and tools. 

For more information and further reading, see the Appendix for recommended e-books, white papers, and 
additional assets that can help you in achieving a successful modeling melting pot.  

____________________________________________________ 

Marinela is Global Marketing Manager for SAS Model Management solutions, 
prior to which she was a Customer Advisor for Advanced Analytics, supporting 
organizations across EMEA in achieving data-driven decisions. 

Her background is a mix of Business Administration, Statistics and Marketing. She 
holds a BS in Economics and master’s degrees in both Business Administration and 
Statistics. Marinela is Global Ambassador and Member of Women Tech Network, 
an organization that enables women's empowerment in tech through leadership 
development, professional growth, mentorship, and networking events for 
professionals. 

https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops1/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops2/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops3/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops3/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops4/
https://developer.sas.com/home.html
https://communities.sas.com/
https://communities.sas.com/
https://developer.sas.com/github-resources.html
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Paper SAS3496-2019 

Session 3496 - The Aftermath What Happens After You Deploy 

Your Models and Decisions 

David R. Duling, SAS Institute Inc. 

ABSTRACT 

We're making it easy to deploy your models and decisions to numerous run-time 

environments. However, the model life cycle doesn't end once the model is created. Rather, 

it is just the beginning of the important phases of model monitoring and analysis. This need 

extends to SAS models and open-source and Predictive Model Markup Language (PMML) 

models. In this demonstration, you learn techniques for analyzing model performance, 

integration with business metrics, and root cause analysis. 

INTRODUCTION 

You can think of the lifetime of a model as 

having three major phases. In data 

preparation, the business operational data 

is transformed and loaded for targeted 

business analytics. In the discovery 

phase, advanced reporting, statistics, and 

machine learning models are developed 

for gaining insight into patterns and 

trends that influence the business. In the 

deployment phase, those models are used 

to make predictions in critical business 

processes that drive operational decisions.  

This is where the models provide their 

greatest benefit to the organization; 

however, it is also where most businesses 

encounter challenges in completing the 

analytics lifecycle.   Figure 1.  The new analytic life cycle. 

A data scientist can spend weeks constructing a good model for prediction or classification 

using statistical, machine learning, or deep learning techniques. These models can be used 

to provide insight and inference into existing processes, or to predict outcomes based on 

new data values. These predictions are used to improve the effectiveness of automated 

decision-making systems such as the next best offer, credit scoring, loan originations, fraud 

detection, robotic process automation, and hundreds of other applications. Modern 

businesses require the use of predictive models to remain competitive. 

This paper will focus on model deployment and describe how models are used, how they are 

monitored, and how they can be evaluated and replaced.   
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MODEL SCORING 

The building of predictive models is often termed model training and typically takes place 

offline in a development environment with saved historical data. The result of training a 

model is a fixed function that can be used for making predictions with new data values. 

They key component of most models is score code that can be evaluated with to make 

those predictions. Model scoring is the key function in model deployment.  Score code is 

generally found in the primary language of the system that generated the score code, 

including the following forms: 

SAS Procedures 

This form was introduced with SAS® Stat® more than 30 years ago.  While this is a very 

easy form to run in a SAS program, the drawback is that the code cannot easily be executed 

in non-SAS environments.   

 

The original form of the output statement would replace missing values in the 

dependent column with new predicted values based on the model. 

proc reg data= train outest=model; 

 model bad= debtinc ninq clage clno;  

 output out=scores;  

run ; quit ; 

 

Later, the Score procedure was introduced to score models that have a generalized 

linear model form.  The model could be saved for use in scoring later without 

needing to re-create the model.  

proc score data=train score=model out=scores type=parms; 

   var debtinc ninq clage clno; 

run; 

 

Finally, the Score statement was introduced to some procedures such as proc 

Logistic to accept separate input and output data sets that were not included in the 

model training.   

proc logistic data= train; 

 class bad;  

 model bad= debtinc ninq clage clno;  

 score data= production out=scores;  

run;  

 

SAS Data Step  

SAS® Enterprise Miner® introduced the concept of data step score code. SAS procedures 

were enhanced to include the code statement to produce score code. The following code 

shows creation of the SAS data step score code. 

proc logistic data= train; 

 class bad;  

 model bad= debtinc ninq clage clno;  

 code file= 'c:\temp\scorecode.sas';  
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run; 

 

This form has  some key advantages.  The code is transparent and can be audited.  

Users can easily see the functional form and can reproduce the results in many 

different tests.  The code can be modified and extended.  Users can add additional 

logic for inline preprocessing data preparation such as missing value handling or 

binning, and for post processing such as model comparison or creation of decision 

variables.  A portion of the data step code is shown below. 

… snip … 

*** Effect: DEBTINC; 

_LP0 = _LP0 + (-0.07795619150744) * DEBTINC; 

*** Effect: NINQ; 

_LP0 = _LP0 + (-0.11881501397556) * NINQ; 

*** Effect: CLAGE; 

_LP0 = _LP0 + (0.00596147711961) * CLAGE; 

*** Effect: CLNO; 

_LP0 = _LP0 + (-0.00263720328025) * CLNO; 

 

*** Predicted values; 

drop _MAXP _IY _P0 _P1; 

_TEMP = 4.34723047453817 + _LP0; 

if (_TEMP < 0) then do; 

   _TEMP = exp(_TEMP); 

   _P0 = _TEMP / (1 + _TEMP); 

end; 

… snip … 

 

 

SAS DS2 

The DS2 language is a more structured form of SAS Data step with definitions for packages 

and methods that enables building more modular code.  The primary scoring advantage is 

that DS2 language is portable and can be run outside of a SAS server in a variety of scoring 

environments.  Generally, models are converted from Data step to DS2 for scoring outside 

the SAS server.  SAS® Model Manager® will automatically convert Data step to DS2 as 

needed.  SAS® VDMML Model Studio® is an exception that will create DS2 code for models 

that contain one or more Astore files.   

 

SAS Astore file 

Unfortunately, the size of data step files would be come too large with complex models that 

could produce well over ten thousand lines of data step code.  The next solution was to 

package all the model structure information into a single binary file that could be used to 

later score new data.  These files are named ‘Astore’ – Analytical Store format.  You can 

execute an Astore model in a SAS program, a DS2 program, or directly in a CAS action.  

Astore files are portable and can be used in all scoring services produced by SAS.  The 

following code shows both creation of the Astore file and usage of the Astore file.   

proc gradboost data= casuser.train; 

 target bad / level = nominal;  
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 input debtinc ninq clage clno / level=interval;  

 savestate rstore=casuser.gradboost_model;  

run;  

 

proc astore; 

    score data=casuser.train  

       rstore=casuser.gradboost_model  

       out=casuser.scores ;  

quit; 

 

PMML (Predictive Model Markup Language) 

This format was developed by collaborative members of the Data Mining Group standards 

organization to facilitate the exchange of models between development software and run 

time scoring systems.  A PMML file is not run time code, but rather a description of the 

model.  You still need software to read, interpret, and then execute the model described by 

the PMML file.  SAS® Model Manager® can read PMML files for most models that adhere to 

the PMML 4.2 standard.  The file is converted to SAS Data step code that can be executed 

as part of a SAS program.  In addition, SAS® Enterprise Miner® can create PMML files.   The 

following portion of a PMML file shows lhe Logistic regression model coefficients for this 

sample.  Refer to SAS documentation and DMG information for the range of models that can 

be expressed as PMML files.   

    … snip …   

    <RegressionTable intercept="4.3472304745" targetCategory="0"> 

        <NumericPredictor name="DEBTINC" coefficient="-0.077956192"/> 

        <NumericPredictor name="NINQ" coefficient="-0.118815014"/> 

        <NumericPredictor name="CLAGE" coefficient="0.0059614771"/> 

        <NumericPredictor name="CLNO" coefficient="-0.002637203"/> 

      </RegressionTable> 

    … snip … 

 

Python 

Python has become the most popular open source language for building machine learning 

models.  SAS enables use of Python in some SAS processes.  Most Python models are saved 

as a Python Pickle file which is a general binary format for saving the state of a Python 

package.  A Python program will read the Pickle file when scoring new data.  The process is 

very similar to using an Astore file in a SAS program. The following program can run in SAS 

servers that support Python. Python execution is supported by the DS2 PYMAS package that 

is available with SAS® Model Manager®, SAS® Intelligent Decisioning®, and SAS® Event 

Stream Processing® (ESP). Python can also be executed directly by ESP.  A Python program 

must be written in the following form with a function definition, the list of input variables, a 

comment that lists the output variables, and a return statement.   

import pandas 

import pickle 

def scoreMNLogitModel (CLAGE, CLNO, DEBTINC, NINQ): 

    "Output: I_BAD" 

    # Open a read-only binary file for reading the pickle object 

    _pFile = open('C:\\MyJob\\SGF\\2019\\MNLogit_Model1.pickle', 'rb') 
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    # Unpickle the file to recover the model specification and 

estimates 

    _thisModelFit = pickle.load(_pFile) 

    # Close the binary file 

    _pFile.close() 

    # Construct the input array for scoring  

    # the first term is for the Intercept 

    input_array = pandas.DataFrame([[1.0, DEBTINC, NINQ, CLAGE, CLNO]], 

         columns = ['const', 'DEBTINC', 'NINQ', 'CLAGE', 'CLNO'])  

    # Calculate the predicted probabilities return data frame predProb 

    _predProb = _thisModelFit.predict(input_array) 

    # Determine the predicted target category 

    I_BAD = pandas.to_numeric(_predProb.idxmax(axis = 1)) 

    return(I_BAD) 

 

 

SCORING SERVICES 

SAS provides several scoring services for interactive and operational systems.  Table 1 

shows a matrix of score code and scoring servers. 

SAS 

The traditional SAS® server can execute all types of score code. SAS can run interactively 

through Display Manager or SAS® Studio®, it can run batch jobs processing large tables of 

data, or it can run as a Stored Process for on-demand applications that don’t require sub-

second processing.   

CAS 

The SAS® Viya® CAS server is a big-data, in-memory server for complex data processing 

and analytical workloads.  CAS can run all score code forms except for SAS procedures.  

CAS provides action sets for data step, DS2, and in-database processing.   

INDB 

SAS In Database processing is a feature of the SAS Access engines.  For SAS® Viya®, In-

Database processing is supported for Teradata and Hadoop, both Hive and Spark.  This 

processing is normally used to process large tables of data that are natively created in the 

database.  It is not generally appropriate for scoring transactions being processes by the 

database.   

MAS 

The Micro Analytic Score (MAS) service is a standard SAS® Viya® microservice that contains 

the ability to score models.  MAS provides a REST interface that can be used to provide on-

demand scoring functions that run in the sub-second time scale.  The service is typically 

used in automation applications such as next best offer or fraud detection.  MAS is 

distributed with the SAS® Model Manager® and SAS® Intelligent Decisioning® packages. 

ESP 

The SAS® Event Stream Processing® (ESP) server is a dedicated operational real-time 

system for processing high speed data streams.   The server is typically used in IOT 



6 

systems that require embedded analytical processing.  ESP can be programmed to detect 

patterns and execute actions, including scoring models.   

 

 

Code Types 

SAS Viya Scoring Services 

SAS CAS INDB MAS ESP 

Procedure Y N N N N 

Data Step Y Y N N N 

DS2 Y Y Y Y Y 

PMML Y Y Y Y Y 

Astore Y Y Y Y Y 

Python Y Y N Y Y 

Table 1.  Score code types and SAS® Viya® scoring services. 

SENARIO 

The remainder of this paper will refer to models created from data than is more complex 

than the simple examples shown above. The scenario is a fleet of trucks that are outfitted 

with sensors for collecting real time measurements of various systems on the truck.   

Our task is to predict a future need for maintenance for each truck based on history of 

sensor readings and maintenance events. The target variable is maintenance_flag which has 

two values: 0 and 1. There are 12 fleets. Each fleet has from 1 to 8 trucks. The entire 

training data sample is 8307 rows of data. Each row of data contains a set of truck sensor 

measurements and a target variable that indicates if that truck later needed unscheduled 

maintenance. The data in Table 1 shows the distribution of the target variable for each fleet.   

We can see that one fleet, 01013F1, did not have any truck maintenance events. However, 

we can build a model for the pool of all truck fleets and apply it to that fleet.  This pattern 

demonstrates the power of using pooled data to improve models for all customers.   

 

Table 2.  Distribution of target values for each truck fleet in the data sample.   

MODEL CREATION  

While this paper does not primarily focus on model development, we do need a set of 

models to complete the scenario.  We can start by exploring the data and building an initial 

model in SAS® Visual Statistics®.  In this case we created a Neural Network model due to 

the flexible form. We then transferred the model to Model Studio where we have a more 

robust set of functions for building more models.  We created a model pipeline to train and 

compare multiple candidate models.  In addition to the Neural Network, we also created a 

Bayesian Network model and a Gradient Boosting Model.  These models can be seen in 

displays 1 and 2.  In addition, one of our developers is a Python enthusiast and he created a 

multinomial logistic model.   
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Display 1.  Neural Network Model  
 
Display 2.  Model Studio pipeline 

 

As the candidate models are trained, we can compare them in SAS® Model Manager®.  We 

create one project for deploying this model. In that project, we can see all the candidate 

models including their attributes.  We now have our set of models and can begin the 

process of model deployment.  

 

Display 3.  Model project showing multiple candidate models.   

MODEL SELECTION 

The first step in model deployment is to select and validate which model will be used in 

production.  When the business process is being planned, there may be several candidate 

models that can be used.  You will want the model the produces the best results, but you 

need to balance accuracy with other factors.  Once you know your criteria, you can begin 

the process of model selection.   

 
• Does the model match the business needs? If the model predicts individual sensor 

readings but you need the prediction of unscheduled maintenance, then you need to 

reconsider the model.  It might a good enough proxy for the model you need, or 

maybe not.   

 

• Does the model represent the correct time-period? If the model was trained on data 

from July but will be used in December, when the weather is very different, then you 

need to reconsider the model.   

 

• How robust is the model?  The model should be tested on data that represents the 

run time systems and model performance compared to both other models and the 
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original model training statistics.  If the model performance significantly deviates, 

then you should reconsider the model. 

 

• Can the model be explained?  In many cases, the business requires the model to be 

explainable to external regulators, internal auditors, or customers.  A great complex 

machine learning model might be useful for back-testing and measuring performance 

but might not be appropriate for production decision making.   

 

• Does the model score code execute in the needed run time environments?  Not all 

environments can run all score code types.  The cost of recoding a model for a new 

language is very high.  All the test processes must be repeated.  Models with binary 

formats such as Astore files or Pickle files may not be portable to new languages.   

 

• Is a new model a notable improvement over an older model?  Each new model is a 

candidate model.  It must be compared to the champion model on newer test data.  

If there is no improvement, then you need to reconsider the new model.   

 

• Does the model require data that is available in the run time system?  Some model 

features might not be available in all run time environments.  In that case you need 

to know the cost to place that data in the run time system.   

 

• How fast does the model execute?  Some models might require more time to execute 

than others.  This could be due to the functional form, or the quantity or availability 

of the needed data.  If some of the data requires a fetch from an external database, 

that will cause a significant reduction in run time speed.   

 

We can compare the attributes, variables, and statistics associated with each model. In this 

case, there is a not a significant difference in the data variables needed for each model; 

however, there is a difference in the observed expected performance of the models. Display 

4 shows the results.  The neural network model shows signs of overfitting. The training data 

Cumulative Lift, shown in the brown plot line, is very good. The validation data plot, shown 

in the blue line, is much worse. It has an unusual convex shape indicating a potential 

missing data problem. This model is not robust and should not be used in production.  The 

remaining models, Bayesian Network and Gradient Boosting, show similar performance in 

their training and validation statistics.   
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Display 4.  Comparison of model statistics inside SAS® Model Manager®.  

 

Another tool is model testing. We can score both models on a common test set and look at 

the results is detail for differences. To create the test set, we selected the first ten rows of 

data with target value 1 and next ten rows of data with target value 0.  We need to make 

sure the models can predict these values correctly.  In display 5, we have configured and 

executed the test for each model. 

 

 
Display 5. Model Testing. 

 

The results are clear as shown in Display 6.  The Gradient Boosting model does not correctly 

predict the target value 1 in this sample.  The Bayesian Network correctly predicts both 

target values and is the better choice for our deployment. 
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Display 6.  The results of model testing showing the better Bayesian Network.   

 

Another benefit of the Bayesian Network in this case is that it is more explainable.  This 

could be important in determining why the truck was referred for maintenance or looking for 

trends across the fleet.  The information might be used in warranty claims.  Display 7 shows 

the list of important variables for this model. 

 
Display 7.  The important variables list and diagram for the Bayesian Network model. 
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MODEL DEPLOYMENT 

Now that we have selected our model, we can deploy the score code it to our production 

server.  In our configuration we have two choices.  We can deploy the model to the CAS 

server for BI applications or batch processing. We can deploy the model the MAS service for 

online web service processing. In this scenario, we select the MAS service.  As the trucks 

produce new batches of sensor data, new scores will be generated on demand and 

transmitted to the maintenance facility. When a high score is detected, the facility can 

schedule trucks for service visits.   

 

Display 8.  Model publishing to the MAS service.   

 

The publish function will format the score code and transmit it to the MAS service where it 

will be compiled into memory and exposed in new web service REST endpoint.  There is one 

more test we should run.  We need to test the web service to make sure it produces the 

correct result.  We can use the Publish Validation function in Model Manager to validate the 

endpoint.  In this case, we are using the CAS table to supply the data, but the scoring 

function calls the MAS web service with the exact same interface that will be used by the 

business application.  Use the same data used for model selection to ensure consistency.   

This test insures that the model is ready for use.   Display 8 shows a set of tests that have 

already been run in both CAS and MAS to validate the production model.  The results of the 

test will show that the correct scores have been returned by the service.   
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Display 8.  Testing the models before enabling the production process.   

 

 

MODEL DEPLOYMENT 

The main task now is to embed the model in the business application.  The first thing we 

need to do is promote the model to the production fleet management server.  SAS provides 

the Transfer Service to save and move content between servers. You may move all 

development artifacts including models and rule sets if you expect to make last minute 

changes in the production environment. If you expect to make no changes, then you can 

move only the MAS modules to the production server.  This approach is less flexible but is 

more efficient and eliminates some chances of errors.  Figure 2 illustrates the promotion of 

content between environments. 

 

 

Figure 2. Promotion of models between environments. 

 

In our scenario, we only need to move the MAS modules to the production server.  The 

truck service management application will be programmed to call the MAS service to score 

new data observations and make optimal decisions.  This could happen when the truck is 

stored overnight as daily data is downloaded and run through the scoring service.  It could 

happen as the truck is moving and sensor measurement data is transmitted by LTE 

connection to the fleet data center.  The fleet management application will receive the new, 
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run the model scoring service, and run sets of business rules to determine if action is 

needed and begin a workflow to manage the action.  As a result, the truck might be 

scheduled for maintenance.  This scenario is illustrated in Figure 3. 

 

 

Figure 3.  Fleet management system including model scoring. 

 

MODEL MONITORING 

Once the model has been deployed in the production system, new data will be generated 

based on the model scores. This data should be stored in data sets for later analysis. This 

analysis is known as model monitoring.  SAS® Model Manager® includes built in reports that 

compute the necessary measures for input and output data and the core fit statistics for 

classification and regression models.  The first report we need to see is the variable 

distribution report which shows how the model input data is changing from the original 

model training data at subsequent each time-period. Variable change is important because 

small data value changes can have big effects on model accuracy. Each variable is divided 

into ten bins.  The PSI is computed based on the deviation of proportions of data in each 

bin. We can name the original training sample A and the current scoring sample B.     

 Deviation: i= 100*(Ai/A – Bi/B) 

 Index:  PSI= i(i * ln(Ai/Bi)) 

In our truck fleet scenario, we are computing the model monitoring at four monthly time 

points.  Each variable is divided into ten bins.  In Display 9, the Variable Distribution plot 

shows the deviation in each bin for the Throttle_Pos_Manifold variable. In the Characteristic 

plot, the top 5 variables ranked by total PSI are shown at each time point (1,2,3,4).  These 

variables are the ones most likely driving degradation in the model performance.  The PSI is 

an absolute measure of deviation: larger values indicate greater amounts of deviation. The 

PSI does not show the increasing or decreasing direction of the deviation. One nice property 

is that PSI can be computed equally for continuous and categorical variables.  You can use 

PSI to determine when the model is no longer reliable and needs to be replaced.   
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Display 9.  Monitoring change in the distributions of predictor variables over time. 

 

We can apply the same measures to the output of the models.  Changes in the distributions 

of prediction or probability values also indicate that the data has changed indicating that the 

model might need to be replaced.  We use the term Stability for deviation measures applied 

to model output.  However, we can also measure model accuracy directly.  After one month 

of time, the fleet management system will store records on actual truck maintenance 

events.  At each event, we can determine if the truck needed maintenance for comparison 

to the most recent predictions by the models scores.  We can measure model accuracy with 

model agnostic measures such as Lift, ROC, and Gini index.  This calculation is the model 

accuracy portion of the model monitoring job.  Display 10 shows both the stability measure 

of the predicted probability, and the Lift chart of model accuracy.  Lift is a measure of 

relative model accuracy.  The percentiles are created by ranking the model probabilities 

from high to low.  In each percentile, the model accuracy is compared to the overall model 

accuracy.  Higher values of lift indicate better predictive performance.  In Display 10, we 

see both the model stability chart over the four time periods, and the model lift charts at 

each period.  We can see there is a big change in stability in period 3 that is partially 

corrected in period 4.  We can also see that model lift decreases in each period.  These are 

clear indicators that the model performance is degrading.   
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Display 10.  Model output value changes and accuracy changes over time. 

 

MODEL ANALYSIS 

We can analyze change in model performance using standard statistical modeling tools that 

rank variable importance. This root cause analysis can reveal which factor are truly affecting 

change in accuracy. In the following analysis, we have created a new variable named 

Residual as the difference between predicted maintenance (0,1) and actual maintenance 

(0,1). We then model Residual based on the standard model predictors using a decision tree 

in SAS® Visual Analytics, as shown in Display 11. This model shows that the variables 

Mass_Air_Flow_Rate, Engine_Oil_Temp, and Engine_Load most contribute to model error.  

The business should ask their engineers to examine the factors influencing those variables 

to improve truck reliability.   

 

Display 11.  Root cause analysis of the model errors. 
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As a result, the business might also require the model be retrained to improve accuracy.  

The data scientist can trigger the retraining using SAS® Model Manager® for models 

developed in Model Studio or can directly reanalyze the data and produce new models.  In 

either case, the models can be added to the original model as new versions.  The model 

selection, testing, and deployment processes will then be repeated.  The model monitoring 

jobs can then be executed in subsequent months and the performance of the project’s 

models can be plotted and analyzed over many generations of the deployed model.  This 

view provides a long-term perspective on the impact of predictive models on the business 

outcome.  

We can also directly visualize the impact of model performance on the business objectives.  

We have data of model performance over time generated by the model monitoring jobs.  

We can also accumulate data over time on business performance for comparison purposes.  

In this scenario, we have accolated data on the number of truck maintenance events, 

maintenance costs, and loss of income due to the loss of truck usage during maintenance 

events.  In Display 10, we have plotted both model performance and business losses by 

month on the same scale.  We can see that in months 1, 2, and 3, that business losses 

declined, but that model performance was also declining.  This shows that we were still 

deriving benefit from the model despite the degradation.  However, in month four, the 

business losses increased indicating that perhaps model inaccuracy is not contributing to 

predicted maintenance false positives resulting it excessive loss of truck usage.   

 

Display 11.  Comparison of model performance and business loss over time. 

We can correct that chart by retraining the models.  However, we should ask the question 

what can do to improve cumulative business performance.  Each month of model accuracy 

data contains the information needed to retrain the candidate models.  If we retrained each 

month, rather than waiting for more significant model error, the monthly degradation in 

model performance would not change, but the cumulative degradation model performance 

should be reduced.  Figure 12 illustrates this ideal situation. The red line added to the chart 

shows the expected effect of retraining the model each month. At the start of each month, 

model accuracy has been restored to the level of model training. If no new data is 

introduced and no new and improved modeling method is introduced, each model retraining 

should achieve the same level of accuracy. At the end of the month model accuracy has 

degraded by the expected amount. In this case, cumulative business losses should decline 

to their minimal value and remain at that amount. Appropriately frequent retraining of the 

model should result in minimal business loss. There is a limit to this effect. You should not 

retrain a model when an insufficient amount of new data has been accumulated, which 

would result in a less accurate model. You should retrain the model at a rate that does not 

match the business cycle.  For instance, if the trucks were running 24 hours a day in three 

shifts, then you might not want to apply a model trained on data from the overnight shift on 

measurements taken in the daytime when ambient temperatures are higher.   
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Display 12.  Ideal model performance degradation and improved business loss. 

