

The correct bibliographic citation for this manual is as follows: Windham, Matthew. 2018. Unstructured Data Analysis:
Entity Resolution and Regular Expressions in SAS®. Cary, NC: SAS Institute Inc.

Unstructured Data Analysis: Entity Resolution and Regular Expressions in SAS®

Copyright © 2018, SAS Institute Inc., Cary, NC, USA

978-1-62959-842-0 (Hardcopy)
978-1-63526-711-2 (Web PDF)
978-1-63526-709-9 (epub)
978-1-63526-710-5 (mobi)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the
publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at
the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the
publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or
encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer
software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use,
duplication, or disclosure of the Software by the United States Government is subject to the license terms of this Agreement
pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the
extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR
52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed
to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in
this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

September 2018

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software
distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.

Contents

About This Book .. v

Acknowledgments .. ix

Chapter 1: Getting Started with Regular Expressions .. 1
1.1 Introduction ... 2
1.2 Special Characters .. 9
1.3 Basic Metacharacters .. 10
1.4 Character Classes ... 16
1.5 Modifiers .. 18
1.6 Options .. 26
1.7 Zero-width Metacharacters .. 29
1.8 Summary ... 31
Chapter 2: Using Regular Expressions in SAS .. 33
2.1 Introduction ... 33
2.2 Built-in SAS Functions ... 34
2.3 Built-in SAS Call Routines ... 42
2.4 Applications of RegEx ... 53
2.5 Summary ... 63
Chapter 3: Entity Resolution Analytics .. 65
3.1 Introduction ... 65
3.2 Defining Entity Resolution ... 66
3.3 Methodology Overview .. 67
3.4 Business Level Decisions .. 68
3.4 Summary ... 70
Chapter 4: Entity Extraction .. 71
4.1 Introduction ... 71
4.2 Business Context .. 72
4.3 Scraping Text Data .. 73
4.4 Basic Entity Extraction Patterns .. 76
4.5 Putting Them Together .. 82
4.6 Summary ... 83
Chapter 5: Extract, Transform, Load .. 85
5.1 Introduction ... 85
5.2 Examining Data ... 85
5.3 Encoding Translation ... 89
5.4 Conversion .. 92

iv Contents

5.5 Standardization .. 94
5.6 Binning ... 95
5.7 Summary .. 98
Chapter 6: Entity Resolution ... 99
6.1 Introduction ... 99
6.2 Indexing .. 102
6.3 Matching ... 105
6.4 Summary .. 116
Chapter 7: Entity Network Mapping and Analysis .. 117
7.1 Introduction ... 117
7.2 Entity Network Mapping .. 118
7.3 Entity Network Analysis .. 122
7.4 Summary .. 134
Chapter 8: Entity Management ... 135
8.1 Introduction ... 135
8.2 Creating New Records ... 137
8.3 Editing Existing Records ... 138
8.4 Summary .. 138
Appendix A: Additional Resources .. 139
A.1 Perl Version Notes ... 139
A.2 ASCII Code Lookup Tables .. 140
A.3 POSIX Metacharacters .. 145
A.4 Random PII Generation ... 147

About This Book

What Does This Book Cover?
This book was written to provide readers with an introduction to the vast world that is unstructured data
analysis. I wanted to ensure that SAS programmers of many different levels could approach the subject
matter here, and come away with a robust set of tools to enable sophisticated analysis in the future.

I focus on the regular expression functionality that is available in SAS, and on presenting some basic data
manipulation tools with the capabilities that SAS has to offer. I also spend significant time developing
capabilities the reader can apply to the subject of entity resolution from end to end.

This book does not cover enterprise tools available from SAS that make some of the topics discussed herein
much easier to use or more efficient. The goal here is to educate programmers, and help them understand
the methods available to tackle these things for problems of reasonable scale. And for this reason, I don’t
tackle things like entity resolution in a “big data” context. It’s just too much to do in one book, and that
would not be a good place for a beginner or intermediate programmer to start.

Performing an array of unstructured data analysis techniques, culminating in the development of an entity
resolution analytics framework with SAS code, is the central focus of this book. Therefore, I have generally
arranged the chapters around that process. There is foundational information that must be covered in order
to enable some of the later activities. So, Chapters 1 and 2 provide information that is critical for Chapter 3,
and that is very useful for later chapters.