CONCLUSION 

The modern analytic life cycle of model creation, model deployment, and model monitoring 

provides a strong foundation for using machine learning and artificial intelligence to improve 

business performance.  However, there are many details that need to be addressed to 

deploy models into automated business processes.  Following a diligent process of model 

selection, testing, deployment, monitoring, and analysis can make the outcomes more 

reliable and efficient.  This paper has demonstrated the SAS approach to controlling the 

model lifecycle, and choices the business can make to make the outcome more effective.  
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ABSTRACT 

Model retraining is a common practice in the advanced model life cycle.  However, the 

critical question is how do you know when you need to retrain the model?  Once the model 

is retrained, how do we determine when we need to redeploy the model?  Can we predict 

how long the model will be relevant?  The answers can depend on one or more of many 

factors including calendar fluctuations, business cycles, data drift, model performance, 

expected benefit, and many others.  Given those factors, we want to find the optimal points 

in time to retrain and redeploy a predictive model.  This paper presents a simulation study 

of different strategies and techniques for optimizing model retraining with the goal of 

maintaining optimal business performance. 

INTRODUCTION 

Most data mining studies focus on building the most accurate predictive models.  

Competition programs such as Kaggle often supply a single large data set and pose a 

unique prediction problem.  The typical task is formed to create one predictive model with 

maximum test data accuracy.  Competitive models are often formulas that have been 

carefully tuned to the unique objective function on the single large data set.  Once the 

competition is completed, the supplier of the data harvests the knowledge created by the 

competitors.  The competitors move on to the next challenge.  However, data does not exist 

as a single point in time.  In real-world applications, data is continuously collected from 

operational systems and is subject to changing conditions.  The data collected in the second 

month may be different than the data collected in the first month.  Therefore, we may need 

to create a new model in the second month or later.  The process of creating a new model 

to adapt to changing patterns in the data is called “model retraining”.  This paper expands 

on a sample of retraining strategies using a long running data sample from a publicly 

available source.   

MODEL DECAY 

In our 2019 paper “The Aftermath What Happens After You Deploy Your Models and 

Decisions”, we described how models are scored in an operational process. We also 

concluded with a section on model decay and retraining, and then presented a theoretical 

example.  Figure 1 shows two plots from that paper.  In both plots, the lower green line 

shows a measure of model performance for a real model created on that data sample.  The 

thicker red lines show theoretical forms of model decay.  The top plot shows the ideal 

situation in the top red line showing a continuously high level of model performance versus 

the realistic situation with the descending line of model performance.  This plot is unrealistic 

due to data drift and model decay, which refer to the natural process of making less 

accurate predictions due to changes in data over time.  In the bottom plot, the top red line 

shows a more realistic situation where the model is retrained each month, restoring the 

predictive accuracy to the maximum expected level each month.  The overall gain is much 

greater from the frequently trained models than the originally trained model shown in the 

lower green line in each plot.  However, this is a theoretical example based on data that was 

over-sampled to create multiple time periods.   
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Figure 1. Theoretical Model Performance in Absence of Model Decay and by Frequent Retraining 

MODEL MONITORING AND RETRAINING  

There are numerous potential strategies for monitoring model performance and scheduling 

model retraining.  Selection of a retraining strategy often depends on the business needs.  

Some processes can accept new models whenever they are created and validated.  Some 

processes can accept new models only at fixed points in time.  In many cases, models are 

created for comparison but never promoted to production. The main point is that model 

monitoring and retraining must be part of the business dynamic. 

MONITORING 

Model monitoring is a process for determining how well a model is or may be performing.  

There are several potential analyses that might be performed.  Model monitoring process 

should measure all these factors: 

• Data drift.  Data values naturally changes over time due to numerous factors. People 

age.  The economy becomes more or less positive.  Mechanical parts erode or get 

updated.  Competitors improve.  Measuring changes in data values can be an early 

indicator of changes in model or business performance; however, not necessarily 

always.   

• Model stability.  Due to changes in data values, the distribution of model predictions 

may change.  These changes will almost certainly impact business performance or 

planning.  For instance, if predictions of truck maintenance-need increases, then 

more trucks will be scheduled for visits to the shop. More visits increase expenses 

regardless of the prediction accuracy.   

• Model accuracy.  If predictions target labels are available, then we may compute 

model accuracy measures. Degradation of model accuracy outside of acceptable 

bounds indicate a need for model retraining.   

• Variable contribution. Changes in variable contribution to the model score or the 

model accuracy should be measured.  These changes are also leading indicators of 

changes in model performance and may be used for reporting inferences about which 

variables caused changes in stability or accuracy.  This may also be termed model 

interpretability. 
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The results of model monitoring should be stored and are used for model governance, 

statistical and business analysis, and as part of the process of determining if the model 

needs to be retrained. 

RETRAINING 

Model retraining is the process of recomputing a predictive or descriptive model on new 

data. Each new set of coefficients or effects is considered a new model.  Models are 

retrained for multiple reasons.   

• Business strategy.  Changes to objectives such as increasing or decreasing 

acceptable levels of credit risk, investment in growth of new product lines, or 

numerous other facets will create the need for retraining models or creating new 

models. 

• External conditions.  Changes in business factors such as interest rates, new data 

sources, or suppliers of real-time truck metrics may create a need to retrain models.   

• Business performance.  Changes in measure such as response to promotions, credit 

repayment, truck repairs, and numerous others will create the need model retraining 

and / or review of the business strategy.  Some change will be needed. 

• Model Monitoring.  Changes in the measures reported by model monitoring may 

create the need for retraining the model.  This may be due to declining accuracy, 

data drift, or stability. 

 

BUSINESS PROCESS  

Organizations have many reasons for building predictive and descriptive models.  Some 

models are used only for inference to learn more about the processes that shape the 

business or the expected impact of new strategies.  Other models are created for integration 

into operational systems that interact with customer and business touchpoints to make the 

business more efficient, drive growth, improve loyalty, or other systematic objectives.  The 

flow chart shown in Figure 2 is just one possible representation of a process for managing 

models.   

The process flow is cyclical; however, we can say it starts with an operational business 

process that consumes and produces data.  We are only representing the process for 

monitoring and retraining a model.  We are not representing the process for defining a 

business problem and building the initial model.  Here are the possible paths to start a 

model retraining process in this example: 

• A timer event starts each cycle of the process, according to some predefined 

schedule.   

• One timer event directly starts a model retraining.  This is the process we are using 

in our simulation.  

• Another timer event directly starts a model monitoring.  The is the process we are 

using in our simulation.  

• Another timer event checks for new data.  If new data exists, a new monitoring job 

is executed.  This could also be the process we are using in our simulation.  New 

flight data arrives in monthly chunks.  

• Regardless of the source, we always want the monitor process to record the current 

statistics for future analysis. 
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• A KPI measures computed from the monitoring output may drive the retraining.  For 

instance, we may want to retrain if model accuracy falls below a threshold such as 

misclassification greater than 20%. 

• A business strategy change may trigger a model retraining if not a completely new 

model.  

• The newly retrained model should be tested for measures of robustness, accuracy, or 

expected ROI.  It may be compared to a champion model.  The model may fail 

testing and trigger a review of the model building process. 

• If a new model passes testing, it may be deployed into the production environment 

for integration into the operational business process.   

 

Figure 2. Sample Process Flow Diagram for Model Monitoring and Retraining 

 

IMPLEMENTATION 

The goal of our analysis is to test the effect of different strategies for model monitoring and 

retraining on long term model performance.  To create this very custom process, completely 

new SAS code was written.  Here are the descriptions for the major components of the 

code: 

• The primary data was downloaded from the Bureau of Labor Statistics web site.  The 

data consists of 145M rows of data stored in multiple CSV files. 

• PROC IMPORT was used to import each CSV file into a corresponding SAS data set.  

Minimal data cleaning was performed at this stage.  Several variables that are 

naturally numerical integers were mistakenly imported as character variables in the 

SAS tables and needed to be changed in the next step. 

• DATA step and Base SAS procedures were used to transform and clean the data.  A 

small number of observations had missing values for departure or arrival time and 
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were removed from the data.  Several character variables were transformed into 

numerical columns.  Variables that were irrelevant to the analysis were dropped.  

Variables that were proxies for flight late arrival were dropped. The target variable 

LATE was created with numerical Boolean value of (Arrival_Delay > 15).  All months 

of data were combined into one large table with 145M observations.  This “big table” 

was for all calculations. 

• DATA step was used to create Training and Monitoring samples by querying the big 

table for specific months of data.  The Training data was divided randomly into 

approximately equal samples of Train and Test data.  Train data was used to build 

the model. Test data was used to report the statistics from the training exercise.   

• SAS High-Performance Analytics procedures were used to create Decision Tree and 

Logistic Regression models.  Default settings were used in all cases.  Score code was 

saved from each training run into a directory of files.  The score code was used to 

compute test data statistics and for model monitoring.  PROC HPSPLIT and ODS were 

used to create the Decision Tree display images. 

• Base SAS procedures were used to test statistics and model monitoring statistics 

such as mean monthly values of Late proportion, Probability, Misclassification, and 

True Positive rates.  

• PROC SGPLOT and PROC PRINT were used to make all graphs and table displays.   

• The SAS macro %SIM was used to script these operations.  The %SIM macro was 

developed to simulate model retraining and monitoring with different time periods for 

the entire 303 months of data.  All statistics used in this paper came from the %SIM 

macro. 

Note: All SAS code that was used for this paper is available from the author upon request. 

DATA  

For the remainder of this paper, we will refer to the Airline flight data used in several data 

mining competitions and samples.  The data is freely available from the U.S. Bureau of 

Transportation Statistics.  The data starts in October of 1987 and continues to be updated. 

Our sample ranges from 1987 until the end of 2012.  The data contains variables describing 

various attributes about the flight including the scheduled arrival time and the actual arrival 

time.  Several papers have been written about this data including a visualization paper by 

Rick Wicklen as contribution to the ASA Data Expo contest in 2009.   

We use this data because it represents a consistent source of data over many years, which 

has the potential to show change in data values and patterns over that time.  In this 

exercise, our goal is to show long term trends in model monitoring; we are not trying to 

infer new knowledge about the data or build the most sophisticated model.  Our sample 

contains 145,664,836 observations.  All variables that would not be available at the time of 

model building or model deployment have been rejected.  The first ten rows of data are 

printed in Table 1. 
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Table 1. Sample of Data Showing Variables with Typical Values 

 

The derived target variable is named late and is either 0 or 1 to indicate more than 15 

minutes late.  The variables starting with CRS are scheduled times.  The only variable that 

depends on the instance of the flight is departure delay, DEP_DELAY, which is necessary to 

produce good models without creating complicated lag variables.   

The business of managing flight on-time performance has many latent factors.  Airlines are 

reported to implement procedures to control and improve their on-time percentage as 

needed.  They may use this data to make announcements about their performance and 

enhance their marketing campaigns.  Flights that leave late may spend more fuel in an 

effort to regain time.  Flight crew and airport expenses may constrain on time performance.     

Table 2 shows the number of flights aggregated by month over the entire time period.  

Column N refers to the total number of flights.  The monthly late rate averages 19.0% and 

ranges from 10.2% to 32.0%.  Numeric model input predictor variables are also shown.  

The scheduled elapsed time, CRS_ELAPSED_TIME, shows a notably small standard 

deviation, perhaps indicating there has been little overall change in the scheduled routes.  

 

Table 2. Aggregated Monthly Means for the Entire Period of 303 Months 

 

The plot of the number of flights per month is more interesting, in Figure 3.  The sample 

contains 303 months of data over 25 years.  The small yearly seasonality is apparent.  

There are peaks in travel around the winter holidays and over the northern hemisphere 

summer vacation periods.  Markers have been added for selected significant global events.   

The dramatic impact that the September 11, 2001 terror attacks had an obvious impact on 

air travel, as expected, followed by a dramatic rise in the number of flights in January 2003.  

The rate of flights that are late each month is shown in the lower plot.  There is minimal 

correlation between the total number of flights and the rate of late flights.   
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Figure 3. Total Number of Airline Flights per Month with Significant Event Markers 

Most treatments of this data focus on modeling or visualizing the entire data set.  However, 

imagine that you are an analyst working in 1987.   

 

MODELS 

The data is provided in monthly data sets.  We created our first model on the first month of 

data, October of 1987, which contains 448620 rows.  The data is randomly split into half 

training data and half test data.  The model is a default decision tree created by PROC 

HPSPLIT, which uses 10-fold cross validation to control the growth of the tree.   A decision 

tree is good default model for this study since it is tolerant to new data values and naturally 

incorporates variable selection. Figure 4 illustrates the model results with the complete 

classification tree for the first month of data and the top subtree with details about the 

variables used in the model. 

The complete classification tree demonstrates a complex model using several variables.  The 

categorical variables identifying the airline, origination airport, and destination airport have 

higher cardinality and contribute to many of the tree branches.  The subtree view shows top 

portion of the tree where departure delay is the most significant variable, as expected, but 

that other variables contribute to the classification values.   
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Figure 4. Classification Tree and Subtree of Model Variables 

 

The relative variable importance values are shown in Table 3.  These values correlate with 

the detail view of the decision tree.  After DEP_DELAY, the remaining variables retain 

significant impact on the classification rates. 

 

Table 3. Decision Tree Variable Importance Measures 

 

Table 4 demonstrates the Decision Tree model results on the test sample from the first 

month of data. Late is the proportion of late flights, i_late is the proportion of flights 

classified as late, i_misc is the overall misclassification rate, and i_tp is the proportion of 

flights correctly classified as late. The score code was then applied to the test data sample 

and the classification (i_late), misclassification flag (i_misc), and true positive flag (i_tp) 

were computed.  PROC MEANS was run to summarize the test scores and produced the data 

shown in Table 4.  We can see that in the test sample, 17.3% of the flights were late, 7.2% 
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of flights were misclassified, and 10% of flights were correctly classified as late.  These 

metrics will be used to monitor model accuracy in the remaining data.   

 

Table 4. Decision Tree Model Results on Test Sample from the First Month of Data 

 

For comparison purposes, we also ran a Logistic Regression model through the same 

process.  The absolute results are similar as shown in table 7.  The misclassification rate is 

1.2% higher, and the true positive detection is 1.5% lower.   

 

 

Table 5. Logistic Regression Model Results on Test Sample on the First Month of Data 

 

The results are not as good as the Decision Tree.  Table 6 was generated to compare the 

two models. The table illustrates the comparison of models on first month on test data.   

Variable ms is the sequential month counter.  TPR is the sample true positive rate.  Decision 

Tree is champion based on misclassification and true positive rates. We can conclude that 

we have a valid modeling process using the default decision tree and will use that for the 

following results.   

 

 

Table 6. Comparison of Models on First Month on Test Data 
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It would have been tempting to build models on the entire data that account for all the 

seasonality, long term trends, forecasts, and significant events ahead of time. However, we 

must put ourselves into the position of the analyst in November of 1987 who received this 

minimal data with the task of producing models that would give the best prediction for each 

flight as it happens.  We would start with only one month of data.   

A good question to ask is what decision tree models would have been available to the 

analyst in 1987, and what kind of computers would have been used.  Brieman et al. 

published “Classification and Regression Trees” in 1984 and Quinlan published “Decision 

Trees as Probabilistic Classifiers” in 1987.  For our purposes, the general answer is good 

enough.  We can proceed using Decision Trees.  However, we should consider that in a real 

life situation we should evaluate new models at every opportunity for improving a model 

retraining process. 

SIMULATIONS 

The next task is to see how that model performs on subsequent months.  We built our first 

model on a training sample from October.  We then scored the model on all the data from 

October, November, and December, giving us three full months of history.   

THREE-MONTH RESULTS 

We come back to work in January to see how we are doing.  Figure 5 illustrates the plots of 

the monthly proportion of flights that are late, misclassified, and correctly classified as late.  

The first three months of model monitoring show decreasing rates of accuracy and the 

scatter plot shows a possible relationship between accuracy and proportion late.  The plots 

are unspectacular but appear to show trends.  The proportion of late flights and the 

misclassified rate are increasing.  The true positive rate is decreasing.  This appears to 

follow the theory perfectly, as data changes over time that model accuracy and performance 

degrades.   

 

 

Figure 5. First Three Months of Model Monitoring and Proportion Relationship 

 

We now have a decision to make. Should we wait another three months to see what 

happens?  Or should we build a new model now and risk overfitting a short-term trend? We 

decide to do both.  We will build a new model and compare the two strategies after we take 

a vacation and return in April. 
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SIX-MONTH RESULTS 

We come back from our ski vacation in April 1988 to examine the results.  First, we look at 

the results from the single model we trained based on data from October. The surprising 

results are shown in Figure 6.  After the model decay observed in December, the model 

performed more accurately in months January, February, and March.  This correlation with 

the changing proportion of late flights is marked.  We can hypothesize that the pattern of 

late flights is different for the very busy month of December.    

 

 

Figure 6. Six-Month Results on for the Model Originally Trained on using October Data 

 

These scattered results are not definitive.  To find a better answer, we trained and 

monitored models across all combinations of time periods. This included multiple-month 

training periods and multiple-month monitor periods for the first six months.  We sampled 

24 different combinations.  The resulting matrix of data was fed into PROC SGPLOT to 

create the heatmap shown in Figure 7.  The color response statistic is the mean.  The most 

accuracy monitor periods have the most training time in months.  The best continuous 

solution across the sample is the diagonal where the most possible training months were 

used to create the model monitored in the subsequent month.  The best discontinuous 

solution is the diagonal up to month 6 when three or four months of training data were 

better than five.   
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Figure 7. Model Monitoring by Training Time Period in Months 

 

ONE YEAR RESULTS 

Based on the knowledge we gained in April that longer training periods performed better on 

future data, we tested four strategies for the remainder of the first twelve-month period.  

The standard naïve single model and a model trained on each month of data are shown in 

Figure 8.  We focus on the true positive rate as that measure that will most impact our 

ability to identify and react to flights that are predicted to be late.  In Figure 8, the 

monitored true positive rate is below 50% in most months.  It is surprising that the single 

model trained using October data is a better predictor of the next 12 months than the set of 

eleven models trained to predict only one month ahead for the next 12 months.  However, 

neither model strategy is promising.   

 

 

 

Figure 8. Model Performance of Naïve Models Trained on One Month and Each Month 

Our next strategy is to test long model training periods.  Each of these strategies improve 

performance as displayed in Figure 9.  They show a much-improved true positive rate over 

the naïve models with true positive rates greater than 50% most of the time.  In particular, 
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the model based on four months of training time and three months of monitoring time did 

very well.  This is likely due to including enough data to capture periodic effects. The data is 

known to have seasonal patterns.  There are more flights around the winter holidays and 

summer vacations.  There are also more weather delays in the northern hemisphere in 

winter.  However, at this point in time, October 1998, we do not have enough data to 

conclude that periodicity is a main effect.  

 

 

 

Figure 9. Four Model Training and Monitoring Scenarios with Longer Training Periods 

 

Based on these results, we will apply the 4-3 model (4 training months to 3 monitor 

months) to the remainder of the data.  Every three months a new model will be created 

using the previous four months of training data.  This creates a one-month overlap in 

training data between consecutive models, which helps smooth the changes from one model 

to the next.   

This strategy will result in 100 new model training events.  Since we are creating both a 

decision tree model and a logistic regression model, that will create 200 models.  Each 

model will be created on four months of data.  Months have on average approximately 500 

thousand observations and we use half the sample for training and half for testing thus 

resulting in training samples of approximately 500K*4/2= 1 million rows, depending on the 

actual airline traffic for those months.  The total amount of data used in training models will 

be approximately 200*500 M = 10000 M = 10 billion rows! 

TWENTY-FIVE YEAR RESULTS 
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Now jump to the beginning of the year 2013.  It has been 25 years and three months since 

we started this project.  We have been building models and monitoring their progress during 

that time.  Before we retire from our cushy data scientist position, we will take one more 

look at the relative model performance of each strategy.   

The single model (1-303) strategy now produces an expected result.  The green top line is 

the true positive rate, TPR, which shows a downward trend in expected value.  The blue 

middle line is the actual proportion of late flights, which does not show a strong long-term 

trend.  The bottom red line is the monthly misclassification rate that shows a slight upward 

trend.  However, we don’t yet understand the pattern changes that cause this decay in 

performance; that work is outside the scope of this paper.  

We have also been running the four-three strategy where each model was trained on the 

four most recent months of historical data and then monitored for the next three months.  

The difference is not as great as expected based on the first year of performance.  The 

baseline model strategy has a mean monthly TPR of 0.382; the four-three strategy 

produces 0.411.  Neither strategy is compelling.   

Since we now have 25 years of data, we can test other long-term strategies.  We believe 

that there are seasonal effects from monthly up to yearly if not longer.  Therefore, we 

tested additional strategies training data on twelve and eighteen months of history.  The 12-

6 and 18-6 results simulations produce incremental improvements.  The results are plotted 

in Figure 10 and listed in Table 7.  Each strategy produces different cycles of better and 

worse model performance, and all show levels of the long-term trend to worse TPR values.  

Further studies might discover a strategy or model function that produces better and more 

reliable results. 

 

 

Figure 10. Long Term Model Performance of Multiple Retraining Strategies 

 

The final column of Table 9 is the rate of months that have a true positive rate greater than 

0.5.  This could be an important measure of model usefulness.  None of the scenarios 

reliably produced models with a monthly TPR greater than 0.5.  This shows a weakness with 
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all the models used in this exercise.  The last two cells are highlighted as they show a 

significantly elevated monthly TPR.  The training fit statistics, computed on test data, 

indicate we may have hit the limit on core model accuracy.    

 

 

Strategy 

Training Monitoring: 303 months 

Months 
per 
model 

Mean 
Misclassification 
Rate 

Mean       
TPR 

Months 
per 
model 

Mean Monthly 
Misclassification 
Rate 

Mean 
Monthly 
TPR 

Monthly       
TPR > 
50% 

Baseline 1  0.072 0.581 303 0.117 0.399 0.134 

4-3 4 0.119 0.400 3 0.113 0.411 0.155 

12-12 12 0.135 0.411 12 0.111 0.422 0.207 

12-6 12 0.112 0.418 6 0.110 0.428 0.249 

18-6 18 0.113 0.415 6 0.111 0.427 0.270 

Table 7. Comparison of Model Retraining Strategies 

 

CORRELATION 

Another aspect is correlation between model performance and the proportion of late flights 

as displayed clearly in Figure 11.  The plots of the baseline 1-303 strategy and the best-

performing 18-6 strategy are shown in Figure 11.  In both cases, the misclassifications 

correlate well with the target variable, but the true positive rate shows significant 

dispersion.  The 18-6 models show more true positive values above 50% especially across 

the greater vales of late arrival rate.  This gives us more confidence in the 18-6 strategy. 

 

 

Figure 11. Long Term Correlation between Classification Measures and Late Proportion 

 

SAS MODEL MANAGER 

The SAS® Model Manager product contains many of the capabilities shown in this paper.  

You can register all models that were creating in this exercise into a versioned repository by 

using a GUI application, SAS macros, Python code, or REST API services.  You can execute 

model monitoring tasks that are similar to the ones presented here with additional 

capabilities. These capabilities include computing variable distributions, input and output 
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variable drift, and rank order statistics such as lift, captured response, KS, and Gini.  SAS 

Model Manager can also compute a Feature Contribute Index to measure the correlation 

between predicted values and input variables over time.  SAS Model Manager provides 

workflow capabilities to manage the business process shown in Figure 2.  Finally, SAS Model 

Manager can test and deploy SAS and Python models to both batch and real-time servers 

for operational integration.  However, SAS Model Manager does not have the extensive 

simulation capabilities show in this paper.  Most users are expected to be working in the 

moment, rather than analyzing twenty-five years of data.  If you are interested in this 

capability, contact the author for more details.   

CONCLUSION 

Model monitoring and retraining are key parts of any operational model scoring process.  

Many paths can lead to model retraining.  In this work we studied retraining models at 

regular intervals over a very long running process that has produced 25 years of data. The 

length of the time period of data used to train the models and the length of time monitoring 

the models in production have significant impacts on lifetime model accuracy.  Data 

scientists should carefully monitor their models and conduct experiments to optimize those 

parameters.   

The simulation capabilities developed for this paper were useful in testing different 

combinations of retraining and monitoring parameters.  We found that this data contains 

both short and long-term periodic effects.  The best combination of parameters we found 

used an 18-month sample to predict a 6-month interval.  The core finding is that a training 

period should be long enough to accommodate periodic effects and should be longer than 

the monitoring period.  We cannot generalize that specific recommendation to every 

process, but we want to highlight the need for observing and adjusting model retraining and 

monitoring. The simulation framework could be extended to test additional parameters and 

scenarios. 