Chapter 1: Getting Started with Regular Expressions

In order to effectively prepare you for doing advanced unstructured data analysis, you need the
fundamental tools to tackle that with SAS code. So, in this chapter, I introduce regular expressions.

Chapter 2: Using Regular Expressions in SAS

In this chapter, I will begin using regular expressions via SAS code by introducing the SAS functions and
call routines that allow us to accomplish fairly sophisticated tasks. And I wrap up the chapter with some
practical examples that should help you tackle real-world unstructured data analysis problems.

Chapter 3: Entity Resolution Analytics

I will introduce entity resolution analytics as a framework for applying what was learned in chapters 1 and
2 in combination with techniques introduced in the subsequent chapters of this book. This framework will
be guiding force through the remaining chapters of this book, providing you with an approach to begin
tackling entity resolution in your environment.

Chapter 4: Entity Extraction

Leveraging the foundation established in Chapters 1 and 2, I will discuss methods for extracting entity
references from unstructured data sources. This should be a natural extension of the work that was done in
Chapter 2, with a particular focus—preparing for the entity resolution.

vi Unstructured Data Analysis

Chapter 5: Extract, Transform, Load

I will cover some key ETL elements needed for effective data preparation of entity references, and
demonstrate how they can be used with SAS code.

Chapter 6: Entity Resolution

In this chapter, I will walk you through the process of actually resolving entities, and acquaint you with
some of the challenges of that process. I will again have examples in SAS code.

Chapter 7: Entity Network Mapping and Analysis

This chapter is focused on the steps taken to construct entity networks and analyze them. After the entity
networks have been defined, I will walk through a variety of analyses that might be performed at this point
(this is not an exhaustive list).

Chapter 8: Entity Management

In this chapter, I will discuss the challenges and best practices for managing entities effectively. I try to
keep these guidelines general enough to fit within whatever management process your organization uses.

Appendix A: Additional Resources

I have included a few sections for random entity generation, regular expression references, Perl version
notes, and binary/hexadecimal/ASCII code cross-references. I hope they prove useful references even after
you have mastered the material.

Is This Book for You?
I wrote this book for ambitious SAS programmers who have practical problems to solve in their day-to-day
tasks. I hope that it provides enough introductory information to get you started, motivational examples to
keep you excited about these topics, and sufficient reference material to keep you referring back to it.

To make the best use of this book, you should have a solid understanding of Base SAS programming
principles like the DATA step. While it is not required, exposure to PROC SQL and macros will be helpful
in following some of the later code examples.

This book has been created with a fairly wide audience in mind—students, new SAS programmers,
experienced analytics professionals, and expert data scientists. Therefore, I have provided information
about both the business and technical aspects of performing unstructured data analysis throughout the book.
Even if you are not a very experienced analytics professional, I expect you will gain an understanding of
the business process and implications of unstructured data analysis techniques.

At a minimum, I want everyone reading this book to walk away with the following:

● A sound understanding of what both regular expressions and entity resolution are (and aren’t)

● An appreciation for the real-world challenges involved in executing complex unstructured data
analysis

● The ability to implement (or manage an implementation) of the entity resolution analytics
methodology discussed later in this book

About This Book vii

● An understanding of how to leverage SAS software to perform unstructured data analysis for their
desired applications

The SAS Platform is quite broad in scope and therefore provides professionals and organizations many
different ways to execute the techniques that we will cover in this book. As such, I can’t hope to cover
every conceivable path or platform configuration to meet an organization’s needs. Each situation is just
different enough that the SAS software required to meet that organization’s scale, user skill level(s),
financial parameters, and business goals will vary greatly.

Therefore, I am presenting an approach to the subject matter which enables individuals and organizations to
get started with the unstructured data analysis topics of regular expressions and entity resolution. The code
and concepts developed in this book can be applied with solutions such as SAS Viya to yield an incredible
level of flexibility and scale. But I am limiting the goals to those that can yield achievable results on a small
scale in order for the process and techniques to be well understood. Also, the process for implementation is
general enough to be applied to virtually any scale of project. And it is my sincere hope that this book
provides you with the foundational knowledge to pursue unstructured data analysis projects well beyond
my humble aim

What Should You Know about the Examples?
This book includes tutorials for you to follow to gain hands-on experience with SAS.

Software Used to Develop the Book's Content
SAS Studio (the same programming environment as SAS University Edition) was used to write and test all
the code shown in this book. The functions and call routines demonstrated are from Base SAS, SAS/STAT,
SAS/GRAPH, and SAS/OR.

Example Code and Data
You can access the example code and data for this book from the author page at
https://support.sas.com/authors. Look for the cover thumbnail of this book and select “Example Code and
Data.”

SAS University Edition
If you are using SAS University Edition to access data and run your programs, check the SAS University
Edition page to ensure that the software contains the product or products that you need to run the code:
www.sas.com/universityedition.

At the time of printing, everything in the book, with the exception of the code in chapter 7, can be run with
SAS University Edition. The analysis performed in chapter 7 uses procedures that are available only
through SAS/OR.

viii Unstructured Data Analysis

About the Author
Matthew Windham is a Principal Analytical Consultant in the SAS U.S.
Government and Education practice, with a focus on Federal Law Enforcement
and National Security programs. Before joining SAS, Matthew led teams
providing mission-support across numerous federal agencies within the U.S.
Departments of Defense, Treasury, and Homeland Security. Matthew is
passionate about helping clients improve their daily operations through the
application of mathematical and statistical modeling, data and text mining, and
optimization. A longtime SAS user, Matthew enjoys leveraging the breadth of
the SAS Platform to create innovative analytics solutions that have operational
impact. Matthew is a Certified Analytics Professional, received his BS in

Applied Mathematics from NC State University, and received his MS in Mathematics and Statistics from
Georgetown University.

Learn more about this author by visiting his author page at
https://support.sas.com/en/books/authors/matthew-windham.html. There you can download free book
excerpts, access example code and data, read the latest reviews, get updates, and more.

We Want to Hear from You
SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their
development and your feedback on SAS Press books that you are using. Please visit sas.com/books to do
the following:

● Sign up to review a book

● Recommend a topic

● Request information on how to become a SAS Press author

● Provide feedback on a book

Do you have questions about a SAS Press book that you are reading? Contact the author through
saspress@sas.com or https://support.sas.com/author_feedback.

SAS has many resources to help you find answers and expand your knowledge. If you need additional help,
see our list of resources: sas.com/books.

Acknowledgments

To my brilliant wife, Lori, thank you for always supporting and encouraging me in everything that I do.
Thank you also to Bonnie and Thomas for always brightening my day. To my friends and family, your
advice and encouragement have been treasured.

And I would like to thank the entire editorial team at SAS Press. Your collective patience, insight, and hard
work have made this another wonderful writing experience.

x Unstructured Data Analysis

Chapter 1: Getting Started with Regular
Expressions
1.1 Introduction ..2

1.1.1 Defining Regular Expressions .. 2
1.1.2 Motivational Examples .. 2
1.1.3 RegEx Essentials ... 7
1.1.4 RegEx Test Code ... 8

1.2 Special Characters ..9
1.3 Basic Metacharacters ...10

1.3.1 Wildcard.. 11
1.3.2 Word ... 11
1.3.3 Non-word.. 11
1.3.4 Tab .. 12
1.3.5 Whitespace ... 12
1.3.6 Non-whitespace ... 13
1.3.7 Digit ... 13
1.3.8 Non-digit ... 13
1.3.9 Newline ... 14
1.3.10 Bell .. 14
1.3.11 Control Character .. 15
1.3.12 Octal .. 15
1.3.13 Hexadecimal ... 16

1.4 Character Classes ...16
1.4.1 List .. 16
1.4.2 Not List ... 17
1.4.3 Range .. 17

1.5 Modifiers ...18
1.5.1 Case Modifiers ... 18
1.5.2 Repetition Modifiers .. 20

1.6 Options ...26
1.6.1 Ignore Case .. 26
1.6.2 Single Line .. 27
1.6.3 Multiline .. 27
1.6.4 Compile Once .. 27
1.6.5 Substitution Operator .. 28

1.7 Zero-width Metacharacters ...29
1.7.1 Start of Line .. 29
1.7.2 End of Line ... 29
1.7.3 Word Boundary .. 30
1.7.4 Non-word Boundary .. 30
1.7.5 String Start ... 30

1.8 Summary ...31

2 Unstructured Data Analysis

1.1 Introduction
This chapter focuses entirely on developing your understanding of regular expressions (RegEx) before
getting into the details of using them in SAS. We will begin actually implementing RegEx with SAS in
Chapter 2. It is a natural inclination to jump right into the SAS code behind all of this. However, RegEx
patterns are fundamental to making the SAS coding elements useful. Without my explaining RegEx first, I
could discuss the forthcoming SAS functions and calls only at a very theoretical level, and that is the
opposite of what I am trying to accomplish. Also, trying to learn too many different elements of any
process at the same time can simply be overwhelming for you.