The Airline On-Time flight data from the National Bureau of Transportation Statistics 

continues to provide a rich source of publicly available data.  The data is now complete from 

the 1987 through 2019.   

Future work could go in several directions.  We should study the effects of implementing 

champion-challenger strategies and dynamically changing the champion model as accuracy 

decreases.  We should study the possibility of using forecasting to estimate when models 

might need retraining especially in the presence of seasonal or long-term effects.  We 

should look at using optimization to dynamically adjust the training and monitoring 

parameters. 

A final key finding is that the SAS system makes a great platform for importing and cleaning 

extremely large amounts of data, and for computationally processing that data over long 

periods of time.  Each simulation processed billions of records over hundreds of iterations 

within several hours.  At the end the same software was able to summarize the results and 

produce useful and professional tables and graphs.   
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ABSTRACT

Open-source models that are developed in Python, R, TensorFlow, and so on, are
increasingly important to organizations that produce and deploy analytical and machine
learning models. Not only are the models created using open-source tools, they are
deployed to open-source environments that use Docker and Kubernetes in place of more
traditional environments. SAS® Model Manager is evolving to be a management platform
that handles traditional SAS models and open-source models as equal partners. This paper
discusses strategies for managing the life cycles of Python, R, and TensorFlow models using
SAS Model Manager.

INTRODUCTION

In the open-source world, Python and R have become the prevalent analytic modeling
languages. Packages such as scikit-learn and scipy provide powerful analytics, but the
standard problem applies: how to take the model from development to production.

Since its inception, Model Manager has primarily worked with models produced using SAS.
This includes models that are created in Enterprise Miner or Model Studio, or written in
SAS® Data Step or using Proc invocations. However, Model Manager also works with models
produced outside of SAS environments by importing PMML files. And since Model Manager
can manage any set of files, it has always been possible to manage the code of models
developed in the Python and R languages. But managing and versioning the code is not the
same as managing the model.

As many organizations are discovering, data scientists are very good at producing models.
These models, however, must be managed as part of the model life cycle. For example,
models require:

• Vetting to make sure that the models are solving the problem

• Comparing to make sure that the organization selects the best model

• Deploying so that the models can do the work

• Monitoring to make sure that the models continue to do a good job

Figure 1: The model life cycle 
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Model Manager can play a large part in the model life cycle. But as stated previously, in the 
past it has been primarily a code repository for models that were not proprietary SAS 
models. A goal for the SAS® Viya® version of Model Manager is to treat open-source models 
as first-class models that can be part of the entire model life cycle. This means that they 
can be tested, deployed, and monitored either on their own or alongside SAS models. Model 
Manager has evolved to provide this functionality, and by providing the ability to publish 
models to standalone docker containers, it becomes possible to deploy the models into 
open-source environments. 

Recently, SAS released SAS® Open Model Manager, which is targeted at the open-source 
community. Open Model Manager provides most of the features associated with standard 
Model Manager delivered in a standalone docker container. While Open Model Manager is 
not integrated with other SAS products, it provides a powerful platform for working with 
models written in the Python and R languages and treats those models as first-class models. 
All features described in this paper can be used in either Model Manager or Open Model 
Manager. 

This paper provides a skeleton for using Model Manager with open-source models to 
perform the following actions: 

• Registering open-source models into the model repository 

• Comparing and validating the models prior to deployment 

• Deploying open-source models to standalone containers 

• Monitoring the model performance 

All of the coding and model examples in this paper are written in Python. 

WRITING CODE AND REGISTERING A MODEL 

The first step in the model life cycle is to create the model code. This can come from hand 
writing the code, but increasingly modelers are using machine learning algorithms to 
discover their models. 

Here is an example of a simple model discovery method in the scikit-learn package that 
generates a decision tree model: 

from pathlib import Path 
import pandas as pd 
import sklearn.tree as tree 
from sklearn.model_selection import train_test_split 
  
dataFolder = Path.cwd() / 'hmeq/DATA'  
zipFolder = Path.cwd() / 'hmeq/ZIP'  
modelPrefix = 'hmeqClassTree' 
yName = 'BAD'  
catName = ['JOB', 'REASON']  
intName = ['CLAGE', 'CLNO', 'DEBTINC', 'DELINQ', 'DEROG', 'NINQ', 'YOJ']  
dataPath = (Path(dataFolder) / 'hmeq.csv') 
inputData =  
   pd.read_csv(dataPath, sep=',', usecols=[yName]+catName+intName) 
useColumn = [yName]  
useColumn.extend(catName + intName)  
inputData = inputData[useColumn].dropna() 
resultCol = inputData[yName]  
xTrain, xTest, yTrain, yTest =  
   train_test_split(inputData, resultCol, test_size=0.2, random_state=42) 
model = tree.DecisionTreeClassifier(criterion='entropy', max_depth=5,  
   min_samples_split=20, min_samples_leaf=10, random_state=42) 



3 

 
DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=5, 

     max_features=None, max_leaf_nodes=None,  min_impurity_decrease=0.0,  
   min_impurity_split=None, min_samples_leaf=10, min_samples_split=20, 
   min_weight_fraction_leaf=0.0, presort=False, random_state=42,  
   splitter='best') 
x = pd.get_dummies(xTrain[catName].astype('category'))  
x = x.join(xTrain[intName])  
y = yTrain.astype('category')  
trainedModel = model.fit(x, y) 

 

The trainedModel variable now contains a serialized model. The next step is to register the 
model with Model Manager. For Model Manager the model can be just the model code or the 
serialized model written to a pickle file, but at that point only the function of the model is 
being managed. To work well in a model life cycle, we also need some understanding of the 
model. For that we need to know the input and output variables used by the model. It is 
also useful to know something about the training data and how the model works with that 
data. To help with this, we provide the following package: pickeZip-mm. 

You can use pickleZip-mm to get all of the metadata that Model Manager needs to work with 
the model, such as the input and output variables, model algorithm and model function. But 
to gain a better understanding of the model and how it compares to other models, 
pickleZip-mm also produces a collection of fit statistics as well as Lift and Roc charts. 

The following example shows how to work with pickleZip-mm, the pzmm package, to 
register the newly trained model into Model Manager: 

 

import pzmm 
yCategory = y.cat.categories 
outputVar = pd.DataFrame(columns=['EM_EVENTPROBABILITY','EM_CLASSIFICATION']) 
outputVar['EM_CLASSIFICATION'] = yCategory.astype('str') 
outputVar['EM_EVENTPROBABILITY'] = 0.5 
inputVar = inputData[catName+intName] 
 
modelName = 'Home Equity Loan Classification Tree' 
remotePath = 'tmp/' + modelPrefix + '.pickle' 
predictMethod = f'{model}.predict_proba({input})' 
 
# Crate the score code for the model and write it to the file system 
SC = pzmm.ScoreCode() 
SC.writeScoreCode(inputDF=inputData[catName+intName], 
                  targetDF=inputData[yName], 
                  modelPrefix=modelPrefix, 
                  predictMethod=predictMethod, 
                  pRemotePath=remotePath, 
                  pyPath=zipFolder) 
 
# Write the pickle file to the file system 
pzmm.PickleModel.pickleTrainedModel(trainedModel, modelPrefix, zipFolder) 
 
# Write the JSON metadata files to the file system 
JSONFiles = pzmm.JSONFiles 
JSONFiles.writeVarJSON(inputVar, isInput=True, jPath=zipFolder) 
JSONFiles.writeVarJSON(outputVar, isInput=False, jPath=zipFolder) 
 
modelName = 'Home Equity Loan Classification Tree' 
JSONFiles.writeModelPropertiesJSON(modelName=modelName, 



4 

                                   modelDesc='', 
                                   targetVariable=yName, 
                                   modelType='tree', 
                                   modelPredictors=(catName + intName), 
                                        
targetEvent=yCategory[1].astype('str'), 
                                numTargetCategories=len(yCategory), 
                                eventProbVar='EM_EVENTPROBABILITY', 
                                jPath=zipFolder) 
 
JSONFiles.writeFileMetadataJSON(modelPrefix, jPath=zipFolder) 
 
# Calculate fit statistics, roc, and lift charts 
trainData = inputData 
validatePath = (Path(dataFolder) / 'hmeq_validate.csv') 
validateData =  

pd.read_csv(validtePath, sep=',', usecols=[yName]+catName+intName) 
testPath = (Path(dataFolder) / 'hmeq_test.csv') 
testData =  

pd.read_csv(testPath, sep=',', usecols=[yName]+catName+intName) 
 
calculateFitStats(validateData, trainData, testData, zipFolder) 
calculateLiftStats(validateData, trainData, testData, zipFolder) 
calculateROCStats(validateData, trainData, testData, zipFolder) 
 
# Create a zip file 
pzmm.ZipModel.zipFiles(fileDir=zipFolder, modelPrefix=modelPrefix) 
 
# Import the model into Model Manager 
host = 'modelmanager.mycompany.com' 
ModelImport = pzmm.ModelImport(host) 
zPath = Path(zipFolder) / (modelPrefix + '.zip') 
ModelImport.importModel(modelPrefix, projectName='ML_HMEQ', zPath=zPath) 
 
 
With the importModel call, the ZIP file is imported and a model named “hmeqClassTree” is 
imported into a Model Manager project named “ML_HMEQ”. 
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Figure 2: Imported hmeqClassTree model 

TOOLING PYTHON CODE TO WORK WITH MODEL MANAGER 
The goal of Model Manager is to make processing of open-source models seamless, for 
testing that means making it as easy to test a Python model as a SAS model. In the import 
example above, we notice the model consists of a score code file, hmeqClassTreeScore.py, 
a pickle file, hmeqClassTree.pickle, and other metadata files. 

For executing Python models, Model Manager uses a SAS extension called PyMAS 
(https://go.documentation.sas.com/?docsetId=masag&docsetTarget=n0b478i3vsj1pqn1dht
0ctsorlet.htm&docsetVersion=5.2&locale=en). PyMAS uses the SAS DS2 language to bridge 
the SAS and Python execution environments. In a full SAS Viya installation, PyMAS needs to 
be configured as specified in the documentation before it can be used with Model Manager. 
In Open Model Manager PyMAS is pre-configured. 

With PyMAS properly configured, the model that was imported above is ready to be used for 
any Model Manager function, but it does include some specializations that a modeler would 
need to know about: 

# %% 
import math 
import numpy as np 
import pandas as pd 
import pickle 
import settings 
# %% 
def HMEQClassTreeScore(JOB, REASON, CLAGE, CLNO, DEBTINC, DELINQ, DEROG, 
NINQ, YOJ): 
    "Output: EM_EVENTPROBABILITY, EM_CLASSIFICATION" 
     
    try: 
        _thisModelFit 
    except NameError: 
        with open(settings.pickle_path + "hmeqClassTree.pickle", "rb") as 
_pFile: 
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            _thisModelFit = pickle.load(_pFile) 
             
    # Threshold for the misclassification error (BAD: 0-No, 1-Yes) 
    _threshPredProb = 0.08941485864562787 
 
    # Impute the overall median for missing values 
    if (math.isnan(CLAGE)): 
        CLAGE = 173.46666666666600 
… 
 

Notice that this code simply provides a single function HMEQClassTreeScore. This is the 
function that is called to get the score for a single input line. In the definition, the 
parameters of the score function match the column names of the input data set. When 
running the model, the variable names are matched with the columns of the input data set 
to assure that the input matches the function declaration. It is not necessary to pass all 
variables of the input data, only the subset that are used by the model. 

The line immediately below the function declaration is a Python docstring that specifies the 
output variables: 

"Output: EM_EVENTPROBABILITY, EM_CLASSIFICATION" 

This specifies the names of the output variables that are returned by the scoring function. 
SAS infers the data type of the return values. 

To keep the model flexible for internal execution of tests and performance monitoring, as 
well as for external execution in any published destination, Model Manager manages all 
score resources such as pickle files and libraries dynamically. To do this, the settings 
package was introduced. If the score code accesses a pickle file, package, or data file that is 
defined in the model, then the following steps should be followed. In the model, set the file 
type of pickle files to Python pickle, for any secondary code packages or included data files, 
set the file type Score resource. 

 

Figure 3: Setting a file type for a pickle file 

In the above example, the model has the hmeqClassTree.pickle file and a secondary code 
package named loanMath.py. By setting the pickle to be of type Python pickle and the 
loanMath.py package to be of type Score resource, the score code can locate it by using this 
coding convention: 
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# above score method 
import settings 
import loanMath 
… 
# inside of score method 
with open(settings.pickle_path + "hmeqClassTree.pickle", "rb") as _pFile: 
 

The loanMath.py package only requires an import statement as it is placed in the main 
working directory for the model. 

When necessary for code execution, Model Manager produces a code wrapper that is specific 
to the location where the code executes. These wrappers vary in code style. For example, 
when running a score test, Model Manager creates a code wrapper specific to the SAS DS2 
Embedded Process score code type as seen in Figure 4. Other wrapper types are specific to 
DS2 Package code, and standalone container execution. Notice that the file settings.py is 
also generated. 

 

Figure 4: Score resources with DS2EP code wrapper 

SELECTING THE BEST MODEL 

With the hmeqClassTree model imported into Model Manager it is possible to compare it to 
other models. Part of the import process is to add the model into a project. In the code 
above the ML_HMEQ project was specified. That model already had two other models. With 
the hmeqClassTree model added, we are ready to evaluate which model should be used in 
the production system.  

MODEL COMPARISON 

 

Figure 5: ML_HMEQ Project 
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Figure 6: Model Comparison Results 
In the ML_HMEQ project, we see three models including the one that we just imported. 
These models are all written in different languages but were trained using the same training 
dataset. In Model Manager the user can select multiple models and compare statistics 
associated with the training of the model. 

In the example above, we are comparing our Python model with an R logistic regression 
model. We notice a slight difference in the input variables being used and see that each 
model provided a set of fit statistics, but the Python model provides more overall statistics. 
The charts show performance against the training data set. If validation and test data sets 
are included when generating the model, they are also included. 

WORKING WITH CSV DATA 
If you refer to the training example above, you notice that the training dataset is hmeq.csv. 
Models written in Python and R are typically trained and executed against data in CSV 
format. CSV data is easily handled by open-source data processing packages such as numpy 
and pandas. SAS, however, typically uses a proprietary data format. To help with the 
conversion there are several tools for integrating CSV data with Model Manager. 

The easiest to use is the Data Explorer component in the Model Manager UI. This 
component is available as a standalone solution in the full SAS Viya installation. In Open 
Model Manager, the component displays when the user selects Manage data. 
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Figure 7: Managing Data 
In the Manage Data dialog box, the user can import data sets, including CSV data, to be 
used with Model Manger’s internal Testing and Performance features. The dialog box also 
enables users to get an overview of the data by viewing column details, sample data, or a 
data profile that includes useful statistics for each column such as the percentage of unique 
values, standard deviation, and standard error. 

 

Figure 8: Data profile 

The Data Explorer is a good way to make already cleansed and transformed CSV data 
available to Model Manager. But if your data is not fully prepared, SAS has Python packages 
to be included in your data preparation process to import the prepared data into the SAS 
data libraries. The saspy and swat packages are available on the SASSoftware GitHub site: 
https://github.com/sassoftware. Full documentation and examples for both are provided on 

GitHub.  

TESTING THE MODEL 
Once the candidate models have been selected, it is prudent to test the models and validate 
that the code does not produce errors when running against a testing dataset. Testing can 
uncover several issues, it can identify where the score code has syntax errors, or more 
commonly, where the score code does not respond well to variations in data or empty 
values. 

Testing models in Model Manager is a simple process: select the model and the input 
dataset and request a test. As shown above, the appropriate code is generated to support 
executing the test. The testing output is similar for SAS models and open-source models. 
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Figure 9: Test execution results 

In this example, the test failed. The log in the test results shows the following: 

 

Figure 10: Test result log 

In the log we can see that there is a failure at line 28 of the score code. Looking at that 
code shows that it is attempting to replace missing values with an imputed value: 

    if (math.isnan(DEBINC)): 
        DEBTINC = 34.81826181858690 
 
While this appears to be a valid “not a number” check, it does not take into account when 
the value is passed as None. This is corrected by updating the code: 

    if DEBTINC is not None: 
        if (math.isnan(DEBINC)): 
            DEBTINC = 34.81826181858690 
    else: 
        DEBTINC = 34.81826181858690 
 
With this change for the DEBTINC column, the code executes successfully with our test 
data. Although this indicates that similar checks are likely needed for all of the numeric 
columns in our model. What this error shows, however, is a difference between how SAS 
DS2 internally translates empty values and how Python native packages such as pandas 
handle them. Running the first version of the code in a plain Python environment returns 
the correct output with no error. However, when executed through our score test, we get 
the error. Why? 

The problem is with the internal data marshaling that is used for score testing. Since the 
score test uses a SAS DS2 wrapper, the data is marshaled by the DS2 data processor. In 
DS2, as opposed to pandas, empty values are treated as null instead of Nan. Because of 
this difference, it is best to perform a check for None as well as Nan when working with 
numeric columns. Similar processing is necessary for strings. 

PUBLISHING MODELS TO A PRODUCTION ENVIRONMENT 

In Model Manager, model deployment is termed “publishing”. Model Manager provides the 
capability to publish models to various environments. For Python models these include CAS, 
SAS Microanalytic Server (MAS), and Docker containers, which can be published to a private 
Docker registry or an Amazon Web Services account. For R models, only Docker containers 
can be published, but support for CAS and MAS is coming. 

There are numerous ways that a published model can be added to a processing pipeline. 
This paper focuses on publishing to Docker containers. Deploying a model in a container is a 
relatively new advancement. Containers provide several advantages: 
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• Portability across systems 

• Models are isolated from one another 

• Each runtime environment can be customized to its model 

• Transactions can scale to multiple containers 

Model Manager publishes models to containers in the same manner that it publishes to 
other destinations. Administrators creator a container destination descriptor and when a 
user requests to publish a model, the container destinations are presented alongside the 
other destinations. 

 

Figure 11: Model publishing to container destination 

Once the model is published, the container can be verified from inside of Model Manager 
using the publish validation feature. When the publish completes successfully, a publish 
validation job is created that can be used to execute the container in the Docker runtime 
that was used for publishing. 

Publish validation is performed in the same project panel for score testing. 

 

Figure 12: Publish verification results 

For this example we can see that the sample data scored without any errors. 

USING THE MODEL CONTAINER IN A DOCKER RUNTIME 
While the test above shows that the container can be loaded and executed correctly, users 
do not execute the container only through Model Manager. For production usage, the 
container is used in an environment that is separate from Model Manager. Therefore, it is 
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necessary to understand how the container works in order to add it to a production 
environment. 

As previously stated, the model container provides a standalone runtime for the model. The 
model containers published by Model Manager use a common web-service interface for 
interaction: 

• GET http://container_url:8080/  -- returns “pong” to indicate that the container is 
available 

• POST http://container_url:8080/executions -- executes the model for each line of 
data in the file 

o Body: file=csv data file 

o Result: JSON containing the test id and the http result status 

{"id":"1581398995.1859481","status":201} 

• GET http://container_url:8080/query/<testId> -- retrieves the result csv 

• GET http://container_url:8080/query/<testId>/log -- retrieves the execution log 

• GET http://container_url:8080/system/log -- retrieves the system history 

 

Once the container is published, it can be run in a Docker environment that is capable of 
running Debian linux containers. To use the container: 

docker pull docker.repo.com/models/hmeqclasstree:latest 
docker run -p 8080:8080 docker.repo.com/models/hmeqclasstree:latest 

The above commands pull the container into your local docker storage and start the 
container. The web service calls are made on port 8080. 

With the container running we can write a simple test program in Python to use it. This 
program is similar to the program that runs in the production pipeline. First, we need to 
prepare the sample data and store it to a CSV file. 

Some CSV sample data for exercising the hmeqclasstree model: 

"REASON","JOB","YOJ","DEROG","DELINQ","CLAGE","NINQ","CLNO","DEBTINC" 
"HomeImp","Other", 7, 0, 2, 121.83333333, 0, 14, 0 

 

Next we have a simple Python program that exercises the container: 

import requests 
import json 
import sys 
 
protocol = "http" 
server = "server.mycompany.com" 

• port = "8080" 
 
# Check that the container is available 
pingResponse = requests.get(protocol + "://" + server + ":" + port + "/") 
if pingResponse.text == "pong": 
    print("Server running") 
else: 
    print("Server unavailable") 
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    sys.exit() 
 
# Load the sample data and request a score 
multipart_form_data = { 
    'file': (open("HMEQ_Sample.csv", 'rb')) 
} 
response = requests.post(protocol + "://" + server + ":" + port + 
"/executions", files=multipart_form_data) 
print(response.json()) 
testId = response.json()['id'] 
 
# Get the result and log of the execution 
response = requests.get(protocol + "://" + server + ":" + port + "/query/" + 
testId) 
print(response.text) 
 
response = requests.get(protocol + "://" + server + ":" + port + "/query/" + 
testId + "/log") 
print(response.text) 
 
 
And produces these results: 
 
Server running 
{'id': '1581404170.482587', 'status': 201} 
BAD,LOAN,MORTDUE,VALUE,REASON,JOB,YOJ,DEROG,DELINQ,CLAGE,NINQ,CLNO,DEB
TINC,EM_EVENTPROBABILITY,EM_CLASSIFICATION 
1,1300,70053,68400,HomeImp,Other,7,0,2,121.83333333,0,14,0,0.431818181
8181818,1 
 
Scoring... 
 python -W ignore ContainerWrapper.py -i /pybox/model/HMEQ_Sample.csv 
-o 1581404170.482587.csv 
 
Completed! 

MONITORING THE PRODUCTION MODELS 

As seen in the example in the previous section, when a model executes in a container it 
produces a CSV response with the desired response variables. This data is available to your 
production pipeline, where it is accumulated into a dataset and used by other processes in 
your business that are interested in the response. Since the accuracy of the responses 
decays over time, it is important to periodically monitor the responses against the real 
outcomes in the system. 

Model Manager provides performance monitoring that can be added to the model / data 
pipeline. To use Model Manager’s performance monitoring, users create a performance 
definition in the Model Manager UI. The definition has several parameters, such as the 
following: 

• whether the model score columns are prepopulated or if the model should be 
executed when generating the performance report in order to populate the score 
output 

• whether to use a single table of input data, or a set of tables where each is specific 
to a time span of usage 

• the model or set of models that are pertinent to the report 
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For monitoring production models, it is best practice to use data that is already scored.  

 
Figure 13: Example monitoring process pipeline 
Figure 13 shows one possible processing flow. In this example, we define the monitoring 
process to use pre-scored data. Once in the scored data repository, an external process 
updates the data with the real outcome.  

Once the real outcome is known, our pipeline processor prepares the scored data on a 
periodic basis and writes a separate table for each period to the monitoring input table 
store. The individual tables have a prefix identifier and then identify the associated period. 
For our hmeqclasstree model, we define a prefix of “hmeqtree”. Since our data pipeline 
processes new data quarterly it names the input data appropriately, for example, 
“hmeqtree_Q1”. 
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Figure 14: Performance monitoring report 
Above is a sample performance report for four quarters of data. The performance report can 
be run manually in the Model Manager UI, it can also be scheduled using the Job Scheduler, 
or is accessible through the Model Manager API.  

CONCLUSION 

This paper addresses how to use Model Manager with open-source models as a core 
component of the model life cycle. With the techniques provided in this paper you can move 
a model from discovery to deployment and provide periodic monitoring. 

Model Manager is continually evolving to provide support for more open-source model types 
and integration points. The deployment of models to Docker containers, cloud-enables the 
models and frees them from the standalone proprietary hardware of the past. This greatly 
broadens their scope but makes them much more difficult to manage and monitor. Model 
Manager simplifies this process.  
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ABSTRACT 

In the excitement and hype around machine learning (ML) and artificial intelligence (AI) most of the time 
is spend in the model building. Much less energy is expended on how to take the insights from models 
and deploy them efficiently to create value and improve business outcomes.  
This paper will show a complete example using DevOps principals for building models and deploying 
them using SAS® in conjunction with opens source projects including Docker, Flask, Jenkins, Jupyter, and 
Python.  The reference application is a recommendation engine on a web property with a global user 
base. This use case forces us to confront security, latency, scalability, repeatability.  The paper will 
outline the final solution but also include some of the problems encountered along the way that 
informed the final solution.  

INTRODUCTION 

SAS Communities is a peer-to-peer community for SAS users to ask questions and find 

answers from each other and from experts at SAS. To improve the experience of users on 

the site we wanted to create personalized recommendations. To help visitors find articles of 

interest among the tens of thousands of active articles on the site. In Figure 1 Screen Shot 

of Recommendations you can see the finished product. I am the first to acknowledge that 

this does not make the most exciting demo but there is coordination between different 

personas and technologies to make the recommendation experience transparent to the end 

user. 

Figure 1 Screen Shot of Recommendations 



2 

 

My goals in writing this paper are: first is to demonstrate how SAS is using its technology to 

solve its own business challenges of improving the user experience on our SAS Communities 

web property. Second, to provide a template for how you can implement these ideas in your 

organization either a web property or some other service that would benefit from 

recommendations. Next, to highlight how SAS works with open source tools. Finally, how 

SAS can be used in a cloud ready environment without long installation and configuration 

times.  

From the software point of view, this project uses several SAS products along with open 

source tools. SAS and open source tools work in concert with each other to help users be 

more productive and impactful to their organizations. 

From the human capital perspective, this project involved several personas. A data scientist 

to prepare the data and build the models, a systems engineer to deploy and monitor the 

model on a daily basis, a security engineer to help ensure compliance and safety of our 

applications, a full stack developer to integrate the API call into the website. 

ARCHITECTURE AND TOOLS 

 

This project uses SAS DATA step for the data prep and the FACTMAC procedure, as part of 

SAS Visual Data Mining and Machine Learning (VDDML) for the recommendation model. 

Table 1. Utilized Open Source Tools is a list of the Open source tools used across the 

project. If you’re a SAS user, then many or even all the tools in the table might be 

unfamiliar. If your first impression is that the table is rather long, I agree. Integration with 

open source tools will bring you into contact with many projects all with different levels of 

maturity and style and function. Don’t be intimidated, keep in mind this project spans 

several personas and many of these tools are standard and well known across IT / systems 

professionals. It would be very unusual for a single person to use all these tools. 

Table 1. Utilized Open Source Tools 

Open Source Tool Description 

Jupyter Web Based IDE; supports many kernels including Python and 

SAS. 

SASPy Open Source project that allows python programmers to use the 

SAS computing engine (9.4m0 or newer). 

Python-SWAT Open Source project that allows python programmers to use the 

SAS Viya computing engine. 

Docker Container technology that allows quick consistent deployment of 

environments. 

Kubernetes Open source project to manage and scale docker containers. 

OpenStack Private cloud infrastructure. 

Terraform Orchestration tool for quickly deploying cloud assets. 

Git Source management tool. 

Python Open Source programming language; object oriented; created 

in 1985. 
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Analytics professions have been building models for years and years. It is the fun and 

exciting part of the job for most nerds like me. The part that is often manual time 

consuming and costly to the organization. This paper demonstrates how SAS can be used, 

along with open source tools, to create a modeling and deployment process that follows the 

Continuous Integration/ Continuous Deployment (CI/CD) methodology 

Figure 2. SAS Community Recommendation Process illustrates the process that I have used 

to create personalized recommendations for the SAS Community users based on their past 

browsing history. The Build box from Figure 2 is the domain of the modeler and you can 

read more about that role in this project in the Modeling section. 

While I had the main responsibility for this project, no successful project is done alone. 

Partnering with colleagues within your organization and leveraging their strengths and 

expertise will reduce implementation time and cost to the organization.  

 

Figure 2. SAS Community Recommendation Process 

The  

 

MODELING   

This is primary domain for the data scientist (or appropriate vogue business title). They 

have three main responsibilities: prepare the data, build a great model, generate the 

artifacts for packaging and deployment. 

PREPARING THE DATA 

There are several required steps in preparing the data for modeling. The size of the and 

frequency of this problem posed several challenges in this area. The first challenge is the 

data size. SAS Communities is a very popular site and the transactional historical data is 

large. Using data from late 2015 to present is about 40GB of data. So the first task is to 

remove the variables and rows that do not relate to our modeling problem. 
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The next challenge is creating ratings. In most cases users provide recommendations on the 

products or services they consume. Netflix ratings on movies is one example in this case we 

do not have recommendations, but machine learning techniques are not very effective if 

there is no discrimination between articles. So, we must augment the data using a process 

called implicit feedback in which we will take all the articles a user has seen and then 

randomly sample from a set of articles they have not seen to get two equal sized partitions. 

The viewed articles receive a rating of 1 and the non-viewed articles receive a rating of 0. 

The coding challenge is to extract the articles viewed by a particular user and then sample 

without replacement from non-viewed articles in an efficient manner. The code must be as 

efficient as possible because there are over 130,000 registered members of the SAS 

Community and this process is run every day to provide the most up to date 

recommendations. To illustrate the speed requirement if the process took just one second 

per user that would be more than 36 hours if done serially so parallelization and efficiency 

are paramount. 

In using SAS 9.4m6 I was able to reduce the data prep to 23 minutes through macros and 

hash tables. I then moved the DATA step code to CAS DATA step and the time was reduced 

to just over 3 minutes on the same hardware. CAS DATA step has the added benefit in this 

case that when the code moved to a cloud deployment it maximizes the computing for 

whatever size system it runs on without additional code modifications on my part. 

Here is my code for implicit feedback per user: 

data mycas.implict_feedback; 

    array found[&nconv.] _temporary; 

    array compressed[&nconv.] _temporary; 

    set mycas.conversations; 

    by user_uid; 

    retain count; 

    if first.user_uid then do; 

        count=0; 

        do i = 1 to dim(found); 

          found[i]=0; 

       end;  

    end; 

    found[conversation_ord] = 1; 

    rating=1; 

    count+1; 

    output; 

The code above initializes two temporary arrays to store the conversations 

a specific user has viewed from the universe of all conversations. The size 

of the array &nconv is the number of unique conversations at the time of 

modeling. Every article is output with a rating of 1. 

 

The code below runs after we have a complete list of the conversations 

viewed by a user. It randomly selects a set of conversations that a user 

has not viewed and sets their rating to 0. The resulting dataset, 

mycas.implicit_feedback, has exactly twice as many observations as the 

starting dataset, mycas.conversations. 

 

    if last.user_uid then do; 
        unseen = 0;    

        seen = 0; 

        /* make the compressed array of unseen conversations */ 

        do i = 1 to dim(found); 

            if found[i]=0 then do; 

                unseen+1; 
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                compressed[unseen] = i; 

            end; 

            else do; 

                conversation_ord = i; 

                seen+1; 

            end; 

        end; 

        /* shuffle them */ 

        retsize = min(count,max(seen,unseen));  

        if seen > unseen then put user_uid= seen= unseen=; 

        do i = 1 to retsize; 

            j = floor(rand('uniform')*unseen)+1; 

            temp = compressed[i]; 

            compressed[i] = compressed[j]; 

            compressed[j] = temp; 

        end; 

        do i = 1 to retsize; 

            conversation_ord = compressed[i]; 

            rating = 0; 

            output; 

        end; 

    end; 

run; 

 

BUILDING THE BEST MODEL 

With the data prepared we can move to modeling. Part of the business requirements for the 

recommendations were to create recommendations that favor articles with accepted 

solutions and favor newer articles. The logic for this is that accepted solutions will be more 

useful to users and the articles you’ve viewed recently are more applicable to your current 

interests than those from several years ago. The FACTMAC procedure doesn’t have a weight 

statement yet so I created duplicate rows to nudge PROC FACTMAC to follow these 

requirements.  

Here is the SAS code to weight data by both recency and having an accepted solution: 

 

%let wf=3; 

data mycas.weighted_factmac / single=no; 

    set mycas.implict_feedback; 

    if _n_=1 then do; 

        declare hash conv (dataset:'mycas.conversation_uid_index'); 

        conv.DefineKey('conversation_ord'); 

        conv.DefineData('start_id', 'end_id'); 

        conv.DefineDone(); 

         

        declare hash row_lookup (dataset: "mycas.conversations"); 

        row_lookup.DefineKey('id'); 

        row_lookup.DefineData('event_time_ms', 'isSolvedTopic'); 

        row_lookup.DefineDone(); 

    end; 

    if rating=0 then do; 

        conv.find(); 

        id = (start_id + floor((1+end_id-start_id)*rand("uniform"))); 

        row_lookup.find(); 

    end; 

    decay = (datepart(event_time_ms)-&mindate.)/(&maxdate. - &mindate.); 
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    rep = int((1-decay)*10); 

    daysback = intck("DAYS", datepart(event_time_ms), today(), "C"); 

    do i = 1 to rep*&wf.; 

        output; 

    end; 

run; 

 

Using HASH objects I can quickly look up the information needed to properly weight the 

observations. 

 

One important feature of FACTMAC is the autotuning. The AUTOTUNE feature uses 

optimization to search for the best hyperparameters saving me time hunting for the ideal 

combination of settings (that could change over time). The running of this model takes 

hundreds of CPU hours to complete the search for the best hyperparameters but it saves 

much more than that in human capital costs. For more information on AUTOTUNE see the 

suggested reading section.  

In the latest iteration, FACTMAC modeling using the AUTOTUNE statement costs about 300 

CPU hours of time and because the problem is only changing slightly each day (one new day 

of data among more than 1000 days) I reduced the daily run time by using some of the 

options available in AUTOTUNE. Here is my code for the FACTMAC procedure: 

proc factmac data=mycas.weighted_factmac  outmodel=mycas.factors_out; 

   autotune maxtime=3600 objective=MSE  

        TUNINGPARAMETERS=(nfactors(init=20) maxiter(init=200) 

learnstep(init=0.001)); 

   input user_uid conversation_uid /level=nominal; 

   target rating /level=interval; 

   savestate rstore=mycas.sascomm_rstore; 

run; 

 

I use the MAXTIME option to limit the search to one hour and I use the TUNINPARAMETERS 

option to start with best configuration from my last complete run (which I run periodically). 

This strategy gives me the best known hyperparameters within a time budget and an 

opportunity to find even better hyperparameters with the extra time. 

 

CREATING ARTIFACTS  

With the data prep and modeling complete I can now create all the needed artifacts to 

quickly and efficiently deploy a scoring model. The main artifact I need is an ASTORE (see 

suggested reading for more information) which is a portable compressed binary object that 

contains the scoring logic to predict how much a specific user would enjoy a specific 

conversation on the SAS Community. In addition to the ASTORE, Table 2. Modeling Artifacts 

details the items created. 

Table 2. Modeling Artifacts 

Artifact Purpose 

Data set of active articles To speed the scoring with a preloaded list 

Json file of most popular 

articles 

This is the fallback recommendation when nothing 

better can be presented 
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Artifact Purpose 

Articles viewed in the last N 

days 

We don’t want to continue to recommend the same 

things over and over so if you’ve looked at an article we 

won’t recommend it for a while. 

Data file with keys and 

timestamps 

This file is used to ensure files are transferred correctly 

and for reporting information at score time. 

FACTMAC ASTORE Compressed binary container the scoring logic for each 

user and item. 

 

The artifacts from Table 2. Modeling Artifacts are produced daily because we get updates to 

the data daily. These artifacts are packaged into a Docker container they could also be 

placed under source management in Git. 

ORCHESTRATION  

The orchestration of this process has evolved over time. It is my recommendation that you 

not try to automate and script everything in the beginning but instead continuously improve 

the process over time in progressive steps. This is one of the main philosophies of CI/CD 

that I think is well aligned with how projects develop and mature over time. 

This project started out with just a Jupyter notebook to create the artifacts. Figure 3 

Improvement of Process to reach Cloud Ready show the evolution toward fully cloud 

deployed and autonomous. Here are the written details: 

After the initial model was created, I encapsulated the notebook in a Docker container to 

ensure software stability from run to run. After that, I created a bash script to run the steps 

via the Unix utility cron instead of running the steps manually each day. I was only ready 

for cron once the process was repeatable and stable. I expected each step to work, I was 

not hoping it would work. With the bash script I could automate the process to run daily 

even when I was out of the office. Over time, I needed better monitoring. I moved my bash 

script into Jenkins, an open source orchestration tool use by SAS R&D. After a few weeks it 

was decided the project should be managed by IT not R&D so I needed to migrate my script 

from Jenkins to Bamboo (a comparable product from Atlassian) which was the orchestration 

tool of choice for the IT team. When I moved the project to Bamboo, we discovered that the 

bamboo agents (servers available for tasks) were not sufficiently large to run my project. 

So, I evolved the project one last time to initiate the hardware resources in OpenStack (an 

open source cloud operating system) using Terraform. 

I share these details with you to demonstrate that the result of a fully scalable cloud 

deployment of SAS to prepare, model, and score was not the initial release instead it was an 

evolution to meet the project objectives. The project can now access large amounts of 

computing power for a short period of time and upon completion release the computing 

power to others.  
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Figure 3 Improvement of Process to reach Cloud Ready 

DEPLOYMENT 

The deployment aspect of this project was the newest to me. Because of the need to run 

daily, a robust automated deployment process without an outage was required. We wanted 

users to have personalized recommendations with less than a two second delay. Working 

with the IT staff, the best practice is to build a scoring container in docker and then manage 

that container via Kubernetes. Docker was also used to build the model artifacts because it 

guaranteed an immutable environment and portability to different hosts.  

The scoring docker container is different from the modeling building container in a few 

significant ways. The first difference is that the scoring container is purpose built to score 

just one model, in this case, personalized recommendations for SAS Community users. The 

model building container has a complete version of SAS along with visualization tools. This 

makes the sizes very different. The scoring container is around 800MB and the model 

building container is around 13 GB. The smaller container makes it easier to deploy and 

scale. This smaller container also adds a measure of security because the scoring container 

is exposed to the internet (with several security measures) but has only the essential 

components needed to score incoming requests not a general-purpose workflow.  

Inside the scoring container we have a Flask application running under Gunicorn. These are 

both open source projects written in Python. The Flask application receives the incoming API 

request and sends it to the ASTORE through the micro analytics service (MAS). MAS is a 

capability through SAS Model Manager or SAS Decision Manager. By using MAS, you can 

achieve very low latency scoring. When a user hits the SAS Community webpage while 

logged in, a request is sent to Kubernetes cluster which is running the scoring docker 

Manual steps

Bash Script

Jenkins Script

Bamboo Script

Fully Cloud Ready
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containers. It is then routed to a specific container and received by the flask application. 

The flask application sends the userid and the number of items requested N (the default is 

5; max is 25). To return the best N article recommendations, all active articles must be 

scored (around 85,000 minus any articles that the user has viewed in the cooling off 

period). After all the appropriate articles have been scored, it sorts the list by the users 

predicted rating and takes the top N. This typically happens in about 200ms which means it 

is performing about 400,000 transactions per second per core after initial startup. The 

actual flow of information is relatively simple. A request is made from a user by viewing a 

SAS Community webpage and the request is validated by the firewall and routed to a 

scoring container running in Kubernetes (known as a pod) the scoring container processes 

the request and then returns the top n items back as a json string to the web page all in 

about 200ms. See Figure 4. Scoring Infrastructure. 

 

 

Figure 4. Scoring Infrastructure 

  

CONCLUSION 

This paper has detailed how SAS created personalized recommendations for the SAS 

Communities web property using SAS technology along with open source tools. This project 

uses a CI/CD framework that allows for automated daily updates to recommendations so 

that users are always getting the most current recommendations possible. 

The recommendations are using cloud infrastructure to eliminate persistent hardware 

requirements for building the daily model and it can be scaled to meet the desired time 

constraints. The runtime scoring is using standard IT tools, Docker and Kubernetes, to fit 

seamlessly into workflows. 

The SAS system integrates with open source tools to provide leading edge analytics in a 

cloud ready environment.  
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ABSTRACT 

Models are specific units of work that have one job to perform: scoring new data to make 

predictions. Containers are self-contained workers that can be easily created, destroyed, 

and reused as needed. They are portable and easily integrate into numerous modern cloud 

and on-premises execution engines. SAS® users can now follow a recipe to turn advanced 

model functions into on-demand containers such as Docker for both on-premises and cloud 

deployment. SAS® Model Manager can be used to organize the model content from many 

sources, including SAS and open source, to create containers. This presentation presents 

the basics and shows you how to turn your SAS analytical models into modern containers. 

INTRODUCTION 

THE ANALYTICAL LIFE CYCLE 

Figure 1 illustrates the analytical life cycle. 

Figure 1. Analytical Lifecycle 

Discovery environments have encompassed data mining and model training activities in 

collaborative workspaces, historically using virtual machines that are manually scaled for 

the expected workloads. Today, on-demand use cases are becoming more popular. 

Individual workspaces started with locally installed PCs. Data governance initiatives have 

evolved the architecture to use containers to provide governed access to data and code, as 

opposed to propagating multiple copies of data and code. Containers provide infrastructure 
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and compute usage cost savings, while providing a responsive user experience for the data 

scientist. 

Organizations are exponentially increasing the number of models that are being built, due to 

their digital transformations. Machine learning and automation have lowered the costs to 

build a model. However, the cost of model governance has skyrocketed due to deployment 

and monitoring complexities. Model code developed in a Discovery environment will be 

registered in a Governance environment, such as a SAS Model Manager, or in a source code 

management system, such as GitHub. 

The digital transformation has also necessitated the need for more robust execution options 

to deal with the explosion of data. Vast amounts of data need to be analytically enriched 

both at-rest in data lakes and enterprise data warehouses and in-flight in high-performance 

real-time business applications. Most organizations using SAS currently deploy their 

analytics using virtual machines and grids to manage disparate and on-demand workloads. 

Industry-leading organizations now use containers to facilitate on-demand and scalable 

processing for both batch and real-time workloads. Containers are providing similar 

infrastructure and compute usage cost savings as those experienced in a Discovery 

environment. 

The feedback loop, providing operational results to the Governance environment, enables 

model performance monitoring and triggers automated model retraining in the Discovery 

environment. Operational data feedback closes the loop of the analytical life cycle. 

A DAY IN THE LIFE OF A DATA SCIENTIST 

A data scientist can spend weeks constructing a good model for prediction or classification 

using statistical, machine learning, or deep learning techniques. These models can be used 

to provide insight and inference into existing processes, or to predict outcomes based on 

new data values. These predictions are used to improve the effectiveness of automated 

decision making systems such as the next best offer, credit scoring, loan originations, fraud 

detection, robotic process automation, and hundreds of other applications. Modern 

businesses require the use of predictive models to remain competitive. 

The building of predictive models is often termed model training and typically takes place 

offline in a development environment with saved historical data. The result of training a 

model is a fixed function that can be used for making predictions with new data values. The 

deployment of models is often termed model scoring and takes place in a production system 

running batch jobs or real-time recommendations. This step is where the model contributes 

real business value. However, there are several challenges in model deployment, as noted 

below: 

• The discrepancy between model training systems and model scoring systems often 

results in the need to modify or completely rewrite model score code. This step is time 

consuming and requires expert staff resources. 

• Delays in model deployment represent a loss of potential benefit derived from using the 

new model. This can have a large negative impact on the bottom line of the business. 

• Model performance generally degrades over time as data values change with time and 

trends. Delays in deploying the model create delays in acquiring new data for model 

decay measurements. That period will delay training a new replacement model. 

• The model must be deployed accurately. If the original trained model and the 

subsequent scoring model have even minor differences in floating-point values, missing 

value handling, or sequence of operations, errors can accumulate and create 

inaccuracies that will negatively impact model performance. 
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• The model deployment must be scalable. There are typically many models running in a 

production system. There can be multiple versions of the same model. Batch processes 

are scheduled to run in specific time periods or with constrained service level 

agreements. The load on real-time systems will vary by time of day, season, or external 

events, such as product discount sales. 

• The model deployment must use standard information technology tools. The business’s 

model production systems are often managed by staff that does not have experience 

with analytical tools. They are reluctant to add new processes every time the data 

scientists produce a new model. IT departments are also looking to reduce costs 

associated with maintaining too much hardware or acquiring upgraded hardware.   

One remedy to these problems can be the use of modern light-weight containers. These 

devices are rapidly growing in popularity for systems and process management. The most 

popular container technology is Docker. A container is a compressed file that contains all the 

resources needed to execute a computational process. In this case we are creating 

containers to execute model scoring steps for both batch and real-time applications. The 

containers include the model score code and all the software that is needed to execute the 

model. This provides several benefits: 

• The model does not need to be re-coded for different systems, eliminating several 

potential delays and errors. 

• Model deployment can be much faster by standardizing the deployment process for any 

form of the model function. 

• IT staff can use the same tools to manage model execution as any other IT-managed 

process, reducing staff training and expertise requirements. 

• Multiple container instances provide a shared-nothing high availability. Failures in one 

instance will not affect other instances. 

• New software releases can be added to new containers without affecting currently 

running systems. 

• New models can be added to new containers without affecting currently running 

systems. 

• Systems can be managed using standard container tools, such as Kubernetes. As 

demand increases, new container instances can be quickly created. As demand 

decreases, instances can be destroyed, freeing up resources for other tasks. 

The traditional method of model deployment onto dedicated systems requires a large 

amount of resources and labor. The systems and processes must be carefully and 

expensively maintained. This is likened to owning a herd of cows. Each cow is precious and 

expensive. In contrast, containers are small replaceable units of labor. They can be quickly 

created and terminated. This is likened to a flock of chickens. Each chicken is disposable 

and cheap. Thus, the comparison can be represented as “cows versus chickens.” 

(https://thenewstack.io/pets-and-cattle-symbolize-servers-so-what-does-that-make-

containers-chickens/) 

The remainder of this paper describes the details needed to turn both SAS models and 

open-source models into containers that can be treated as chickens. The paper uses the 

SAS® Viya® API to access model details and the Docker API to define and instantiate 

container instances. The result is a more scalable, more maintainable, and more efficient 

future. 
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DOCKER IMAGE OVERVIEW 

A Docker image consists of multiple layers. Each of the layers is a read-only filesystem. The 

recipe for how to install the layers is defined in a Dockerfile. The last installed layer sits on 

top of the previous layers and hides the folders/files of previous layer if the folders/files 

have the exact same path. If a layer needs to modify the file in the lower layer, it first 

copies the file up to the target layer and then modifies it. 

A container is an instance of the Docker image (from the docker run, docker create or 

Kubernetes commands). The Docker engine takes an image snapshot and adds a read/write 

filesystem on the top. It initializes the instance settings, such as IP address, system disk 

and memory resources, and so on. 

To make bootup easier, the ENTRYPOINT statement in the Dockerfile could define an 

executable command after the instance has completed the initialization. 

A Docker repository is a collection of different Docker images with same name but different 

tags. A tag is identified by an alphanumeric string. For example, semantic version number 

or build number is a common tag representation. The Docker registry is a service that hosts 

and distributes Docker images, such as Docker Hub and AWS/Google Container Registry. 

After the model image has been generated on the local host, we tag it and then push the 

tagged repository to a registry. Thus, the image could be referenced as format of an HTTP 

URL, for example, registryhost:5000/namespace/repo-name:tag. 

MODEL IMAGE PUBLISHING 

Transforming analytical models into containers is a very detailed and lengthy process. The 

remainder of this paper demonstrates how to publish a model image and test the model 

image with the Python utility library that SAS is developing. 

Figure 2 shows the Python utility and its run-time environments 

 

Figure 2. Python Utility  
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The model is stored in the SAS model repository. We can use the Python utility to pull the 

model ZIP file from the repository to the host machine. Then, we pack the model with the 

associated model base image and generate the model Docker image. After the model image 

is tagged with a version, the utility can push the image to the Docker repository and 

register it in the Docker registry.  

We currently support three types of model base images (this might increase in the future): 

• SAS® Micro Analytic Service (MAS) base image – to score SAS DS2 models 

• PYML base image – to score Python models 

• R base image – to score R models 

Figure 3 shows the structure of the MAS base image. 

 

Figure 3. MAS Base Image Structure 

The REST layer services web service calls from outside the container instance. In this base 

image we have included popular Python libraries and the MAS Python library under 

MiniConda as well as SAS threaded kernel (TK) libraries for MAS.  

Figure 4 and Figure 5 show an example of querying model information, generating the 

model image, and pushing the image to the Docker repository. 

 

Figure 4. Jupyter Notebook - Execute the initConfig and listmodel Commands 
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Figure 5. Jupyter Notebook – Execute the publish Command 

MODEL VALIDATION 

After the model image is generated and pushed to the Docker repository, users can launch 

the container instance at any time to score the model in the container instance. The launch 

command is shown in Figure 6. 

 

Figure 6. Jupyter Notebook – Execute the launch Command 

The launch command calls the Kubernetes API to create the deployment service object that 

exposes the deployment. Once the container instance is deployed, the service URL is 

available for scoring and querying. 

MODEL SCORING 

The initial version of the container REST API interface accepts only CSV as the input/output 

data format. Figure 7 shows the scoring and query test results. 

 

Figure 7. Jupyter Notebook - Scoring and Query Test Results 
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Figure 8 illustrates stopping a container instance and the related cleanup activities. 