To facilitate the mission of this book—practical application—without overwhelming you with too much
information at one time (new functions, calls, and expressions), I will present a short bit of test code to use
with the RegEx examples throughout the chapter. I want to stress the point that obtaining a thorough
understanding of RegEx syntax is critical for harnessing the full power of this incredible capability in SAS.

1.1.1 Defining Regular Expressions
Before going any further, we need to define regular expressions.

Taking the very formal definition might not provide the desired level of clarity:

Definition 1 (formal)
regular expressions: “Regular expressions consist of constants and operator symbols that denote sets
of strings and operations over these sets, respectively.”1

In the pursuit of clarity, we will operate with a slightly looser definition for regular expressions. Since
practical application is our primary aim, it doesn’t make sense to adhere to an overly esoteric definition. So,
for our purposes we will use the following:

Definition 2 (informal, easier to understand)
regular expressions: character patterns used for automated searching and matching.

In SAS programming, regular expressions are seen as strings of letters and special characters that are
recognized by certain built-in SAS functions for the purpose of searching and matching. Combined with
other built-in SAS functions and procedures, you can realize tremendous capabilities, some of which we
explore in the next section.

Note: SAS uses the same syntax for regular expressions as the Perl programming language.2 Thus,
throughout SAS documentation, you find regular expressions repeatedly referred to as “Perl regular
expressions.” In this book, I chose the conventions that the SAS documentation uses, unless the Perl
conventions are the most common to programmers. To learn more about how SAS views Perl, see the SAS
documentation online.3 To learn more about Perl programming, see the Perl programming documentation.4
In this book, however, I primarily dispense with the references to Perl, as they can be confusing.

1.1.2 Motivational Examples
The information in this book is very useful for a wide array of applications. However, that will not become
obvious until after you read it. So, in order to visualize how you can use this information in your work, I
present some realistic examples.

As you are probably familiar with, data is rarely provided to analysts in a form that is immediately useful. It
is frequently necessary to clean, transform, and enhance source data before it can be used—especially

Chapter 1: Getting Started with Regular Expressions 3

textual data. The following examples are devoid of the coding details that are discussed later in the book,
but they do demonstrate these concepts at varying levels of sophistication. The primary goal here is to
simply help you to see the utility for this information, and to begin thinking about ways to leverage it.

Extract, Transform, and Load (ETL)
ETL is a general set of processes for extracting data from its source, modifying it to fit your end needs, and
loading it into a target location that enables you to best use it (e.g., database, data store, data warehouse).
We’re going to begin with a fairly basic example to get us started. Suppose we already have a SAS data set
of customer addresses that contains some data quality issues. The method of recording the data is unknown
to us, but visual inspection has revealed numerous occurrences of duplicative records, as in the table below.
In this example, it is clearly the same individual with slightly different representations of the address and
encoding for gender. But how do we fix such problems automatically for all of the records?

First Name Last Name DOB Gender Street City State Zip

Robert Smith 2/5/1967 M 123 Fourth Street Fairfax, VA 22030

Robert Smith 2/5/1967 Male 123 Fourth St. Fairfax va 22030

Using regular expressions, we can algorithmically standardize abbreviations, remove punctuation, and do
much more to ensure that each record is directly comparable. In this case, regular expressions enable us to
perform more effective record keeping, which ultimately impacts downstream analysis and reporting.

We can easily leverage regular expressions to ensure that each record adheres to institutional standards. We
can make each occurrence of Gender either “M/F” or “Male/Female,” make every instance of the Street
variable use “Street” or “St.” in the address line, make each City variable include or exclude the comma,
and abbreviate State as either all caps or all lowercase.

This example is quite simple, but it reveals the power of applying some basic data standardization
techniques to data sets. By enforcing these standards across the entire data set, we are then able to properly
identify duplicative references within the data set. In addition to making our analysis and reporting less
error-prone, we can reduce data storage space and duplicative business activities associated with each
record (for example, fewer customer catalogs will be mailed out, thus saving money!). For a detailed
example involving ETL and how to solve this common problem of data standardization, see Section 2.4.1
in Chapter 2.

Data Manipulation
Suppose you have been given the task of creating a report on all Securities and Exchange Commission
(SEC) administrative proceedings for the past ten years. However, the source data is just a bunch of .xml
(XML) files, as shown in Figure 1.1. To the untrained eye, this looks like a lot of gibberish; to the trained
eye, it looks like a lot of work.

4 Unstructured Data Analysis

Figure 1.1: Sample of 2009 SEC Administrative Proceedings XML File5

However, with the proper use of regular expressions, creating this report becomes a fairly straightforward
task. Regular expressions provide a method for us to algorithmically recognize patterns in the XML file,
parse the data inside each tag, and generate a data set with the correct data columns. The resulting data set
would contain a row for every record, structured similarly to this data set (for files with this transactional
structure):

Example Data Set Structure

Release_Number Release_Date Respondents URL

34-61262 Dec 30, 2009 Stephen C.
Gingrich

http://www.sec.gov/litigation/admin/2009/34-
61262.pdf

… … … …

Note: Regular expressions cannot be used in isolation for this task due to the potential complexity of XML
files. Sound logic and other Base SAS functions are required in order to process XML files in general.
However, the point here is that regular expressions help us overcome some otherwise significant challenges
to processing the data. If you are unfamiliar with XML or other tag-based languages (e.g., HTML), further
reading on the topic is recommended. Though you don’t need to know them at a deep level in order to
process them effectively, it will save a lot of heartache to have an appreciation for how they are structured.
I use some tag-based languages as part of the advanced examples in this book because they are so prevalent
in practice.

Data Enrichment
Data enrichment is the process of using the data that we have to collect additional details or information
from other sources about our subject matter, thus enriching the value of that data. In addition to parsing and
structuring text, we can leverage the power of regular expressions in SAS to enrich data.

So, suppose we are going to do some economic impact analysis of the main SAS campus—located in Cary,
NC—on the surrounding communities. In order to do this properly, we need to perform statistical analysis
using geospatial information.

Chapter 1: Getting Started with Regular Expressions 5

The address information is easily acquired from www.sas.com. However, it is useful, if not necessary, to
include additional geo-location information such as latitude and longitude for effective analysis and
reporting of geospatial statistics. The process of automating this is non-trivial, containing advanced
programming steps that are beyond the scope of this book. However, it is important for you to understand
that the techniques described in this book lead to just such sophisticated capabilities in the future. To make
these techniques more tangible, we will walk through the steps and their results.

1. Start by extracting the address information embedded in Figure 1.2, just as in the data
manipulation example, with regular expressions.

Figure 1.2: HTML Address Information

Example Data Set Structure

Location Address Line 1 Address Line 2 City State Zip Phone Fax

World
Headquarters

SAS Institute Inc. 100 SAS Campus
Drive

Cary NC 27513-2414 919-677-8000 919-677-4444

2. Submit the address for geocoding via a web service like Google or Yahoo for free processing of

the address into latitude and longitude. Type the following string into your browser to obtain the
XML output, which is also sampled in Figure 1.3.
http://maps.googleapis.com/maps/api/geocode/xml?address=100+SAS+Campus+Drive,+Cary,+N
C&sensor=false

Figure 1.3: XML Geocoding Results

6 Unstructured Data Analysis

3. Use regular expressions to parse the returned XML files for the desired information—latitude and
longitude in our case—and add them to the data set.
Note: We are skipping some of the details as to how our particular set of latitude and longitude
points are parsed. The tools needed to perform such work are covered later in the book. This
example is provided here primarily to spark your imagination about what is possible with regular
expressions.

Example Data Set Structure

Location … Latitude Longitude

World
Headquarters

… 35.8301733 -78.7664916

4. Verify your results by performing a reverse lookup of the latitude/longitude pair that we parsed

out of the results file using https://maps.google.com/. As you can see in Figure 1.4, the expected
result was achieved (SAS Campus Main Entrance in Cary, NC).

Figure 1.4: SAS Campus Using Google Maps

Now that we have an enriched data set that includes latitude and longitude, we can take the next steps for
out the economic impact analysis.

Hopefully, the preceding examples have proven motivating, and you are now ready to discover the power
of regular expressions with SAS. And remember, the last example was quite advanced—some sophisticated
SAS programming capabilities were needed to achieve the result end-to-end. However, the majority of the
work leveraged regular expressions.