 

Figure 8. Jupyter notebook – Execute the stop Command 

As a best practice, stop a container when you are finished with your work. This minimizes 

infrastructure, compute usage, and related costs. The score command is a convenience 

command. It combines several commands that are commonly used together. Figure 9 

shows the score command. 

 

Figure 9. Jupyter Notebook – Execute the score Command 

MODEL ASSESSMENT 

The utility log and input/output data are organized in an SQLite file. Because the container 

life cycle could be very short, it is better to retrieve the score results from the container and 

store it in the host filesystem or an external database. 

The SAS SWAT package is a Python interface to SAS® Cloud Analytic Services (CAS). With 

this package, you can load and analyze data sets of any size from your desktop or in the 

cloud. In addition, you can analyze extremely large data sets using as much processing 

power as you need, while still retaining the ease-of-use of Python on the client side. 

Next, we can load the scoring output data into CAS for further analysis, for example, to 

assess the model’s performance. 

Figure 10 shows the loading of CSV data and using the SAS SWAT package to upload the 

test results into CAS. 
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Figure 10. Using the SAS Swat Package to Upload Test Results into CAS 

Figure 11 shows the assessment of the model. 

 

Figure 11. Assessing the Model 

The next several figures are related to drawing plots.  
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Figure 12 shows the CAS table with lift. 

 

Figure 12. Generate CAS Table – Lift 

Figure 13 shows a lift chart. 

 

Figure 13. Generate Lift Chart 

Figure 14 shows a CAS ROC table.  
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Figure 14. Generate CAS Table – ROC 

Figure 15 shows a ROC chart. 

 

Figure 15. Generate ROC chart 

We can also call the compare function to assess the model with multiple scoring results. 

Figure 16 shows the comparison between two scoring results. 
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Figure 16. Side by Side Compare the Scoring Results 

BEYOND THE MODEL 

CLOUD 

In addition to a private docker registry, we can upload a model image to a public docker 

registry, such as Docker Hub, Amazon Elastic Container Registry (ECR) or Google Container 

Registry (GCR), and then deploy the container instance in multiple cloud platforms.  

Amazon Web Service (AWS) 

Here is an example that illustrates how to register and store a model image in AWS and 

launch an AWS Elastic Container instance with Amazon Kubernetes. 

First, we create and configure at least one Amazon Elastic Container Service for Kubernetes 

(EKS) cluster and its work nodes. This is shown in Figure 17. 

 

Figure 17. AWS - CloudFormation for Kubernetes Cluster 

Next, we set AWS properties in the cli.properties file. This is shown in Figure 18.  
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Figure 18. Configure cli.properties File to Switch to AWS Cloud 

By setting the provider type to AWS, the CLI utility publishes the model image to AWS ECR, 

and then deploys the model to an Amazon Elastic Container instance. 

Figure 19 show the execution of initConfig and listmodel. 

 

Figure 19. AWS – Execute initConfig and listmodel Commands 



13 

Figure 20 shows the publishing of the model. 

 

Figure 20. AWS – Execute publish Command 

When the publish command is compete, the results can be verified in the AWS ECR Console. 

This is shown in Figure 21. 

 

Figure 21. AWS – Use Elastic Container Registry (ECR) to Verify Results 

Figure 22 shows the launching of the container instance in EKS. 

 

Figure 22. AWS - Launch Container Instance in EKS 

Using the kubectl command line, we can verify information about the exposed service and 

the external IP address of the node. This is shown in Figure 23. 

 

Figure 23. AWS – Verify Information with kubectl 
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Figure 24 shows scoring in an AWS container instance. 

 

Figure 24. AWS - Perform Scoring in an AWS Container Instance 

Figure 25 shows the execution of the query and stop commands. 

 

Figure 25. AWS – Query Test Results and Delete the Deployment 

Google Cloud Platform (GCP) 

This section shows an example of deploying to Google Cloud Platform. The following images 

demonstrate how to push a model to Google Container Registration, how to launch a 

container instance in a Google Kubernetes cluster, and how to perform scoring and query 

results. 

Figure 26 and Figure 27 show an example of executing the initConfig and listmodel 

commands, and then executing the publish command.  
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Figure 26. GCP – Execute initConfig and listmodel Commands 

 

Figure 27. GCP – Execute the publish Command 

Figure 28 shows an example of using the Google Cloud Platform console to verify the 

results. 

 

Figure 28. GCP – Use Google Cloud Platform Console to Verify Results 
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Figure 29 shows an example of executing the launch command. 

 

Figure 29. GCP - Launch Container Instance in a Google Kubernetes Cluster 

Figure 30 shows an example of verifying the deployment.  

 

Figure 30. GCP – Verify Deployment in Google Kubernetes Engine Workloads 

Figure 31 shows an example of verifying the service pod. 

 

Figure 31. GCP – Verify Service Pod in Google Kubernetes Engine 

Figure 32 shows scoring in an GKE container instance. 
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Figure 32. GCP - Perform Scoring in an GKE Container Instance 

Figure 33 shows an example of querying the test results and deleting the deployment. 

 

Figure 33. GCP - Query Test Results and Delete the Deployment 

DEPENDENCY SUPPORT 

Our predefined base images could include the most popular libraries or packages. In the 

real world, a user’s model might have extra dependencies on other software libraries or 

packages. Our solution to provide a mechanism to adapt to dynamic user requirements is as 

follows. The user: 

1. Creates a file named requirements.json 

2. Describes the steps about how to install extra dependencies in the file  

3. Inserts this specification file in the model content list 

When packing the model into the model image, the utility scans the specification file from 

model content list and includes those step commands as part of Dockerfile. The Dockerfile 

will be rendered by Docker Engine. For example, one data model is based on a Python H2O 

library that the base image has not packaged yet. This is illustrated in Figure 34. 
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Figure 34. Support Extra Model Dependency 

Figure 35 shows the specification file in the model content. 

 

Figure 35. Specification File in the Model Content 
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Figure 36 shows the installation of the dependent packages in the image generation. 

 

Figure 36. Installing the Dependent Packages in Image Generation 

When Verbose is set to True, the utility displays more useful output for each command. This 

is shown in Figure 37. 

 

Figure 37. Displaying More Information with Verbose Enabled 
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CONCLUSION 

The goal of this paper is to show how to use our CLI utility library to pack a SAS or open-

source model in a Docker image and perform scoring in a Docker container. It introduced 

the features of the current development stage of the CLI utility library. This paper might be 

updated in the future if we support more model types and additional cloud environments. 
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Manage Model Development via a Python IDE
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ABSTRACT

Data scientists often need to work with multiple languages and in multiple analytic
environments to solve a problem. SAS® provides a complete end-to-end environment, but it
has traditionally been accessible to users only through GUIs and SAS languages. This paper
introduces a new tool enabling data scientists to manage components of the analytics life
cycle from within any Python environment. We first demonstrate how to register a model
developed with Python using SAS® Model Manager, before exploring methods for managing,
deploying, and tracking the model.  In addition, we show how to accomplish supporting
tasks such as rendering visualizations and extending the existing functionality. 

INTRODUCTION

In the past few years, the Python language has quickly become the preferred language for
many data scientists (Mitchell 2019).

Although SAS and Python are sometimes viewed as competing technologies, the reality is
that these technologies can complement each other quite well.  The SAS platform contains
numerous tools to help users manage the entire analytics lifecycle and a collection of high-
performance algorithms designed to scale to large data, while Python has a huge user
community and a wide selection of packages that make it an ideal language for integrating
different technologies. It’s only natural that Python users would want to leverage some of
the additional functionality in SAS.

This paper introduces the new sasctl package for Python, designed to allow control of the
SAS® Viya® platform from a Python runtime. It can be used as a Python module or executed
directly from a command line interface. There are already several excellent Python packages
available for building analytic models (Pedregosa, et al. 2011, Smith and Meng 2017), but
this is not one of them.  Instead, the sasctl package is designed to complement these
analytics packages. This paper focuses on activities often related to but separate from
model building.

Specifically, we first demonstrate how to use sasctl for managing model registration and
deployment of both SAS and open-source models.  Then, we introduce additional
functionality such as monitoring model performance and rendering visualizations.

This paper should be relevant to data scientists, developers, analysts, or anyone else who
needs to communicate with the SAS Viya platform and prefers Python. The examples
covered are intended to be simple, but a basic understanding of the Python language is
assumed. Additionally, knowledge of standard analytics packages like SAS SWAT and scikit-
learn is not required but might be helpful.

All code examples in this paper use sasctl v1.5 and are available on the sasctl GitHub page.
(SAS Institute Inc. 2020a.)
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MODEL MANAGEMENT 

An easy way to get a gentle introduction to using sasctl is to perform a few of the most 
common tasks for data scientists – model registration, deployment, and execution.  
Conveniently, these are also the areas where sasctl currently affords the highest levels of 
abstraction and ease of use. 

SWAT MODEL 

The following example demonstrates how to use sasctl to easily manage a model built with 
SAS. We use the SWAT package to define a simple regression model on the well-known 
Boston housing data set (Belsley, Kuh, and Welsch 1980). After training the model, we 
demonstrate how to easily register it with SAS Model Manager. This allows the model, and 
any associated metadata, to be stored in a central repository, version-controlled, and 
tracked over time. 

 
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 

import swat 
from sasctl import Session 
from sasctl.tasks import register_model, publish_model 
 
s = swat.CAS('example.sas.com', 5570, 'arthur', 'K1ng0fTheBr!tons') 
s.loadactionset('regression') 
tbl = s.upload('data/boston_house_prices.csv').casTable 
 
features = list(tbl.columns[tbl.columns != 'medv']) 
tbl.glm(target='medv', inputs=features, savestate='model_table') 
astore = s.CASTable('model_table') 

 

In the code above, lines 5-7 establish a connection to SAS® Cloud Analytic Services (CAS), 
load the regression package, and import the data set from a local CSV file. Lines 9-11 fit the 
regression model to the data and save the results. We won’t examine the SWAT package in 
detail here, but for more information see (Smith and Meng 2017, SAS Institute Inc. 2020b). 
The key point is that the end result is a small, binary artifact, or ASTORE, containing the 
final model, and this is what we provide to sasctl to register: 

 
12 
13 

with Session('example.sas.com', 'arthur', 'K1ng0fTheBr!tons'): 
    model = register_model(astore, 'Linear Regression', 'Boston Housing', force=True) 

 

Everything in sasctl requires an established session to a SAS Viya server. At its most basic 
level, sasctl is a sophisticated REST client that calls the REST APIs available in all SAS Viya 
environments.  Creating a session allows sasctl to repeatedly call those APIs on your behalf 
without requiring you to authenticate each time. In this case, we’re establishing a session 
on line 12 using the same credentials we used to connect to CAS. There are a variety of 
ways to establish a session. See the APPENDIX for more details and for solutions to 
common problems (like SSL errors). 

Once a session has been created, it is used by default for all subsequent tasks without 
explicitly referencing it. The next step is to call the register_model task (line 13) and 
provide: 

1. the actual model to put in SAS Model Manager  

2. a name for the model 

3. the name of the project in which to create the model 
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In this case, we’re using the ASTORE model, creating a project called Boston Housing, and 
naming our model Linear Regression. The optional force=True parameter instructs sasctl to 
automatically create the Boston Housing project if it does not already exist. 

At this point our model should now be registered in SAS Model Manager and should be 
similar to Display 1. 

 

Display 1. Model in SAS Model Manager 

Now that the model is registered, we can use it with the full range of SAS Model Manager 
capabilities. We won’t go into those details here, but for more information about the 
available features, see the SAS Model Manager documentation (SAS Institute Inc. 2019g, 
SAS Institute Inc. 2019a). 

Of course, the next logical step is to publish the model somewhere and then run it. For this, 
we’ll push our model to the SAS® Micro Analytic Service (SAS Institute Inc. 2019f), a light-
weight engine designed for real-time scoring of records: 

 

14 
15 
16 
17  

    module = publish_model(model, 'maslocal') 
 
    first_row = tbl.head(1) 
    module.score(first_row) 

 

As you can see from line 14, we publish the model with just a single line of code. We 
provide the model and the name of a publishing destination. Here, we choose maslocal, the 
default SAS Micro Analytic Service instance available in most SAS Viya environments. The 
result is a newly created SAS Micro Analytic Service module, decorated with Python 
methods corresponding to operations available with our model. 

Since SAS Micro Analytic Service is a real-time scoring service, it expects a single row of 
data at a time, so line 16 selects the first row of data from our data set and then “scores” 
the record by calling SAS Micro Analytic Service. The result is shown in Output 1 and is the 
prediction from our model on that input: 

 

 
30.003843377 
 

Output 1. Predicted Median Value (in $1,000s) 
And with that, we’ve trained a new model, registered it in our repository, deployed it in a 
real-time environment, and successfully executed it, all with just a few lines Python code. 

SCIKIT-LEARN MODEL 

This next example is similar to the previous one. However, this time we work with a model 
built using the open-source scikit-learn package (Pedregosa, et al. 2011) rather than 
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building it with SAS algorithms. Just as before, the first step in the process is to train the 
model: 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 

import swat 
import pandas as pd 
from sasctl import Session, register_model, publish_model 
from sasctl.services import model_publish as mp  
from sklearn.ensemble import GradientBoostingRegressor 
 
df = pd.read_csv('data/boston_house_prices.csv') 
 
target = 'medv' 
X = df.drop(target, axis=1) 
y = df[target] 
 
model = GradientBoostingRegressor() 
model.fit(X, y) 

 

In lines 7-11 we import the Boston housing data set using Pandas (Reback, et al. 
2019) before separating the data into X and y variables containing an array of input 
features and the target output, respectively. Line 13 defines a gradient boosting model, and 
line 14 trains the model on our housing data set. At this point we have a simple, but 
complete model ready for registration and deployment. Despite not being a SAS model, we 
register this second model in SAS Model Manager using the same register_model task we 
used before: 

 

16 
17 
18 
19 

with Session('example.sas.com', username='BlackKnight', password='invincible!'): 
    model_name = 'Gradboost Regression' 
 
    register_model(model, model_name, input=X, project='Boston Housing', force=True) 

 

Line 16 creates a connection to the SAS Viya environment.  Line 19 registers the model into 
SAS Model Manager and stores it in the same project as the previous model. Note that 
because the project has already been created, the force=True option has no effect. Unlike 
SAS models, those produced with scikit-learn do not contain information about the model 
inputs and outputs. Besides being good to document, this information is critical if we want 
to execute the model or track model degradation over time. The input= parameter provides 
this information and the easiest way to do it is to provide the training data set. Behind the 
scenes sasctl analyzes the data set to determine variable names and types as well as run a 
sample of the data through the model to determine output variables. 

Display 2 shows the updated SAS Model Manager project with the new Python model 
alongside the first model. 
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Display 2. Updated SAS Model Manager Project 

If you open the new model and explore, you’ll notice a few things. First, sasctl has 
automatically created and uploaded the following collection of files to accompany the model 
that should be similar to those in Display 3: 

• a pickled copy of the model. 

• a requirements.txt file that lists the Python packages installed in the environment 
where we registered the model. 

Note: The goal is to capture exactly which versions of packages might have been 
used in building the model. Unfortunately, this is just an estimate, as we can only 
see which packages are installed, not necessarily which ones were used. This is a 
good baseline, but you might refine this list as necessary for production models. 

• SAS programs that wrap the Python model in SAS DS2 code, which enables more of 
the SAS components to interact with a model that was not built with SAS (SAS 
Institute Inc. 2019d). 

 

Display 3. Files Uploaded to SAS Model Manager 

Display 4 shows the input and output parameters that sasctl determined and presented to 
SAS Model Manager because the input= parameter was provided when registering the 
model. In addition to being good practice, this is also necessary if we wish to track the 
model’s performance over time. 
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Display 4. Input and Output Variables in SAS Model Manager 

And finally, sasctl extracts and stores some additional metadata about the model, including 
the type of algorithm used and a description. SAS Model Manager allows user-defined 
properties that are searchable, so sasctl also includes the model parameters and Python 
package information in these properties.  Users can find models with specific settings, or 
models that were built using a particular package version. 
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Display 5. Model Properties in SAS Model Manager 
Of course, the files and metadata included with the model allow for customization.  By 
default, sasctl includes this information for the sake of completeness, and to ensure SAS 
Model Manager has sufficient information to allow it to interact with the model that was not 
built with SAS.  

Because of this, we have the ability to publish the model just as if it were a SAS model. The 
previous example demonstrated how to publish a model to SAS Micro Analytic Service, the 
real-time scoring engine. In the following example, we’ll demonstrate publishing a model to 
CAS, the distributed analytics engine, that affords large-scale data processing capabilities to 
the SAS platform. 

 
20 
21 
22 
23 

    if mp.get_destination('caslocal') is None: 
        mp.create_cas_destination('caslocal', 'Public', 'model_table') 
 
    module = publish_model(model_name, 'caslocal') 

Some environments might already have a CAS publishing destination, while others might 
not. Lines 20 and 21 define such a destination, called caslocal if it does not already exist. 
The specific parameters on line 21 dictate that models published to this destination will be 
stored in a table named model_table, located in the Public caslib (SAS Institute Inc n.d.a). 
Line 23 publishes the model to CAS and makes it available for execution. 

Behind the scenes, what’s actually being published is a DS2 program that wraps our Python 
model. This is because CAS doesn’t currently know how to execute Python code directly, but 
it uses the PyMAS package (SAS Institute Inc 2018b) in DS2 to handle the execution.  Note 
that the example above assumes that the environment has been configured for PyMAS 
execution (SAS Institute Inc. 2018a), which is beyond the scope of this paper. 

Once published, the model executes like any other CAS model.  For this, we will use SWAT 
to connect to CAS and run the model: 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33  

    cas = swat.CAS('example.sas.com', 5570, 'BlackKnight', 'invincible!') 
    tbl = cas.upload(X).casTable 
    cas.loadactionset('modelpublishing') 
 
    result = cas.runModelLocal(modelName=module.name, 
                               modelTable=dict(name='model_table', caslib='Public'), 
                               inTable=tbl, 
                               outTable=dict(name='boston_scored')) 
 
    cas.CASTable('boston_scored').head() 

 
Lines 24-26 are very similar to the initial steps in the SWAT example covered previously – 
they establish a connection to CAS and load the necessary data and CAS action sets. 

Lines 28-31 contain a single command but are spread out for readability. We execute the 
runModelLocal CAS action (SAS Institute Inc 2019b) to score the model on the uploaded 
input data and write the results to a CAS table named boston_scored. 

Line 33 retrieves the first five rows of scored output from the CAS table, which should 
appear similar to those shown in Output 2. 

var1 crim zn indus chas nox … dis dis tax ptratio b lstat 

25.916   0.006 18    2.31    0   0.538   … 4.090 1 296 15.3 396.9 4.98 

21.963 0.027 0 7.07 0 0.469 … 4.967 2 242 17.8 396.9 9.14 

33.927 0.027 0 7.07 0 0.469 … 4.967 2 242 17.8 392.8 4.03 

34.145  0.032 0 2.18 0 0.458 … 6.0622 3 222 18.7 394.6 2.94 

35.413  0.069 0 2.18 0 0.458 … 6.0622 3 222 18.7 396.9 5.33 

Output 2. Sample Results from a CAS Table with “var1” Holding a Predicted Median Value (in 
$1,000s) 

SUPPORTING TASKS 

In the previous section we demonstrated how sasctl enables Python developers to easily 
integrate with SAS and accomplish some of the most common tasks in data science. In this 
section, we’ll demonstrate how to achieve some less common, but equally useful tasks. 

PERFORMANCE MONITORING 

While registering and deploying models are obviously critical steps in any analytics pipeline, 
there are also a host of challenges that only surface once a model is in production. One of 
these, model degradation, is crucial to manage.  Over time almost all models will degrade, 
whether it’s because the process being modeled changes (for example, shifting user 
behavior) or because the input data changes (for example, shifting demographic data). If 
we can monitor these changes over time, then we can intelligently determine when to 
retrain our model. SAS Model Manager performs this monitoring and provides helpful 
visualizations over time (SAS Institute Inc. 2019a). The following example demonstrates 
using this functionality on a scikit-learn model. The following example code builds on top of 
the scikit-learn model developed in the previous section. 

 

33 
34 
35 
36 

    from sasctl import update_model_performance 
    from sasctl.services import model_management as mm, model_repository as mr 
 
    project = mr.get_project('Boston Housing') 
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37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

    project['targetVariable'] = target 
    project = mr.update_project(project) 
 
    mm.create_performance_definition(model_name, 'Public', 'boston') 
 
    perf_df = X.copy() 
    perf_df['var1'] = model.predict(X)   
    perf_df[target] = y                  
 
    for period in ('q1', 'q2', 'q3', 'q4'): 
        sample = perf_df.sample(frac=0.2) 
        update_model_performance(sample, model_name, period) 

Up until now, we’ve only dealt with high-level sasctl tasks, not the underlying services 
supporting those tasks. Here we’ll use two services directly: the model_management and 
model_repository services. Lines 33 and 34 import those services as well as the 
update_model_performance task, which we will use shortly. 

SAS Model Manager monitors model performance by inspecting data tables containing the 
model inputs and outputs.  However, before it can do that it must know which column in the 
table contains the target value. In lines 36-38 we use the model_repository service to 
update the model project and specify the column containing the target variable. 

Line 40 uses the model_management service to create a performance definition. Here we 
specify the name of the model to monitor and tell SAS Model Manager we’ll be placing the 
relevant data tables in the Public caslib with a boston prefix.  Typically, we would collect the 
model’s output over time once it’s deployed and feed this data to SAS Model Manager, but 
for demonstration purposes we’re going to mockup this data. Lines 42-44 create a new data 
set containing the model inputs, the actual target value, and the model’s output for each 
input. 

In lines 46-48 we repeatedly take a 20% sample from this data set and use it to represent 
the results of the model for each quarter. As each result is uploaded to SAS Model Manager 
the model metrics and visualizations are automatically recomputed, resulting in a set of 
visualizations similar to those shown in Display 6. 
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Display 6. Model Manager Performance Reports 

REPORT VISUALIZATIONS 

It is also possible to retrieve reports and visualizations from SAS, rendered on the fly for the 
desired size. SAS includes two microservices that manage reports (SAS Institute Inc. n.d.e) 
and the display of their contents (SAS Institute Inc. n.d.d) and sasctl leverages these to 
allow easy rendering of report visualizations. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 

from sasctl import Session 
from sasctl.services import reports, report_images 
 
Session('example.sas.com', 'knight', 'Ni!') 
 
activity_report = reports.get_report('CAS Activity') 
 
elements = reports.get_visual_elements(activity_report) 
graph = next(e for e in elements if e.label == 'I/O and Threads') 
 
report_images.get_images(activity_report, elements=graph) 

Currently, no high-level task exists in sasctl for retrieving report content.  Despite this, it is 
still a straightforward process to retrieve images.  On line 2 we import the reports and 
report_images services so that we can work directly with them.  Line 6 retrieves that CAS 
Activity report, a system-monitoring report included in all SAS Viya environments (SAS 
Institute Inc. 2019c). The object returned by the service contains basic information about 
the report as well as metadata about the contents of each page in the report. Lines 8 and 9 



11 

filter those contents and isolate the “I/O and Threads” graph.  The call on line 11 retrieves 
that content from the report. 

Because web browsers are the primary client for these services, we can request the images 
at specific sizes and levels of detail, and the results will be rendered on the fly and returned 
as an SVG image. Since we didn’t specify a size or detail level, sasctl automatically uses 
reasonable defaults. Figure 1 shows the resulting visualization. Note that the result from 
line 11 is one or more SVG images, a standard format for web-based content, but there are 
common Python packages available to convert these to traditional raster formats (pyrsvg 
2016).  

 

Figure 1. CAS Server Activity 

 

LOW-LEVEL USAGE 

Previous examples demonstrated how sasctl aims to be simple and easy to use, providing 
high-level interfaces for common tasks and simple service-level interfaces. As such, we 
haven’t focused on what is being sent to and returned from the SAS services when calling 
them. However, we understand that some users will want or need to have more control over 
their interactions with the SAS environment. The following example shows some of the 
lower-level ways to interact with SAS. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9  

import pickle 
from sasctl import get, get_link, request_link, Session 
 
s = Session('example.sas.com', 'brian', 'N@ughtiusMax1mus') 
 
response = get('files') 
 
for link in response.links: 
    print(link)  
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In addition to the familiar Session object, line 2 imports a few new low-level functions. The 
first, get(), is used on line 6. This makes an HTTP GET request to the specified URL using 
the current session. In this example, the request call is to https://example.sas.com/files. 
This URL corresponds to the top-level URL for the Files service in a standard SAS 
environment, and the result is a dictionary representation of the REST response object 
(generally a JSON payload). This response can be used like a standard Python dictionary, or 
accessed using dot notation, similar to a Pandas DataFrame. 