Chapter 1: Getting Started with Regular Expressions 7

1.1.3 RegEx Essentials
RegEx consist of letters, numbers, metacharacters, and special characters, which form patterns. In order for
SAS to properly interpret these patterns, all RegEx values must be encapsulated by delimiter pairs—
forward slash, /, is used throughout the text. (Refer to the test code in the next section). They act as the
container for our patterns. So, all RegEx patterns that we create will look something like this: /pattern/.

For example, suppose we want to match the string of characters “Street” in an address. The pattern would
look like /Street/. But we are clearly interested in doing more with RegEx than just searching for strings.
So, the remainder of this chapter explores the various RegEx elements that we can insert into / / to develop
rich capabilities.

Metacharacter
Before going any farther, some upcoming terminology should be clarified. Metacharacter is a term
used quite frequently in this book, so it is important that it is clear what it actually means. A
metacharacter is a character or set of characters used by a programming language like SAS for
something other than its literal meaning. For example, \s represents a whitespace character in RegEx
patterns, rather than just being a \ and the letter “s” that is collocated in the text. We begin our
discussion of specific metacharacters in Section 1.3.

All nonliteral RegEx elements are some kind of metacharacter. It is good to keep this distinction clear,
as I also make references to character when I want to discuss the actual string values or the results of
metacharacter use.

Special Character
A special character is one of a limited set of ASCII characters that affects the structure and behavior
of RegEx patterns. For example, opening and closing parentheses, (and), are used to create logical
groups of characters or metacharacters in RegEx patterns. These are discussed thoroughly in Section
1.2.

RegEx Pattern Processing
At this juncture, it is also important to clarify how RegEx are processed by SAS. SAS reads each
pattern from left to right in sequential chunks, matching each element (character or metacharacter) of
the pattern in succession. If we want to match the string “hello”, SAS searches until the first match of
the letter “h” is found. Then, SAS determines whether the letter “e” immediately follows, and so on,
until the entire string is found. Below is some pseudo code for this process, for which the logic is true
even after we begin replacing characters with metacharacters (it would simply look more impressive).

Pseudo Code for Pattern Matching Process

START IF POS = “h” THEN POS+1 NEXT ELSE POS+1 GOTO START
IF POS = “e” THEN POS+1 NEXT ELSE POS+1 GOTO START
 IF POS = “l” THEN POS+1 NEXT ELSE POS+1 GOTO START
 IF POS = “l” THEN POS+1 NEXT ELSE POS+1 GOTO START
 IF POS = “o” THEN MATCH=TRUE GOTO END ELSE POS+1 GOTO START
END

In this pseudo code, we see the START tag is our initiation of the algorithm, and the END tag denotes the
termination of the algorithm. Meanwhile, the NEXT tag tells us when to skip to the next line of pseudo
code, and the GOTO tag tells us to jump to a specified line in the pseudo code. The POS tag denotes the
character position. We also have the usual IF, THEN, and ELSE logical tags in the code.

8 Unstructured Data Analysis

Again, this example demonstrates the search for “hello” in some text source. The algorithm initiates by
testing whether the first character position is an “h”. If it is not true, then the algorithm increments the
character position by one—and tests for “h” again. If the first position is an “h”, the character position is
incremented, and the code tests for the letter “e”. This continues until the word “hello” is found.

1.1.4 RegEx Test Code
The following code snippet enables you to quickly test new RegEx concepts as we go through the chapter.
As you learn new RegEx metacharacters, options, and so on, you can edit this code in an effort to test the
functionality. Also, more interesting data can be introduced by editing the datalines portion of the code.
However, because we haven’t yet discussed the details of how the pieces work, I discourage making edits
outside the marked places in the code in order to avoid unforeseen errors arising at run time.

To keep things simple, we are using the DATALINES statement to define our data source and print the
source string and the matched portion to the log. This should make it easier to follow what each new
metacharacter is doing as we go through the text. Notice that everything is contained in a single DATA
step, which does not generate a resulting data set (we are using _NULL_). The first line of our code is an IF
statement that tests for the first record of our data set. The RegEx pattern is created only if we have
encountered the first record in the data set, and is retained using the RETAIN statement. Afterward, the
pattern reference identifier is reused by our code due to the RETAIN statement. Next, we pull in the data
lines using the INPUT statement that assumes 50-character strings. Don’t worry about the details of the
CALL routine on the next line for now. We start writing SAS code in Chapter 2.