Many of the SAS microservices follow the HATEOAS paradigm (HATEOAS Driven REST APIs 
n.d.), and the standard is for services to return a links collection containing valid operations. 
Lines 8 and 9 iterate over this collection and display the available links.  

 

 
{'method': 'HEAD', 'rel': 'checkState', 'href': '/files/files',  
 'uri': '/files/files', 'type': 'application/json'} 
{'method': 'POST', 'rel': 'create', 'href': '/files/files', 'uri': '/files/files', 
 'type': '*/*', 'responseType': 'application/vnd.sas.file'} 
{'method': 'GET', 'rel': 'files', 'href': '/files/files', 'uri': '/files/files', 
 'type': 'application/vnd.sas.collection'} 
{'method': 'POST', 'rel': 'bulkFiles', 'href': '/files/files',  
 'uri': '/files/files', 'type': 'application/vnd.sas.selection',  
 'responseType': 'application/vnd.sas.collection'} 
 
 

Output 3. Available Links from the Top-level /files URL 
Some response objects might have numerous valid operations, and therefore many different 
links available. If the name (rel) of the desired link is known, then the get_link() function 
can be used to retrieve the link information from the response. 

 

10 get_link(response, 'files')  

 

 
{'method': 'GET', 'rel': 'files', 'href': '/files/files', 'uri': '/files/files', 
 'type': 'application/vnd.sas.collection'} 
 

Output 4. The “Files” Link 
 

While this makes it easy to get the information for a particular link, generally the goal is to 
actually make a request to that link. We use the request_link() function to make this call. 

 

11 
12 
13 
14 

all_files = request_link(response, 'files') 
 
for file in filter(lambda x: x.name == 'traincode.sas', all_files): 
    print(file) 
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Line 11 makes the request described in Output 4 and returns the results. In this case, that 
link retrieves the metadata about all of the files in the SAS environment (SAS Institute Inc. 
n.d.b). Since this is likely to be a very large list, the Files service supports pagination and 
returns only the first few results. However, sasctl automatically recognizes when this occurs 
and converts the response into a PagedList data structure. The all_files variable references 
such a data structure and operates just like a standard Python list but will transparently 
fetch data from the server only when needed. 

Lines 13-14 demonstrate this capability by iterating through each file and filtering out those 
where the file name is traincode.sas. The (truncated) results are shown in Output 5. Note 
that even though we’re only iterating through each file’s metadata and not the actual file 
contents, this is still not a recommended practice as there may be thousands of files in the 
environment and sasctl will be forced to download the metadata for all of them. 

 

 
traincode.sas 
traincode.sas 
traincode.sas 
traincode.sas 
...  
 

Output 5. Client-Filtered Files Named “traincode.sas” (Truncated) 
Instead, the recommended alternative is to use server-side filtering whenever possible, 
especially when dealing with potentially large collections. Most SAS services support 
multiple filtering methods (SAS Institute Inc. n.d.c) and since sasctl is built on the requests 
module (Reitz 2016) it is simple to pass additional parameters to request_link() to 
customize the request sent. 

 

15 
16 
17 
18  

all_files = request_link(response, 'files', params={'filter': 'eq(name, traincode.sas")'}) 
file = all_files[0] 
content = request_link(file, 'content') 
print(content)  

 

Line 15 again retrieves a list of files named traincode.sas, but unlike before, it uses server-
side filtering to only return the matching files to the client. Lines 16-18 select the first 
matching file and retrieve the actual content of the file. Output 6 shows the first few lines of 
that content, which in this case is SAS code. 

 

 
*------------------------------------------------------------*; 
* Macro Variables for input, output data and files; 
  %let dm_datalib =; 
  %let dm_lib     = WORK; 
  %let dm_folder  = %sysfunc(pathname(work)); 
*------------------------------------------------------------*; 
*------------------------------------------------------------*; 
  * Training for tree; 
*------------------------------------------------------------*; 
*------------------------------------------------------------*; 
  * Initializing Variable Macros; 
*------------------------------------------------------------*; 
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%macro dm_unary_input; 
%mend dm_unary_input; 
%global dm_num_unary_input; 
...  
 

Output 6. Content of the traincode.sas File 
 

In some cases, the file content might not be simple text, or we might want more control 
over how the response is handled. In that case, we can tell the request_link() function how 
to format the response. The following code snippet builds off the previous Scikit-Learn 
Model example and assumes that those files are present in the environment: 

 
19 
20 
21 
22 
23 
  

file = request_link(response, 'files', params={'filter': 'eq(name, "model.pkl")'}) 
 
pkl = request_link(file, 'content', format='content') 
 
pickle.loads(pkl)  

Line 19 requests the file called model.pkl from the SAS environment using another server-
side filter. This is the file containing the pickled scikit-learn model that was automatically 
created by sasctl when the model was registered.  In this case, we’re assuming there’s only 
one such file in the environment. If you have registered multiple such models in your 
environment, you might need to apply additional filtering. 

Line 21 requests the actual content of the file. Since we know the file contains a binary 
pickle object and not regular text, we use the format= parameter to specify that we want 
the raw file contents returned instead of trying to parse it into text/JSON as is the default. 
The result is a binary string we unpickle on Line 23, giving us back the original scikit-learn 
model. 

 

 
GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse', 
                          init=None, learning_rate=0.1, loss='ls', max_depth=3, 
                          max_features=None, max_leaf_nodes=None, 
                          min_impurity_decrease=0.0, min_impurity_split=None, 
                          min_samples_leaf=1, min_samples_split=2, 
                          min_weight_fraction_leaf=0.0, n_estimators=100, 
                          n_iter_no_change=None, presort='deprecated', 
                          random_state=None, subsample=1.0, tol=0.0001, 
                          validation_fraction=0.1, verbose=0, warm_start=False)  
 

Output 7.  Unpickled scikit-learn Model from SAS Model Manager 

CONCLUSION 

We’ve demonstrated how the new sasctl package enables Python developers to integrate 
with the SAS platform without having to focus on the technical details of the integration. 
The single overriding goal is to make integration easy by providing the following: 

• high-level operations for accomplishing common tasks. 

• medium-level access to each SAS microservice for easy integration with specific 
services. 
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• low-level access to the underlying REST framework, allowing custom requests 
without having to worry about authentication, logging, or security. 

• an easy way to retrieve all REST responses and requests, enabling the foundational 
REST interactions to be easily replicated in other tools and programming languages. 

The sasctl package is intended to be a community-driven package as we believe the Python 
user community is best equipped to identify what functionality should be added or 
improved. As such, we welcome and greatly appreciate any contributions or feedback!  The 
current version of sasctl contains many enhancements since its initial release in 2019, and 
we will continue to improve the package with input from our users. 

APPENDIX 

INSTALLING SASCTL 

Install the sasctl package in any current Python environment using pip: 

pip install sasctl 

 

sasctl requires a few additional packages, but if these packages are not already present, 
they will be downloaded and installed automatically: 

• requests 

• six 

 

Further, note that the examples described in this paper require functionality from some 
additional packages: 

• pandas 

• sklearn 

• swat 

ESTABLISHING SESSIONS 

The first step in using sasctl is to establish a session to a SAS Viya server. When creating 
the session, sasctl performs a few steps behind the scenes: 

• verifying the identity of the SAS server 

• authenticating the user 

• obtaining an authorization token 

While the steps above are usually transparent to the user, it is important to understand 
these steps since establishing a session can sometimes cause difficulty for new users. By 
default, sasctl communicates with the SAS server using an encrypted HTTPS connection, 
and before establishing this connection it verifies the server’s identity by validating the 
server’s digital certificate. Generally, this is not a problem in production environments, but 
development and test environments often use servers with self-signed certificates that are 
not automatically trusted by your machine. If this is the case, you must either update your 
machine to trust the certificate or tell sasctl to skip the certificate verification step. There 
are a few different ways to do this (SAS Institute Inc. 2019e) but the easiest is usually to 
specify verify_ssl=False when creating the session, like the following: 

s = Session('example.sas.com', 'arthur', 'K1ng0fTheBr!tons', verify_ssl=False) 
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Most people require loans at some point: student loans, car loans, mortgage, etc. Using an online loan service, I 
scored a great deal on a vehicle. The moment I saw the car, I immediately applied for a loan. To my surprise, I was 
approved that same day, which allowed me to purchase it before other potential buyers. Online loan applications 
are automated processes that allow people to quickly receive loans without unnecessary delays. Nowadays, 
automated decision-making is dominated by machine learning algorithms. However, algorithms require a lot of 
manual and technical capabilities to be practical and effective. SAS AutoML offers the ability to automate the 
development of machine learning algorithms. This article will demonstrate the implementation of AutoML in 
banking loan applications. 

 

The image above shows two separate applications. Decisioning in Action (right) shows a customer who is trying to 
apply for a loan application. After filling out their information, one click on the Am I eligible? button can decide 
whether they are eligible to receive a loan. 
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Model Ops (left) shows the point-of-view of a data scientist who is tasked to create a model that will decide 
whether to approve a loan application. The Create AutoML Model button invokes an API to develop automated 
model. 
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However, the model is not a “black box” in many ways. AutoML could be configured before creation, such as how 
long to train a model(s). In addition, algorithms created by AutoML can be viewed and customized. 

 

 

The ability to view and change models makes AutoML less of a “black box” algorithm and more of a “model 
recommendation” for data scientists to refer to. Models can be governed, monitored, and deployed (in containers, 
cloud servers such as EC2 instances, and so on) using SAS Model Manager on SAS Viya by simply clicking 
on Publish Model. 

Note: SAS Model Studio, the tool that developed this model, requires a SAS VDMML license. SAS Model Manager, 
where models are registered for governance, monitoring, and deployment, is available with a SAS MM license. 
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Conclusion 
Developing a loan approval application is a sensitive task since automatically approving loans to customers who 
will default can be costly for a lender. SAS enables quick and easy development and exposure of decision-making 
models from a single source. A simple and robust environment can make decisions less prone to errors. In case 
you are wondering how the application was created, the section below generalizes the main components and how 
SAS interacts with the application. 
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Deployment (Bonus) 
The diagram below describes the steps it took to develop the application. For the front-end side of the 
application, HTML, CSS and Javascript were used to populate, design, and make the web content dynamic. On the 
other hand, Python language was used for the back-end to run a lightweight web framework and transfer data 
between the front-end & SAS environment via REST APIs. Javascipt could have been used for the back-end to call 
SAS functions as an alternative because API calls can be executed from many languages. The application was 
containerized and can be easily deployed from other machines with docker platform. 
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Monitoring the Relevance of Predictors for a Model Over Time 
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ABSTRACT 

This paper presents a novel approach to monitor model performance over time.  Instead of 

monitoring accuracy of prediction or conformity of predictors’ marginal distributions, this 

approach watches for changes in the joint distribution of the predictors.  Mathematically, the 

model predicted outcome is a function of the predictors’ values.  Therefore, the predicted 

outcomes contain intricate information about the joint distribution of the predictors. This 

paper proposes a simple metric that is coined the Feature Contribution Index.  Computing 

this index requires only the predicted target values and the predictors’ observed 

values.  Thus, we can assess the health of a model as soon as the scores are available and 

raise our readiness for preemptive actions long before the target values are eventually 

observed.  This index is model neutral because it works for any types of models that contain 

categorical or continuous predictors, and models that generate predicted values or 

probabilities.  Models can be monitored in near real time since the index is computed using 

simple and time-matured algorithms that can be run in parallel.  Finally, it is possible to 

provide statistical control limits on the index.  These limits help foretell whether a particular 

predictor is a plausible culprit in causing the deterioration of a model’s performance over 

time. 

INTRODUCTION 

In today’s intelligence-driven economy, corporations increasingly rely on analytic models to 

make their business decisions.  Like all tangible assets, models become dated, and their 

accuracies diminish over time.  To stay competitive, corporations constantly monitor their 

models.  When signs of deterioration of model performance appear, stakeholders need to 

determine if the models must be proactively updated or rebuilt to correct the problems.  

Since every decision to refresh a model carries risks and can disrupt normal business, a 

solid business case must be presented to support the request to update or rebuild a model. 

Not all models can be monitored or are worth monitoring.  In this paper, we focus on 

monitoring supervised learning models where there is one target variable.  Most, if not all, 

model performance metrics have one thing in common: they measure how well the model 

predicted values agree with the observed target values.  Various model performance metrics 

have been developed to measure the degree of this agreement.  However, we sometimes 

need to assess the health of a model at the time of scoring when the target values are yet 

to be observed.  If we must wait for the availability of the observed target values, then we 

might lose the opportunity to make a time-sensitive decision to refresh the model sooner.  

An example of this need is the fraud detection model.  It is known that those who commit 

fraud game the system to avoid being detected.  Since it takes time to diligently investigate 

fraud, we need some indicators to tell us now if the current system is being gamed.  If we 

find that the system is no longer effective in detecting fraud, then countermeasures must be 

taken to correct the situation. 

Although there are currently various model performance metrics to measure the overall 

performance of a predictive model, not all metrics are able to pinpoint which predictors 

might be responsible for the deterioration of model performance.  In addition, some metrics 

are applicable only to certain types of models and computing the metrics might require us 

to rebuild the model. 
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This paper proposes a model performance metric coined the Feature Contribution Index.  

Only the predicted target values and the predictors’ values are needed to calculate the 

index.  Thus, we can assess the health of a model as soon as the model scores are available 

and take preemptive actions long before the target values are observed.  This index is 

model neutral because it works for any types of models that contain categorical or 

continuous predictors, and models that generate predicted values or predicted probabilities.  

Models can be monitored in near real time since the index is computed using simple and 

robust algorithms that can be run in parallel.  Finally, statistical control limits on the index 

can be provided.  The statistical control limits can help determine whether a particular 

predictor is causing the deterioration of a model’s health over time. 

IDEA CONCEPTION 

Loosely speaking, a supervised learning model is an algorithm that takes the values of 

predictors as inputs and computes the predicted value of the target variable as the output.  

The algorithm is constructed based on the assumptions made on the probability distribution 

of the data.  The assumptions are the relationship between the target variable and the 

predictors, the covariance structure of the predictors, and the distribution of the target 

variable.  In a linear regression model, for example, the relationship between the target 

variable and the predictors is linear, the covariance structure of the predictors is fixed, and 

the target variable follows a normal distribution that is parametrized by a mean and a 

constant variance.  The mean of the target variable is the predicted value of the linear 

relationship. 

When a supervised learning model does not perform, we mean that the model can no longer 

be used to describe the probability distribution of the current data.  In other words, some 

assumptions made are no longer valid. Different metrics have been developed to check 

specific assumptions.  For the linear regression model, the lack-of-fit test checks the linear 

relationship assumption. The test of homogeneity checks the constant target variable 

variance assumption. The Shapiro–Wilk test checks the normality assumption.  In summary, 

checking the relationship between the target variable and the predictors and determining 

the probability distribution of the data assumptions requires the observed target values.  

When the target variable has yet to be observed, which is a common situation in applying 

the model to new data, these two groups of assumptions cannot be checked.  However, we 

can still check for changes in the covariance structure of the predictors. 

To compare the covariance structure of the predictors over time, we can use multivariate 

tests of equality of covariance matrices such as Box’s M test.  If we can put aside the 

argument of whether these tests can apply to our data (due to the assumptions requiring 

observed target values), these tests can be helpful.  However, we often need to know which 

of the predictors have triggered the differences in the covariance structures in addition to 

simply knowing that the covariance structures have changed over time. 

Let us study the linear regression model to generate ideas.  Under this model, the predicted 

value of the i-th observation is �̂�𝑖 = 𝑏0 + ∑ 𝑏𝑟𝑥𝑖𝑟
𝑘
𝑟=1  where k is the number of predictors,  𝑏0 is 

the intercept, 𝑏1, … , 𝑏𝑘 are the estimated regression coefficients, and 𝑥𝑖1, … , 𝑥𝑖𝑘 are the values 

of the predictors in the i-th observation.  Using the fact that �̅� = 𝑏0 + ∑ 𝑏𝑟�̅�𝑟
𝑘
𝑟=1 , it can be 

shown that 

 (�̂�𝑖 − �̅�)(𝑥𝑖𝑠 − �̅�𝑠) = ∑ 𝑏𝑟(𝑥𝑖𝑟 − �̅�𝑟)(𝑥𝑖𝑠 − �̅�𝑠)𝑘
𝑟=1  for 𝑠 = 1, … , 𝑘.   

Suppose n is the number of observations, then we have 

 
1

𝑛−1
∑ (�̂�𝑖 − �̅�)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 = ∑ 𝑏𝑟 (
1

𝑛−1
∑ (𝑥𝑖𝑟 − �̅�𝑟)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 )𝑘
𝑟=1 .   
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The left-hand side of the equation is the observed covariance between the predicted values 

and the values of the s-th predictor.  The right-hand side of the equation is a linear 

combination of the observed covariances between the values of each predictor and the s-th 

predictor. 

When we apply this linear regression model to new data, the estimated regression 

coefficients are considered fixed.  If the covariances among the predictors of the new data 

are the same as that of the training data, then the covariances between the predicted 

values and the values of the predictors of the new data should also be the same as that of 

the training data.  The contraposition of this condition says that if the covariances between 

the predicted values and the values of the predictors of the new data are different from that 

of the training data, then the covariances between the predicted values and the values of 

the predictors of the new data should also be different from that of the training data.  

Therefore, if we compare the covariances between the predicted values and the values of 

the predictors with that of the training data, then we might be able to tell if the covariance 

structures of the predictors have changed. 

EXTENSION TO CATEGORICAL VARIABLES 

Next, we will attempt to extend the idea in the last section to categorical target variables or 

predictors.  Let’s take on the categorical target variable first.  If we directly apply the idea in 

the previous section to the predicted category of a categorical target variable, then we must 

choose some thresholds for the predicted probabilities of the target categories.  Instead of 

running into the arguments of choosing the “right” thresholds, we will apply the above idea 

to the predicted probabilities.  In other words, we will use the correlation between each of 

the predicted probabilities with each of the predictors as our metrics. 

We cannot break a categorical predictor into its individual levels.  Under this constraint, we 

need to look outside of correlation for our metric.  The Eta-Square statistic measures the 

association between an interval variable and a categorical variable in a general linear model.  

When the general linear model has only one categorical predictor, the Eta-Square value is 

equal to the model’s R-Square value.  The model’s  R-Square value is the square of the 

correlation value when the general linear model has only one interval predictor.  Therefore, 

to use the same metric for both categorical predictors and interval predictors, we adopt the 

R-Square value as our metric and coin it the Feature Contribution Index.  

FEATURE CONTRIBUTION INDEX 

For a classification model where the target variable is categorical, the model outcome 

consists of the predicted probabilities.  For a regression model where the target variable is 

continuous, the model outcome is the predicted value.  In both types of models, the model 

outcome consists of one or more numeric values.  We measure individual predictors’ 

contribution to model performance by using the following procedure: 

1. For each numeric value in the model outcome, perform the main effect analysis of variance on each 
individual predictor.  

2. Measure the contribution of this predictor by the R-square statistic. For a categorical predictor, this is 
the full Eta-Squared statistic.  For an interval predictor, this is the squared Pearson correlation 
coefficient. 

3. For a categorical target, aggregate the contribution indices calculated in step two for each individual 
predicted probability. The aggregation method is discussed in the next section 

The Feature Contribution Index is a numeric value between zero and one inclusively.  A 

value of one indicates that the predictor solely determines the model outcomes.  A value of 

zero indicates that the predictor has no bearing on the model outcomes. 
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AGGREGATION FOR A CATEGORICAL TARGET 

We calculate the Feature Contribution Index for each predicted probability in step two of the 

steps listed in the previous section.  We want to come up with a single index for a 

categorical target since examining a single index is always more preferred than studying 

several indices for insights.  This single index is a weighted sum of the individual Feature 

Contribution Indices.  Without loss of generality, we require positive weights whose sum is 

one.  We can consider two choices for weights.  The first and the non-informative choice 

sets the weights equal to the reciprocal of the number of predicted probabilities.  For 

example, the weights are 0.5 for a binary target.   Another choice sets the weights equal to 

the observed relative frequencies (that is, proportions) of the target categories. 

For a binary target variable, the choice of weight does not matter.  Let p be the predicted 

probability of the event.  Then 1 – p is the predicted probability of the non-event.  For a 

predictor x, CORR(x, 1-p) = - CORR(x, p). Therefore, (CORR(x, 1-p))2 = (CORR(x, p))2 .  

Both sides of the equation are the R-Square statistics of the Feature Contribution Indices for 

the non-event and the event respectively.  Since they are equal, any weighted sum of them 

will result in the same results provided the weights are positive and sum to one.  

STATISTICAL CONTROL LIMITS 

Since our original goal is to monitor a model over time, we are more interested in studying 

the change or the trend of the R-Square statistics of each predictor than the R-square 

statistics themselves.  In other words, we are more interested in the change of the R-

Square statistics over time compared to a benchmark.  An obvious choice for the 

benchmark is the R-Square statistics that are calculated on the training data.  

Our hypothesis is that the predictors’ covariance structure in each monitoring data is 

identical to that of the training data.  Under this hypothesis, the R-Square statistics that are 

calculated on the monitoring data should be ideally the same as the R-Square statistics that 

are calculated on the training data.  In practice, the R-Square statistics are different 

because of the usual random elements in observing the data.  Our question is how much 

differences among the R-Square statistics can we tolerate before we drop the hypothesis?  

We address this question by constructing a confidence interval for the R-Square statistics at 

each time point.  If we can agree that the R-square statistic is equal to the Eta-Square 

statistic for an interval predictor, then we can apply the interval inversion method (Kromrey 

and Bell 2010 and Steiger 2004) to construct a confidence interval for the Eta-Square 

statistic. 

Let 𝜂0
2 be the Eta-Square statistic (that is, the benchmark value) calculated on the training 

data that have 𝑛 observations.  The corresponding F value is 

𝐹0 = 𝜂0
2 (1 − 𝜂0

2)⁄ × 𝑑𝑓2 𝑑𝑓1⁄  with two degrees of freedom, 𝑑𝑓1 and 𝑑𝑓2 = 𝑛 − 1 − 𝑑𝑓1.  

For an interval predictor, 𝑑𝑓1 = 1.  For a categorical predictor, 𝑑𝑓1 is equal to the number of 

categories of the predictor.  Suppose the confidence interval will have 100p% of coverage 

confidence, then, according to Kromrey and Bell (2010), the interval inversion method finds 

two values of the non-centrality parameter.  One value is such that the observed F 

significance equals (1 – p)/2.  Another value is such that the observed F significance equals 

(1 + p)/2.  The FNONCT function in SAS® can calculate these two values of the non-

centrality parameter for the F distribution.  The function takes four arguments in the 

following order: the observed F value, the 𝑑𝑓1 value, the 𝑑𝑓2 value, and the desired F 

significance value.  Since the FNONCT function uses a Newton-type algorithm to iteratively 

calculate a nonnegative non-centrality value, the function might return a missing value 

when the algorithm fails to converge.  This might happen when the observed F value is 

relatively small. 
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Let NCP_ETA_L = FNONCT(𝐹0, 𝑑𝑓1, 𝑑𝑓2, (1 + p)/2) and NCP_ETA_U = FNONCT(𝐹0, 𝑑𝑓1, 𝑑𝑓2, (1 

- p)/2).  In a one-way analysis of variance, the non-centrality (NC) parameter of the F test 

is equal to the sum of squares of the model (SSM) divided by the mean squares error (MSE) 

(MSE = SSE / 𝑑𝑓2).  The Eta-Square statistic is equal to SSM / (SSM + SSE).  Thus, the Eta-

Square statistic is equal to NC / (NC + 𝑑𝑓2).  Using this simple relationship, the lower 

confidence limit for Eta-Square is NCP_ETA_L / (NCP_ETA_L + 𝑑𝑓2) and the upper 

confidence limit for Eta-Square is NCP_ETA_U / (NCP_ETA_U + 𝑑𝑓2).  Please beware that the 

formula that we used is slightly different from that in Kromrey and Bell (2010).  In their 

paper, Kromrey and Bell used the sample size n instead of 𝑑𝑓2.  Because of this difference, 

our control limits are slightly wider than the control limits proposed by Kromrey and Bell.   

When we score the model on a monitoring data set, we assume that the predictors’ 

covariance structure remains unchanged from that of the training data.  Under this 

assumption, we would expect the actual Eta-Square values of the monitoring data are not 

different from the benchmark values.   Therefore, we will use the 𝜂0
2 for constructing the 

limits.  The 𝑑𝑓1 value stays the same despite the possibility of not observing all the 

categories of the categorical predictor (otherwise, we unknowingly changed the covariance 

structure).  The 𝑑𝑓2 value is equal to the number of observations in the monitoring data.  

Since we treat 𝜂0
2, which is itself a random variable, as fixed benchmarks for the monitoring 

data, we should call the limits the control limits to avoid any statistical issues.  This is 

because we cannot ensure that the coverage confidence is actually the nominal value 

100p%. 

Finally, if the Eta-Square statistics that are calculated on the monitoring data are outside 

the control limits, then we have reasons to suspect that the predictors’ covariance structure 

might have changed. 

SAS MACROS 

The following three SAS macros were developed for calculating the Feature Contribution 

Index: 

1. The Compute_FCI_NomPred macro computes the Feature Contribution Indices for a list of 
categorical predictors. 

2. The Compute_FCI_IntPred macro computes the Feature Contribution Indices for a list of interval 
predictors. 

3. The Compute_FCI macro reads input specifications, calls the Compute_FCI_NomPred and the 
Compute_FCI_IntPred macros to compute the Feature Contribution Indices, and returns the indices 
in the specified data. 

These macros require that the model outcomes are already available in the input monitoring 

data.  You can download these macros from 

https://support.sas.com/downloads/package.htm?pid=2225 and the accompanying 

documentation from http://support.sas.com/documentation/prod-

p/mdlmgr/14.2/en/PDF/SMM142_FCI_Macros.pdf. 

A fourth macro, Create_FCI_Report, was later developed for facilitating the entire process.  

It bypasses the Compute_FCI macro and directly calls the Compute_FCI_NomPred macro 

and the Compute_FCI_IntPred macro.  In addition, it generates professionally formatted 

tables and charts.  In the future, the Create_FCI_Report macro will be available for 

download and publish.  In the meantime, interested readers can contact the author directly 

to obtain the Create_FCI_Report macro. 

https://support.sas.com/downloads/package.htm?pid=2225
http://support.sas.com/documentation/prod-p/mdlmgr/14.2/en/PDF/SMM142_FCI_Macros.pdf
http://support.sas.com/documentation/prod-p/mdlmgr/14.2/en/PDF/SMM142_FCI_Macros.pdf
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SIMULATION STUDY 

After we determine that the predictors’ covariance structure has changed over time, our 

next task is to determine which of the predictors have triggered the change.  This task is 

more difficult than it looks. 

Let us use the linear regression example to aid our discussion.  Recall that the covariance 

between a predictor and the predicted value is a linear combination of the individual 

covariances between two predictors.  Mathematically, this is 

 
1

𝑛−1
∑ (�̂�𝑖 − �̅�)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 = ∑ 𝑏𝑟 (
1

𝑛−1
∑ (𝑥𝑖𝑟 − �̅�𝑟)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 )𝑘
𝑟=1 .  

Without loss of generality, let us consider the scenario where only the covariance between 

the first two predictors has changed but not their individual variances.  This change will 

affect the covariance between the first predictor and the predicted value.  Convoluted with 

the sign of the regression coefficient of the first predictor in the benchmark model, the 

covariance between the first predictor and the predicted value will increase or decrease.  

Similarly, the covariance between the second predictor and the predicted value will increase 

or decrease.  When we notice that only the Feature Contribution Indices of a pair of 

predictors are outside the control limits, we might conclude that the covariance between 

that pair of predictors has changed. 

In another scenario, the variance of the first predictor has changed.  In other words, the 

distance between 𝑥𝑖1 − �̅�1 has changed for 𝑖 = 1, … , 𝑛.  This change will affect all the 

covariances that involve the first predictor.  Since either 𝑟 = 1 or 𝑠 = 1, all the covariances 

between a predictor and the predicted value will be affected.  When we notice that all the 

Feature Contribution Indices are outside the control limits, we need to compare the 

predictors’ variance and their covariances with the benchmark value. An inadequacy of the 

Feature Contribution Index is the scenario where we do not come to any conclusions after 

studying these comparisons. 

In our final scenario, only the mean of the first predictor has changed.  This will not affect 

any covariances.  Thus, we will not see any Feature Contribution Indices outside the control 

limits.  If we are not concerned about the shifts of any means, then this is a good feature of 

the Feature Contribution Index as we have one thing less to check.  Otherwise, this is 

another inadequacy of the Feature Contribution Index and we must turn to other diagnostic 

methods instead. 

We are going to use a simulation study to illustrate the above three scenarios, demonstrate 

the steps of calling the macros, and review the results.  The predictors are, namely, X1 and 

X2.  The target variable is y whose expectation is  E(Y) = -3 + 4 * X1 + 2 * X2.   

A normal random noise with zero mean and unit variance is added to E(Y) to obtain the 

observed Y.  In the training data, which contains 1000 observations, the predictors have 

zero means, unit variances, and are uncorrelated (that is, zero correlations).  The ordinary 

least squares estimate of the model is �̂� = -2.9762 + 4.0061 * X1 + 1.9721 * X2. 

SCENARIO 1: CHANGE CORRELATION 

Seven monitoring data sets, each containing 100 observations, are simulated.  The 

predictors’ covariance structures are the same as that in the training data except for the 

correlation between the two predictors. Here are the changes to the correlations that are 

simulated in the five monitoring data sets: 

1. The correlation between X1 and X2 is 0.0, i.e., no change. 

2. The correlation between X1 and X2 is -0.4. 
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3. The correlation between X1 and X2 is -0.2. 

4. The correlation between X1 and X2 is +0.2. 

5. The correlation between X1 and X2 is +0.4. 

After we score the data sets, our first instinct is to compare the distributions of the 

predicted values with that of the benchmark training data (the ID column).  The box-plots in 

Figure 1 help us visualize the comparison.  At a first glance, although the distributions have 

different ranges, they are visually indifferent based on metrics such as the means and the 

medians.  If we compare their interquartile ranges, then we may suspect that the 

distributions in the second and the fifth monitoring data sets have changed because their 

interquartile ranges are shorter than others.  Therefore, visually comparing distributions 

might not enable us to realize that the predictors’ covariance structures have changed. 

   

Figure 1. Box Plots of Predicted Values Across Monitoring Data Sets for Scenario 1 

The panel chart in Figure 2 shows the Feature Contribution Indices of the predictors across 

the monitoring data sets.  The benchmark index is subtracted from the indices and the 

control limits so that all the graphs are drawn using the same scale.  Therefore, the vertical 

axis tells the change from the benchmark index.  Finally, the graphs are shown in 

descending level of the benchmark indices (the value of the level is inside the parentheses 

of the individual chart titles).  This enables us to focus on the predictors that contribute 

more to the model outcome in the benchmark data. 
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Figure 2. Feature Contribution Indices of Predictors Across Monitoring Data Sets for Scenario 1 

Table 1 shows the Feature Contribution Indices of the five monitoring data sets and the 

benchmark training data (the Reference column).  The out-of-bound values are highlighted 

in red. 

Table 1. Feature Contribution Indices of Predictors for Scenario 1 

Predictor Reference No Change Corr=-0.4 Corr=-0.2 Corr=0.2 Corr=0.4 

X1 81.1% 79.6% 72.5% 79.1% 84.0% 84.4% 

X2 18.8% 16.3% 0.0% 7.9% 30.9% 45.6% 

Ideally, we want to see that the indices of both perturbed predictors in each monitoring data 

set are outside the control limit (for example, X1 and X2 in the fourth monitoring data set 

that is labeled Corr=0.2). Since the monitoring data has only 100 observations, which is 

one-tenth the number of observations in the training data, the ideal results may not occur 

in every scenario unless the correlations become apparently stronger. 

SCENARIO 2: CHANGE STANDARD DEVIATION 

Four monitoring data sets, each containing 100 observations, are simulated.  The predictors’ 

covariance structures are the same as that in the training data except for the standard 

deviations of the predictors. Here are the changes to the standard deviation that are 

simulated in the four monitoring data sets: 

1. The standard deviations of X1 and X2 are 1, i.e., No Change. 

2. The standard deviation of X1 is 0.8 and that of X2 is 1. 

3. The standard deviation of X1 is 1 and that of X2 is 1.25. 

4. The standard deviation of X1 is 0.8 and that of X2 is 1.25. 

A comparison of the distributions shows more distinct differences than what was found in 

the first scenario (Figure 3).  The ranges and the interquartile ranges are visually different.  

However, the medians are seemingly the same. 
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Figure 3. Box Plots of Predicted Values Across Monitoring Data Sets for Scenario 2 

The panel chart in Figure 4 shows the Feature Contribution Indices of the predictors across 

the four monitoring data sets.  Since X1 has the highest benchmark index, a change in the 

standard deviation of any predictor (including X1) in the monitoring data set will trigger a 

stronger ripple effect on the X1’s index.  On the contrary, X2 has the lowest benchmark 

index, only a change in its own standard deviation plus another change of X1’s standard 

deviation in the monitoring data set can affect its index. 

 

Figure 4. Feature Contribution Indices of Predictors Across Monitoring Data Sets for Scenario 2 

Table 2 shows the Feature Contribution Indices of the four monitoring data sets and the 

benchmark training data (the Reference column).  The out-of-bound values are highlighted 

in red. 
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Table 2. Feature Contribution Indices of Predictors for Scenario 2 

Predictor Reference No Change 
SD1 = 0.8 & 
SD2 = 1.0 

SD1 = 1.0 & 
SD2 = 1.25 

SD1 = 0.8 & 
SD2 = 1.25 

X1 81.1% 79.6% 68.3% 74.1% 62.6% 

X2 18.8% 16.3% 17.1% 26.0% 34.6% 

Although we have not proved this fact mathematically, we notice that changing the standard 

deviation of a predictor will drastically magnify or shrink its Feature Contribution Index.  For 

example, changing only the standard deviation of X2 from 1 to 1.25 in the third monitoring 

data set will magnify its index approximately 1.4 times (from 18.8% to 26.0%).  The 

magnitudes of the changes might be even bigger when the standard deviations of other 

predictors also change. 

SCENARIO 3: CHANGE THE MEAN 

Four monitoring data sets, each containing 100 observations, are simulated.  The predictors’ 

covariance structures are the same as that in the training data except for the means of the 

predictors. Here are the simulated changes to the mean in the four monitoring data sets: 

1. The means of X1 and X2 are both 0, i.e., No Change. 

2. The mean of X1 is -10 and that of X2 is 0. 

3. The mean of X1 is 0 and that of X2 is 20. 

4. The mean of X1 is -10 and that of X2 is 20. 

The box-plots in Figure 5 show that the distributions have very different medians, but the 

ranges are similar.  This is expected since we changed only the means of the predictors but 

not their covariance structures. 

 

Figure 5. Box Plots of Predicted Values Across Monitoring Data Sets for Scenario 3 

The panel chart in Figure 6 shows the indices of the predictors across the data sets.  All the 

indices are within the control limits.  We do expect this because the indices are designed to 

detect changes in the covariance structures (including standard deviations and correlations), 

but not changes in the means. 
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Figure 6. Feature Contribution Indices of Predictors Across Monitoring Data Sets for Scenario 3 

Table 3 shows the Feature Contribution Indices of the four monitoring data sets and the 

benchmark training data (the Reference column).  The out-of-bound values, if any, are 

highlighted in red. 

Table 3. Feature Contribution Indices of Predictors for Scenario 3 

Predictor Reference No Change 
Mean1 = -10 & 

Means = 0 
Mean1 = 0 & 
Means = 20 

Mean1 = -10 & 
Means = 20 

X1 81.1% 79.6% 77.9% 81.8% 80.6% 

X2 18.8% 16.3% 9.7% 18.4% 17.2% 

ANALYSIS EXAMPLE 

Finally, we will illustrate our method using a real-life data set.  The data in this example 

describes the historical usage patterns along with the weather data about the bike rental 

demand in the Capital Bikeshare program in Washington, D.C.  The data is available on the 

Kaggle site1.  The original data was provided by Fanaee-T and Gama (2014). 

For the sake of discussion, we are going to build a Poisson regression model to predict the 

total number of rentals (that is, count).  The data originally covers 10,886 rental records 

dated from January 1, 2011 to December 31, 2012.  We create the training data and four 

monitoring data sets based on the rental dates.  The training data consists of all rentals in 

2011 and it has 5,422 observations.  The first monitoring data set consists of rentals in the 

first quarter of 2012 (that is, January to March) and has 1,363 observations.  The second 

monitoring data set consists of rentals in the second quarter of 2012 (that is, April to June) 

and has 1,366 observations.  The third monitoring data set consists of rentals from the third 

quarter of 2012 and it has 1,368 observations.  Finally, the fourth monitoring data set 

consists of rentals from the fourth quarter of 2012 and has 1,367 observations. 

A few categorical variables are created so that the Poisson regression model is more 

predictive.  For example, the rental_hour_group variable is created by grouping values of 

the rental_hour variable.  The grouping is determined mostly due to business reason.  The 

                                                           
 
1 https://www.kaggle.com/c/bike-sharing-demand.  

https://www.kaggle.com/c/bike-sharing-demand
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Poisson regression algorithm converged.  Plotting the predicted counts versus the observed 

counts assure us that the model fits the data well (Figure 7).  Thus, we will use this model 

result for our discussion. 

 

Figure 7. Predicted Counts Versus the Observed Counts of the Poisson Regression Model 

Table 4 shows the parameter estimates of the Poisson regression model.  The type III 

likelihood ratio tests of all the predictors are significant at the 0.01% level. 

Table 4. Parameter Estimates of the Poisson Regression Model 

Measurement Level Parameter Level DF Estimate 

 Intercept   1 3.9253 

Nominal 

holiday 
0 0 0 

1 1 0.0539 

rental_weekday 

1 1 -0.0270 

2 1 -0.0665 

3 1 -0.0562 

4 1 -0.1220 

5 1 -0.0518 

6 1 0.0144 

7 0 0 

rental_hour_group 

2AM - 5AM 1 -1.9459 

6AM - 8AM 1 0.6220 

9AM - 11AM 1 0.4495 

12NOON - 4PM 1 0.6151 

5PM - 7PM 1 1.0955 

8PM - 1AM 0 0 

weather 

1 0 0 

2 1 -0.0602 

3 1 -0.4314 

Interval 

temp   1 0.0406 

humidity   1 -0.0014 

windspeed   1 -0.0037 
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Next, we will apply this model to the four monitoring data sets.  Figure 8 shows the Feature 

Contribution Indices of all predictors in the training data and the four monitoring data sets.  

Overall, there are no drastic changes among the indices.  The more noticeable changes are 

at the humidity (the relative humidity), the season (the season indicator), and the temp 

(the hourly temperature) predictors.  Since the monitoring data sets are characterized by 

the rental dates (for example, in the first monitoring data set, season equals 1 for all 

observations, and humidity and temp varies within the winter-characterized ranges), the 

spreads of the humidity, the season, and the temp predictors in a monitoring data might be 

narrower than that in the benchmark data. 

 

Figure 8. Feature Contribution Indices of the Monitoring Data for the Analysis Example 

We will next review the Feature Contribution Indices of the predictors individually (Figure 

9).  You should notice that the weekend predictor does not have control limits.  The LOG 

messages show that the FNONCT functions ran into computational problems and could not 

return values.  Since the Feature Contribution Index of the weekend predictor is almost zero 

in the benchmark training data, we do anticipate this problem.  Therefore, we can safely put 

this undesirable result aside. 
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Figure 9. Feature Contribution Indices of Predictors Across Monitoring Data Sets for the Analysis 
Example 

Table 5 shows the Feature Contribution Indices of the four monitoring data sets and the 

benchmark training data (the ID column).  The out-of-bound values are highlighted in red. 

Table 5. Feature Contribution Indices of the Predictors for the Analysis Example 

Measurement 
Level 

Predictor 2011 2012 Q1 2012 Q2 2012 Q3 2012 Q4 

Interval 

atemp 31.5% 25.8% 30.4% 21.2% 22.3% 

humidity 12.9% 12.3% 17.4% 37.0% 11.3% 

temp 33.0% 28.6% 33.0% 36.7% 22.4% 

windspeed 1.1% 2.2% 3.0% 2.8% 1.6% 

Nominal 

holiday 0.0% 0.1% 0.2% 0.1% 0.0% 

rental_hour_group 67.3% 79.0% 86.7% 87.2% 85.2% 

rental_weekday 0.5% 0.4% 1.5% 0.6% 0.6% 

season 12.2% 0.0% 0.0% 0.0% 0.0% 

weather 3.1% 3.2% 3.5% 2.6% 2.7% 

weekend 0.0% 0.0% 0.8% 0.0% 0.0% 

workingday 0.0% 0.0% 1.0% 0.1% 0.0% 

The most obvious change occurs in the rental_hour_group predictor. The indices of other 

interval predictors that describe the climate of the quarters showed some changes. Our 

common sense tells us that these interval predictors are correlated, and their covariance 

structures do depend on the quarters.  Figure 10 shows the association structure between 

the rental_hour_group and the humidity predictors by quarter. 
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Figure 10. Association Structure Between the rental_hour_group and the humidity Predictors by 
Quarter 

At first glance, the humidity predictor has a smaller range in the quarterly data than in the 

training data.  In addition, the rental hour group seems to affect the interquartile ranges.  

For example, the interquartile ranges during 5PM – 7PM of 2012 Q1 overlaps the least with 

that of 2012 Q4. During other times of day, the interquartile range of 2012 Q1 overlaps 

more with that of 2012 Q4. 

Finally, the Feature Contribution Indices of the season drop to zero in the four monitoring 

data sets.  This is no surprise because the season predictor is practically constant in each 

monitoring data set.  Thus, it has no relevance to the model outcome except to raise or 

lower the overall mean of the predicted rental counts. 

CONCLUSION 

We have introduced the Feature Contribution Index and we attempted to interpret the 

meanings of the index using a few simulated studies and the Bike Share Demand data.  The 

Feature Contribution Index idea has plenty of room for improvement as we are not fully able 

to make conclusions based on their values.  We welcome others to join us in further 

studying, improving, and interpreting the Feature Contribution Index. 

REFERENCES 

Fanaee-T, H., and Gama, J. (2014). “Event labeling combining ensemble detectors and 

background knowledge”, Progress in Artificial Intelligence, 2(2-3), 113-117, Berlin 

Heidelberg, Germany: Springer-Verlag. https://doi.org/10.1007/s13748-013-0040-3.  

Kromrey, J. D., and Bell, B. A. (2010). “ES_ANOVA: A SAS Macro for Computing Point and 

Interval Estimates of Effect Sizes Associated with Analysis of Variance Models,” Proceedings 

of the SouthEast SAS Users Group Conference (SESUG 2010), paper PO-05. Cary, NC: SAS 

Institute Inc. https://analytics.ncsu.edu/sesug/2010/PO05.Kromrey.pdf.   

Steiger, J. H. (2004). “Beyond the F Test: Effect Size Confidence Intervals and Tests of 

Close Fit in the Analysis of Variance and Contrast Analysis,” Psychological Methods, 9(2), 

164-182. http://dx.doi.org/10.1037/1082-989X.9.2.164.  

https://doi.org/10.1007/s13748-013-0040-3
https://analytics.ncsu.edu/sesug/2010/PO05.Kromrey.pdf
http://dx.doi.org/10.1037/1082-989X.9.2.164


16 
 
 

CONTACT INFORMATION 

Your comments and questions are welcomed, encouraged, and valued. In addition, you can 

request the SAS codes that generate the above results.  Please contact the author at: 

Ming-Long Lam 

SAS Institute Inc. 

(312) 995-5865 

ming-long.lam@sas.com 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or 

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA 

registration.  

Other brand and product names are trademarks of their respective companies. 



Model Validation 

A structured approach to model validation 
By Hans-Joachim Edert  

Published on The SAS Data Science Blog, February 19, 2020 

This blog post is part one of a series on model validation. The series is co-authored with my colleague Tamara 
Fischer. 

Finding the best approach for deploying analytical models into production is definitely not a new challenge. This 
final step of deployment – or “the last mile” as my colleague James called it in his blog post – has proven to be the 
most challenging part of the journey for many data scientists, and is often a stumbling stone. 

One possible solution to this challenge is to apply the ideas of continuous integration / continuous delivery (CI/CD) 
to the area of analytical modeling. Since analytical decisions have become more crucial to business processes and 
deployment continues to be a challenge, it's worth exploring the benefits of these concepts. 

A modelops deployment example 
Recently, we were asked by a customer to showcase the benefits of integrating SAS model governance into an 
analytical ecosystem that includes a diverse set of open-source tools and many different scripting languages next 
to SAS analytics. Specifically, the customer asked us to describe a continuous integration process for 
operationalizing analytical models in this environment. In this series of posts,  we want to share some of our 
experiences with you. 

Before we dive into the details, let me clarify that the term “model validation" is used in a rather narrow sense 
here to describe an approving process for analytical models before they are accepted for deployment to a 
production environment. In this case, since the models will be implemented as part of a CI process, it’s essential 
that this “pipeline” has to be fully automated. 

In total, there are four parts to this blog post series that describe this modeling scenario in detail: 

1. This post will describe some basic principles of the DevOps (or ModelOps) approach. 
2. The second post discusses the “test pyramid,” which originally is an industry-standard for test design in 

software engineering. However, we think it's valuable in the area of analytical test design as well. 
3. The third post is more “hands-on” in nature. It describes how a model validation pipeline can be 

implemented in real life – using tools like Git, Jenkins – and SAS Model Manager of course. 
4. Finally, the fourth post addresses a purely analytical topic. While the first three posts are written with a 

DevOps engineering audience in mind, the fourth post is aimed more at data scientists. It contains a 
detailed explanation of an algorithm called the feature contribution index (FCI), how it works and how it 
can be used with SAS. This algorithm has been essential in the project and we hope you will find that the 
FCI could be a valuable tool in your analytical toolbox too – whether your aim is to set up a “model 
validation pipeline” or something completely different. 

So, let’s get started. Have fun! 

  

https://blogs.sas.com/content/tag/solving-the-last-mile
https://blogs.sas.com/content/author/tamarafischer/
https://blogs.sas.com/content/author/tamarafischer/
https://blogs.sas.com/content/hiddeninsights/2019/10/18/the-last-mile-getting-analytics-into-operations/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops2/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops3/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops4/
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Back to the basics: some DevOps principles 
Continuous automation is a popular DevOps method for automatically building, testing and validating code every 
time a change is made from anyone on a development team. This makes model test automation a typical natural 
integration use case. While continuous integration is often discussed in the context of DevOps, we're applying the 
method in ModelOps. Of course, the idea of ModelOps did not appear out of thin air. In fact, its core principles go 
back to the base characteristics of the DevOps approach. The most important of them being automation, test first 
and API first. 

Automation 
By automation we’re referring to both deployment automation and test automation. While the latter is in the 
focus of this blog, deployment automation is a crucial aspect of CI as well. The latest release of SAS Viya brings a 
strong focus on container technology, which is typically a good answer to the automation challenge, 
as containers provide a stable runtime environment for analytical models. 

The container becomes the deployable unit that is used to safely ship a model through the environments that are 
commonly seen as enterprise deployment architectures (development, testing, production, etc.). The current 
version of SAS Model Manager is a prime example of this principle as it leverages container technology for 
analytical models written in an open source language like Python and R. 

Essentially, Model Manager packages together all the needed ingredients before pushing the model container to a 
Kubernetes cluster: the Python or R kernel, all client required packages, and finally the analytical model as well. 
(And by the way: you are on the right track if this process reminds you of the source-to-image (s2i) build 
mechanism in Kubernetes orchestration platforms such as Red Hat OpenShift.) 

In this blog post, we're less concerned about the particular deployment technology in use, but clearly containers 
fit very well into the concept of automated validation. Using container technology, we can make sure that we are 
validating the exact artifact that will then eventually be pushed to a production environment. The benefits include 
no version glitches, no side effects and easy to keep under version control as a whole for auditing purposes. 

Test first 
The test-first paradigm tries to pinpoint the best spot in the lifecycle of software development (or model 
development in this case) when testing should occur. Test-driven development is a standard today in the field of 
software engineering. Developers are asked to first write their tests (often known as unit tests) before they start 
writing the actual production code. The idea here is that you have your unit tests as a safety net in your back from 
the very beginning on. 

Testing becomes a background activity that is continuously executed whenever code changes are detected and, as 
such, it needs to be as non-obstructive as possible: as long as tests do not fail, developers should not even take 
notice of them at all. It is easy to see how this requirement relates to the previous point we were talking about: 
test automation. 

So how would this test-first concept translate to the analytical space? Quite easily. In fact, but with minor 
modifications, since model validation adds a quality perspective to testing. Model testing not only covers simple 
“pass/no pass” checks but also keeps an eye on, “how well did this model pass?” and "how does this model 
compare to others?" In other words: the prediction quality of the model is probably the most important validation 
step we should focus on. 