Essentially, the CALL routine inside the RegEx Testing Framework code shown below uses the RegEx
pattern to find only the first matching occurrence of our pattern on each line of the datalines data.
Finally, we use another IF statement to determine whether we found a pattern match. If we did, the code
prints the results to the SAS log.

/*RegEx Testing Framework*/
data _NULL_;
if _N_=1 then
do;
 retain pattern_ID;
 pattern="/METACHARACTERS AND CHARACTERS GO HERE/"; /*<--Edit the pattern here.*/
 pattern_ID=prxparse(pattern);
end;
input some_data $50.;
call prxsubstr(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match=substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;
 end;
datalines;
Smith, BOB A.
ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234

Chapter 1: Getting Started with Regular Expressions 9

;
run;

Note: I have provided a jumble of data in the datalines portion of the code above. However, feel free to
edit the data lines to thoroughly test each metacharacter as we go through this chapter.

Output 1.1 shows an example of the SAS log output provided by the previous code. For this example, I
used merely the character string /Street/ for the pattern in order to create the output.

Output 1.1: Example Output Where pattern=/Street/

The remaining information in this chapter provides a solid foundation for building robust, complex patterns
in the future. Each element discussed is an independently useful building block for sophisticated text
manipulation and analysis capabilities. Once we begin to combine these basic elements, we will create
some very powerful analytic tools.

1.2 Special Characters
In addition to / (the forward slash), the characters () | and \ (the backslash) are special and are thus treated
differently than the RegEx metacharacters to be discussed later. Since some of these special characters are
so fundamental to the structure of the RegEx pattern construction, we need to briefly discuss them first.

()
The two parentheses create logical groups of pattern characters and metacharacters—the same way
they work in SAS code for logic operations. It is important to create logical groupings in order to
construct more sophisticated patterns. Nesting the parentheses is also possible.

|
The vertical bar represents a logical OR (much like in SAS). Again, the proper use of this element
creates more sophisticated patterns. We will explore some interesting ways to use this character,
starting with the example in Table 1.1. It is important to remember that the first item in an OR
condition always matches before moving to the next condition.

\
The backslash is a tricky one as it has a couple of uses. It is used as an integral component of many
other metacharacters (examples abound in Section 1.3). Think about it as an initiator that tells SAS,
“Hey, this is a metacharacter, not just some letter.” But that’s not all it does. Since the special
characters defined above also appear in text that we might want to process, the backslash also acts as a
blocker that tells SAS, “Hey, treat this special character as just a regular character.” By using \, we can
create patterns that include parentheses, vertical bars, backslashes, forward slashes, and more—we
simply add a \ in front of each occurrence of all the special characters that we want to treat as
characters. For example, if we want our pattern to include open and closed parentheses respectively,
the pattern would contain \(\).

Since you haven’t learned any RegEx metacharacters yet, let’s revisit strings using some of these new
concepts. Notice that we can already start to match useful patterns with the characters and special
characters.

10 Unstructured Data Analysis

Table 1.1: Examples Using (), |, and \

Usage Matches

/(C|c)at/ “Cat” “cat”

/cat|mouse/ “cat” “mouse”

/((S|s)treet)|((R|r)oad)/ “Street” “street” “Road” “road”

/\(This\)|\(That\) / “(This)” or “(That)”

Note: In Perl parlance, \ is known as an escape character. To avoid any unnecessary confusion, we will
dispense with this lingo and just refer to it as the backslash. However, be prepared to see that term used
quite a bit in the Perl literature and on community websites.

Now, there are some additional special characters that also need the backslash in front of them in order to
be matched as normal characters. They are: { } [] ^ $. * + and ?. All these characters are reserved and are
thus treated differently, because they each have a special purpose and meaning in the world of RegEx.
Since each one is defined and discussed at length in Sections 1.4 and 1.5, we will not discuss them further
here. For now, just remember that they can’t be used as part of pattern strings without the backslash
immediately preceding them. Table 1.2 shows a few examples of how to use them as normal characters.

Table 1.2: Examples Using { } [] ^ $. * +

Usage Matches

/\$1\.00 \+ \$0\.50 = \$1\.50/ “$1.00 + $0.50 = $1.50”

/2*3 = 6/ “2*3 = 6”

/\[2\]\^2/ “[2]^2”

/\{1,2,3,4,5\}/ “{1,2,3,4,5}”

Note: Notice that = and , match as characters (i.e., without a backslash) because they are not considered
special characters.