API first 
Probably being less popular than the previous one, the “API first” pattern rapidly gains in importance for any non-
trivial software and especially proves its worth over time – when changes creep in and software needs to adapt to 
new requirements. “API first” fosters a modular approach to architecture as it asks developers to first design the 
public interface of a component before moving on to the implementation. This public interface now becomes a 
stable “contract” on which other components can rely, unaffected of any changes going on the implementation 
level over time. 

https://www.sas.com/en_us/software/viya.html
https://blogs.sas.com/content/hiddeninsights/2020/02/12/plant-pots-and-containers/
https://www.sas.com/en_us/software/model-manager.html
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As before, the “API first” paradigm can be found in the area of analytical work as well as the area of DevOps. To 
give an example: imagine a real-time scoring model that exposes its functionality via a REST-based interface. A 
web shop system is relying on this service during the checkout stage to make a choice on the payment methods it 
will allow. 

As we know, the prediction quality of analytical models usually degrades over time, so at some point, the scoring 
model might need to be retrained or even replaced by a different model implementation. In this situation, two 
requirements become essential: first, the client of the scoring service should not be impacted by the necessary 
back end changes at the model implementation level (what happens in Vegas, stays in Vegas). Second, the update 
better not cause any downtime. 

Most container orchestration platforms offer a rolling update deployment strategy which will take the latter 
requirement. When taken seriously, “API First” should ensure that the public interface of the retrained or 
rewritten model has not changed (so clients can still use it). But there’s more to it when looking ”into” the runtime 
container. In most cases, the API is actually an “API server” – an active layer in the container acting as the exposed 
communications endpoint – and it is equally important to check that the updated model still successfully 
communicates with that API server. 

What’s next? 
In this blog post, we described how the base characteristics of the DevOps approach – automation, test first and 
API first – can be adapted to the area of analytical work. In the next post in this blog series, we will take a closer 
look at the test design topic. Is there a neat way of ordering and separating different categories of tests and how 
would that look if applied to analytics? Check it out and thanks for reading! 

Model validation testing in the age of DevOps 
By Hans-Joachim Edert  

Published on The SAS Data Science Blog, February 19, 2020 

This blog post is part two of a series on model validation. The series is co-authored with my colleague Tamara 
Fischer. 

After revisiting some of the key principles of DevOps and discussing how to map them to the area of analytical 
work in the first post of this series, let us now take a look at a well-known metaphor for test case development in 
the software industry. We are referring to the idea of the “test pyramid“ (see here for a thorough almost canonical 
explanation by Martin Fowler). 

  

https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops2/
https://blogs.sas.com/content/tag/solving-the-last-mile
https://blogs.sas.com/content/author/tamarafischer/
https://blogs.sas.com/content/author/tamarafischer/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops1/
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
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There are many variations of the test pyramid as it is not a strict methodology. It's simply a graphical 
representation that helps to get a clear view on the constraints to be taken into account when designing test 
cases: how they can be grouped (low-level to high-level), how many of them (in relation to the total) are to be 
expected, and the costs associated to them. Our version of the test pyramid looks like this: 

 

Our test pyramid depicts our vision for analytical model testing (*e2e = “end-to-end”) 

Let’s quickly walk through the layers to see how these sections of the pyramid can be applied to the validation of 
analytical models. 

Unit tests 
The bottom layer of our test pyramid is composed of unit tests. Unit tests are small, low-level checks aiming at 
validating infrastructure and coding policies. Typical unit test cases would be checking if the developer has 
committed all required files (model binary package, training data, metadata descriptors etc.) or checking if the 
code adheres to policies and conventions (has a header, has comments, etc.). Unit tests typically are quickly 
executed and can easily be reused. 

For example, the following SAS code checks if the developer has included the model to the project before it was 
committed. It is assumed that the model function is stored in a single file, usually this is a file in the ASTORE format 
(analytical store). The name of the model file (passed to this test in the SAS macro variable MODELFILE) is specific 
to the project, so it is not part of the test but the test, as such, can be easily reused between any project. 

/* ********************************************************** */ 
/* Unit Test: Test if the requested model file is available   */ 
/* ********************************************************** */ 
%include "/tmp/driver.sas"; 
  
options nomprint nosource; 
%MACRO CHECK_MODEL; 
    %put Checking for model file &amp;MODELFILE. ; 
    %if %sysfunc(fileexist(/tmp/&amp; MODELFILE.)) %then %do; 
        %put SUCCESS: The file &amp; MODELFILE. was found. ; 
    %end; %else %do; 
        %put ERROR: The file &amp; MODELFILE. does not exist. ; 
    %end; 
%mend; 
%CHECK_MODEL; 
options mprint source; 

You might wonder about the return codes. Shouldn’t the test cancel or abort the SAS session if it fails? Is it 
sufficient to print out a simple “ERROR” statement to the log? In fact, it is – at least in this case. We’ll get back to 
this point at the end of this post. 
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A final remark at this point: if you’re searching for more sophisticated approaches for defining unit tests for SAS 
(our example given above is admittedly super simple), make sure to read recent SAS Global Forum papers like this 
one or take a look at this unit test framework hosted at SourceForge. 

Integration tests 
This group of tests checks how well the analytical model fulfills its purpose outside the training sandbox, where it 
will deal with data of a different quality (missing attributes, corrupt records) and frequency (like streaming data). 
Integration tests aim higher when compared to unit tests, because they try to measure model quality and model 
performance before the model is actually deployed to production. 

Integration tests are also quite sophisticated in nature, as they use analytical algorithms to measure other 
analytical algorithms. One clever test falling into this category is the Feature Contribution Index, which analyzes 
the covariance structure of the predictors only. The advantage of this test is that a target variable is not needed to 
evaluate whether a model can be applied to new data. 

If you’re interested in a detailed description of how the analytics behind this test works, take a look at this blog 
post. 

End-to-end tests 
The final group of tests could also be renamed to API tests. These tests try to uncover defects that only can be 
seen in the “end-to-end” scenarios that include the full loop from the client making the request to the service 
returning the response. One potential consequence is that true e2e tests might not be suitable for full automation. 
Testing the API, however, can be fully automated. 

What’s the purpose of testing an API? Again, it is primarily a counter-measure to shield against changes creeping 
in over time. 

To illustrate one potential scenario for model validation, take a look at the API defined by the model container 
images we’re using at SAS (here’s the GitHub project with the source codes). These containers, meant for 
executing analytical models written in Python or R, support a method call to trigger a scoring operation (taking the 
data to be scored as input). SAS Model Manager uses this API for interactively testing / validating the model using 
the graphical user interface. 

 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3199-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3199-2019.pdf
https://sourceforge.net/p/sasunit/wiki/Getting%20started%20with%20unit%20testing%20of%20SAS%20programs/
https://go.documentation.sas.com/?docsetId=mdlmgrmacro&docsetTarget=n0ztmw16lon7zxn1jqso2xlu2xzz.htm&docsetVersion=14.2&locale=en
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops1/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops1/
https://github.com/sassoftware/model-container-recipes
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However, it’s easy to see that the same method call can be called in a batch pipeline as well. 

Working on a chain gang 
Coming back to a point we discussed earlier: what’s the appropriate response if one or more tests fail? As you’ve 
noticed in the simple example given above, we decided to not immediately cancel all processing. Instead we’re 
simply printing out the “test failed” notification to the SAS log. Why is that? 

It’s important to understand that each test is only one out of potentially many being executed by an automated 
pipeline outside the immediate reach of the developer, which means it is crucial to aggregate the test results and 
send them back to the developer. 

In our case (as you'll see in the 3rd part of this blog), we decided that we want to separate these steps in the 
automation pipeline: first we run all tests, push all generated output (logs, reports) back to a Git system 
and then evaluate the test results (stopping the pipeline at this point if we detect that a test had failed before). We 
believe that this is a more efficient way of sending feedback to the developer instead of sending separate 
notifications about each test (especially if there is more than one test failing). 

We’re using Jenkins as the test automation system, and a pipeline written in Jenkins (the so-called “Jenkinsfile”) is 
basically a JSON document containing one or more (Linux) shell scripts sequentially chained together in stages. The 
following snippet should give you an idea of how we organized the validation pipeline. It shows the three most 
important stages: 

1. Sequentially run all tests. Each test is kept in a separate SAS file following a naming convention 
(test*.sas). 

2. Commit the output of all tests back to the original Git project. 
3. Sequentially evaluate the test logs (test*.log). Cancel processing if one of the tests has returned an error. 

 
1. stage('Run unit tests and quality checks') { 
2.  steps { 
3.    sh ''' 
4.      for f in test*.sas 
5.      do 
6.        docker exec $myCnt \ 
7.          su -c "/opt/sas/spre/home/bin/sas -SYSIN /tmp/$f \ 
8.          -CONFIG /opt/sas/spre/home/SASFoundation/sasv9.cfg \ 

https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops3/
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9.          -CONFIG /opt/sas/spre/home/SASFoundation/nls/u8/sasv9.cfg \ 
10.          -PRINT /tmp/results.lst \ 
11.          -LOG /tmp/results.log" testrunner 
12.  
13.        (docker exec $myCnt cat /tmp/results.log) &gt; $f.log 
14.        (docker exec $myCnt cat /tmp/results.lst) &gt; $f.lst 
15.      done 
16.    ''' 
17.  } 
18.  } 
19. stage('Commit test results back to git project') { 
20.  steps { 
21.    … code omitted … 
22.  } 
23. } 
24. stage('Evaluate test results') { 
25.   steps { 
26.    sh ''' 
27.      for f in test*.log 
28.      do 
29.        # grep for "ERROR", return false if found 
30.        cat $f | if [ $(grep -c "ERROR:") == 0 ]; then exit 0; else exit 1; fi 
31.      done 
32.    ''' 
33.  } 
34.  } 

What’s next? 
After reviewing some of the basic Devops principles in the first post of this series, we introduced the concept of 
the test pyramid in this installment, which helps us to organize the test cases we want to run against the analytical 
models. The next part will discuss the overall system architecture and will also share more details on the 
infrastructure (Jenkins, Docker etc.) that we used. Stay tuned! 

Creating a model validation pipeline 
By Hans-Joachim Edert  

Published on The SAS Data Science Blog, February 19, 2020 

This blog post is part three of a series on model validation. The series is co-authored with my colleague Tamara 
Fischer. 

So far, we've been discussing how the base characteristics of the DevOps approach can be applied to the area of 
analytical work, and we talked about different test categories and how to chain them together. Let's now move 
from theory to process. Using an analytical platform we recently set up for a SAS customer as our example, this 
post will describe a fully automated validation pipeline for analytical models. 

  

https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops1/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops3/
https://blogs.sas.com/content/tag/solving-the-last-mile
https://blogs.sas.com/content/author/tamarafischer/
https://blogs.sas.com/content/author/tamarafischer/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops1/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops1/
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops2/
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To get started, here’s a simplified overview of the main components of this platform: 

 

Let's briefly discuss the different components. 

Model development (blue) 
Data scientists working in this environment decide which modeling tools they want to use, such as R, Python or 
SAS. Container technology is used to provide individual work spaces for them. SAS Studio, Jupyter Notebook and R 
Studio are the web-based code editors used by the data scientists. Note that this approach usually requires an 
“umbrella workbench” application, which is the primary interaction endpoint for users and provides ways to 
handle the container life cycle. In other words, the work bench offers a GUI with an easy way for users to launch 
and stop their workspaces, etc.). These workbenches could be developed in-house, but there are also commercial 
products available which provide a seamless integration with SAS container technology. 

Metadata (orange) 
As containers are ephemeral in nature, all project artifacts, such as program files, documentation or even small 
amounts of training data, are kept in a Git source code management system. However, in addition to that, 
analytical models (e.g., pkl files, SAS ASTORE files) are registered in SAS Model Manager, which is used as a 
centralized model repository. 

  

https://www.sas.com/en_us/software/studio.html
https://www.sas.com/en_us/partners/find-a-partner/alliance-partners/domino-data-lab.html
https://www.sas.com/en_us/partners/find-a-partner/alliance-partners/domino-data-lab.html
https://www.sas.com/en_us/software/model-manager.html
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Unlike Git, SAS Model Manager is a domain specific tool which was specifically designed to manage analytical 
models. It provides additional functionality on top of just storing the file artifacts, such as workflow management, 
model performance monitoring and reporting (shown in the screenshots below). 

 

In the real-world example we're using for this blog, SAS Model Manager is an endpoint as the pipeline feeds the 
validated models into it. However, when taking the wider perspective of looking at the full life cycle of analytical 
models, SAS Model Manager is also a starting point. From within SAS Model Manager, you can publish a model to 
its production environment (be it a database, a Hadoop system, a web service or a container orchestration 
platform), and it can also be used to collect feedback about your model’s performance – allowing you to decide 
whether it’s necessary to retrain (or replace) the model. 

Execution (green) 
The execution layer consists of a Kubernetes cluster providing an environment for model runtime containers, as 
well as for the interactive individual workspace containers. Next to Kubernetes, a Jenkins CI server is configured to 
run multiple pipelines. These pipelines can be triggered interactively (by pushing a button in SAS Model Manager) 
or by changes (commits) to the Git projects. Validation pipelines will launch model containers on the Kubernetes 
cluster and run preconfigured test cases on these models. 
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These components are connected to each other to create an automated validation pipeline for analytics models. 
The basic idea is shown in the following workflow diagram: 

 

(1) Data scientists begin by requesting the individual workspace they need. For example, they could launch a SAS 
Viya development environment: 

 

(2) While working on their tasks, the data scientists interact with a Git SCM system, which is the central source 
repository for all project files (for example, source codes, training data or documentation). A milestone is reached 
once the user has completed his work up to a point where he or she thinks that the analytical model is ready to be 
committed to the validation pipeline (3). 

At this point an automated process kicks in. The pipeline acts like a quality gateway to make sure that the outcome 
of the developer’s work is eligible to be registered to the model repository (in this case SAS Model Manager). From 
there, it can then be published to a production environment. To make sure that the model meets all the 
requirements, the pipeline runs a collection of unit, integration and API tests against it. Usually these tests are 
written in the same language that was used for model development (refer to the previous blog post for a simple 
example of a unit test written in the SAS language). 

  

https://www.sas.com/en_us/software/viya.html
https://www.sas.com/en_us/software/viya.html
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops2/
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As we mentioned in post two, ModelOps testing should be automated and non-obstructive. From a technical 
perspective this is achieved by integrating an automation server with the SCM system. In our case, we’re using 
Jenkins and Git, but there are certainly alternatives to both tools. Jenkins listens to changes in the Git projects and 
will trigger the pipeline execution once a user checks in his work to a certain Git branch of his or her project – 
speaking technically: We’ve defined a webhook: 

 

In the previous post we’ve also mentioned end-to-end or API tests. What makes these tests valuable is that they 
usually run in environments which are close to production. And again, container technology provides a big 
advantage at this point; the model runtime container image is our deployable unit which can be tested in semi-
production and pushed to a production environment without being re-built or re-deployed. So, at the beginning of 
the validation pipeline, a runtime container image will be set up (4). It consists of the suitable language kernel (e.g. 
SAS, R, Python – check here for more details) and the specific model which has been committed to the pipeline. All 
checks will be run against this container image (5) and if successful (6), this image will be pushed to a container 
registry (7). Refer to our previous blog post for a more detailed discussion on the sequential steps of the Jenkins 
pipeline. 

  

https://github.com/sassoftware/model-container-recipes
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops2/
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As a final step, the model will also be registered in SAS Model Manager (8) using the collection of Model 
Management macros which are supplied out-of-the-box with SAS Model Manager. Here’s a screenshot showing 
the Jenkins CI server executing a validation pipeline after the user has submitted the analytical model to Git: 

 

This picture shows successful and failed pipeline executions. The pipelines highlighted in red did fail for at least 
one test, and as a consequence neither the container image was pushed to the registry nor was the model 
registered in SAS Model Manager. Follow the column headings to get an idea of the various stages of the 
validation pipeline. It’s worth mentioning that the pipeline is set up so that developers receive timely feedback 
when commits are being rejected – which is another core requirement for CI workflows. For example, error logs, 
listings or even PDF documents generated by the unit tests are pushed to the model’s Git project by the 
automation server, so they're available for developers in their working environment. 

Conclusion 
We've tried to cover a lot in this blog series, but there is still so much more we could say. For example, you might 
wonder: What happens to the analytical models that passed the acid test of the model validation pipeline and 
made it into the image repository? After all, they’re just at the beginning of their life cycle at this point! We do 
have good answers to these questions (hint: SAS Model Manager is a good start), but this is a story for another 
blog post. 

In this and the previous two blog posts, we’ve described a way to validate analytical models adhering to 
continuous itnegration best practices up to the point where they become ready for the “go-live”. Automation 
(avoiding human intervention), test first and API first have been the guidelines for this process. And while we all 
probably do agree on the importance of the CI approach as such, it’s also clear that every implementation will be 
different. So hopefully these blogs have given you some inspiration, and we’d be happy to learn about your 
approach to operationalizing analytics, a.k.a. completing “the last mile.” 

  

https://go.documentation.sas.com/api/docsets/mdlmgrmacro/15.3/content/mdlmgrmacro.pdf
https://go.documentation.sas.com/api/docsets/mdlmgrmacro/15.3/content/mdlmgrmacro.pdf
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Introducing the feature contribution index for model assessment 
By Tamara Fischer  

Published on The SAS Data Science Blog, February 19, 2020 

 
This blog post is part four of a series on model validation. The series is co-authored with my colleague Hans-
Joachim Edert. 

Most model assessment metrics, such as lift, area under the curve, Kolmogorov-Smirnov statistic or average 
square error, require the presence of the target/label to be in the data. This is always the case at the time of 
model training. But how can I ensure that the developed model can be applied to new data for prediction? There 
may be weeks or even months between model development and model deployment. This means that the 
distribution of the predictors/features may have changed. Even if model development and model deployment 
happen quickly, the training data may differ from the new data by sampling (see Figure 1). 

Figure 1: Different samples of training and new data due to delay in time and absence of the true outcome 

 

The true outcome, or target/label, is usually not available in the data at the time of model deployment. This means 
that the usual model assessment metrics cannot be used for model assessment. 

The calculation of a feature contribution index allows you to evaluate a model without the presence of a target 
variable. That makes it suitable for use as an analytical test in a ModelOps scenario, which can be automated. If 
you're interested in learning more, check out the other posts in our blog series on model validation. 

  

https://blogs.sas.com/content/tag/solving-the-last-mile
https://blogs.sas.com/content/author/hansjoachimedert/
https://blogs.sas.com/content/author/hansjoachimedert/
https://blogs.sas.com/content/tag/solving-the-last-mile/
https://blogs.sas.com/content/subconsciousmusings/files/2020/02/4.1.png
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Let’s dig deeper into the idea of the feature contribution index. It's based on the idea that the application of a 
model to new data is permissible if the associations (both strengths and directions) among the predictors/features 
of training and new data are similar. We used the correlations to measure the associations. This has the advantage 
that the values are all between -1 and 1 (see Figure 2). 

Figure 2: Correlation matrix of all predictors 

 

In order to make a statement about deviations for each predictor/feature, the correlation between each 
predictor/feature and the prediction can alternatively be calculated (see Figure 3). 

Figure 3: Correlation matrix between the prediction and each predictor 
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SAS® Model Manager includes SAS macros to calculate the contribution index for each feature. Below you can see 
an example where the feature contribution index of some predictors/features are plotted for two points in time. 
You can see that the deviation of the predictor “MORTDUE” is the largest here (see Figure 4). But is it too large? 

Figure 4: Feature contribution index for two points in time: development (baseline) and deployment time (validation) 

 

So, now we have to find a way to define the “similar”? How large may the deviation be? Because some random 
elements are always present in the data and should be allowed. This can be achieved by calculating confidence 
bands whose limits should not be exceeded, using the Baseline values as the references. The details on how the 
confidence bands are calculated are beyond the scope of this blog, but can be found in this SAS Global Forum 
Paper “Monitoring the Relevance of Predictors for a Model Over Time,” authored by Ming-Long Lam, Ph.D., who 
works in R&D at SAS. 

  

https://support.sas.com/en/software/model-manager-support.html#documentation
https://go.documentation.sas.com/?cdcId=mdlmgrcdc&cdcVersion=15.3&docsetId=mdlmgrmacro&docsetTarget=n0ztmw16lon7zxn1jqso2xlu2xzz.htm&locale=en
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3448-2019.pdf


16   SAS and Open-Source Model Management 

In Figure 5 below, only the predictor “MORTDUE” exceeds the confidence limit. All other predictors are within the 
confidence limits. 

Figure 5: Deviation confidence bands for each variable with calculated feature contribution index for two points in 
time: development (baseline) and deployment time (validation) 

 

With SAS Model Manager 15.3 on Viya, the Feature Contribution Index is available with each model monitoring 
report request. If you’d like more information about SAS Model Manager, visit our Help Center. 

https://support.sas.com/en/software/model-manager-support.html#documentation


APPENDIX 
For further reading, we suggest the following resources. 

Whitepapers, e-books and SGF papers (downloadable) 
Ball, T. and Hughes, C. (2020). Open Source Python & R Lang on our SAS® Shared Grid 

Mohan, P. (2020). Practical Geospatial Analysis of Open and Public-Use Data 

SAS e-book. Getting started with ModelOps 

SAS e-book. Out in the open with analytics 

SAS e-book. SAS in the Open Ecosystem – How a unifying platform can bring together diverse data and analytics to 
drive measurable value for your organization 

TDWI Pulse Report (2020). Using a Hybrid Open Source and Commercial Analytics Ecosystem 

Thangamuthu, K. (2019). Sparking Your Data Innovation: SAS® Integration with Apache Spark 

Toporowski, A. (2020). Python and the SAS® Quality Knowledge Base for Better Data Quality and Entity Resolution 

On-demand webinars and video contents 
Burgess, D. and Long, J., Automating Model Operations End to End 

Furbee, J. Using SAS APIs 

Hart, K., Jensen, B.K., and Walker, M. Make Your Models Move )ut. Deploy your analytical models whenever and 
wherever needed 

Long, J. and Ching, Y.J., Easily deploy and manage your models (R, Python or SAS) 

Malley, P., and Mohammad, M., ModelOps: Operationalising Analytics 

Mendes, N. and Long, J., Identifying Model Drift Before It Is Too Late  

SAS Demo – SAS Open Model Manager. First step deploying open source models 

SAS Users – Open-Source Model Management with SAS® Model Manager 

Blogs and articles 
Edert, H-J., Creating a model validation pipeline 

Newell, J., Driving faster value from analytics – how to deploy models and decisions quickly 

Ochiai-Brown, J., The last mile – getting analytics into operations 

Vandenberghe, F., How to deploy your models with SAS Model Manager to Hadoop 

 

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4708-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4293-2020.pdf
https://www.sas.com/en/whitepapers/model-ops-111230.html
https://www.sas.com/en_us/whitepapers/open-analytics-109311/download.html#formsuccess
https://www.sas.com/en_us/whitepapers/sas-in-open-ecosystem-108574/download.html#formsuccess
https://www.sas.com/en_us/whitepapers/sas-in-open-ecosystem-108574/download.html#formsuccess
https://www.sas.com/en/whitepapers/tdwi-hybrid-open-source-commercial-analytics-ecosysem-111151.html
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3405-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4157-2020.pdf
https://www.sas.com/sas/webinars/automating-model-operations-end-to-end.html
https://www.sas.com/en_us/webinars/using-sas-apis.html
https://www.sas.com/en_us/webinars/desperate-in-an-age-of-disparate-data.html
https://www.sas.com/en_us/webinars/desperate-in-an-age-of-disparate-data.html
https://www.sas.com/sas/webinars/easily-deploy-and-manage-your-models.html
https://www.sas.com/en_gb/webinars/modelops-operationalising-analytics.html
https://www.sas.com/sas/webinars/identify-model-drift.html
https://www.youtube.com/watch?v=o2ECO3Oe3vQ
https://www.youtube.com/watch?list=PLVV6eZFA22Qwahw8r9nilFm1VskGuG0Vf&v=F02sIm1TUKs
https://blogs.sas.com/content/subconsciousmusings/2020/02/19/modelops3/
https://blogs.sas.com/content/sascom/2020/01/31/driving-faster-value-from-analytics-how-to-deploy-models-and-decisions-quickly/
https://blogs.sas.com/content/hiddeninsights/2019/10/18/the-last-mile-getting-analytics-into-operations/
https://blogs.sas.com/content/sgf/2018/10/31/how-to-deploy-your-models-with-sas-model-manager-to-hadoop/
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