1.3 Basic Metacharacters
As you write RegEx patterns in the future, you will find yourself using most of the metacharacters
discussed in this section frequently because they are fundamental elements of RegEx pattern creation. Now,
we can already build some useful patterns with the information discussed in Section 1.1. However, the
metacharacters in this section create the greatest return on time investment due to how flexible and
powerful they can make RegEx patterns.

Notice as we go through the examples how we can obtain some unexpected results. It is important to be
very strategic when using some of these RegEx metacharacters as you don’t always know what to expect in
the text that you are processing. Even when you know the source quite well, there are inevitably errors or
unknown changes that can wreck a poorly designed pattern. So, like any good analyst, you need to be
thinking a few steps ahead in order to maintain robust RegEx code.

Note: Unlike SAS, all RegEx metacharacters are case sensitive, as you will see shortly. If a letter is defined
here as lowercase or uppercase, then it MUST be used that way. Otherwise, your programs will do something

Chapter 1: Getting Started with Regular Expressions 11

very different from what you expect. In other words, even though you can be lazy with capitalization when
writing SAS code (e.g., DATA vs. data), the same is not true here.

1.3.1 Wildcard
The wildcard metacharacter, which is a period (.), matches any single character value, except for a newline
character (\n). The ability to match virtually any single character will prove useful when you are searching
for the superset of associated character strings. You might also want to use it when you have no idea what
values might be in a particular character position. Table 1.3 provides examples.

Table 1.3: Examples Using .

Usage Matches

/R.n/ “Ran” “Run” “R+n” “R n” “R(n” “Ron” …

/.un/ “Fun” “fun” “Run” “run” “bun” “(un” “-un” …

/Street./ “Street.” “Street,” “Streets” “Street+” “Street_”…

Note: The period matches anything except the newline character (\n)—including itself. This can be helpful,
but must be used wisely. Also note, only \n matches the newline character.

1.3.2 Word
The metacharacter \w matches any word character value, which includes alphanumeric and underscore (_)
values. It matches any single letter (regardless of case), number, or underscore for a single character
position. But do not be fooled by the underscore inclusion; \w does NOT match hyphens, dashes, spaces, or
punctuation marks. Table 1.4 provides examples.

Table 1.4: Examples Using \w

Usage Matches

/R\wn/ “Ran” “Run” “Ron” …

/\wun/ “Fun” “fun” “Run” “run” “Bun” “bun” “_un” …

/Street\w/ “Streets” “Street_”

Note: The \w wildcard should not have any unintentional spaces before or after it. Such spaces result in the
pattern trying to match those additional spaces in addition to the \w. (This goes for any RegEx metacharacter.)

1.3.3 Non-word
The metacharacter \W matches a non-word character value (i.e., everything that \w doesn’t include, except
for the ever-elusive \n). The \W metacharacter is valuable when you are unsure what is in a character cell
but you know that you don’t want a word character (i.e., alphanumeric and _). Table 1.5 provides
examples.

12 Unstructured Data Analysis

Table 1.5: Examples Using \W

Usage Matches

/Washington\W/ “Washington.” “Washington,” “Washington;”…

/D\WC\W/ “D.C.” “D,C.” “D C.” “D C “ …

/Street\W/ “Street.” “Street,” “Street+” …

Note: You will continue to see lowercase and uppercase versions of these RegEx characters acting as near
opposites, with some exceptions. It might not be overly clever, but does help simplify matters.

1.3.4 Tab
The metacharacter \t matches only the tab character in a string. Unlike the RegEx characters to follow, this
metacharacter matches only the tab whitespace character. This is especially useful when the tab holds some
special significance, such as when you are processing tab-delimited text files. Table 1.6 provides examples.

Table 1.6: Examples Using \t

Usage Matches

/SAS\t/ “SAS ”

/SAS\tInstitute\tInc/ “SAS Institute Inc”

/Street\t/ “Street ”

Note: This metacharacter does not have an opposite (i.e., \T does not exist).

1.3.5 Whitespace
The metacharacter \s matches on a single whitespace character, which includes the space, tab, newline,
carriage return, and form feed characters. You must include this when you are matching on anything in text
that is separated by white space, and you are unsure of which will occur. Table 1.7 provides examples.

Table 1.7: Examples Using \s

Usage Matches

/SAS\s/ “SAS ” “SAS ”

/SAS\sInstitute\sInc/ “SAS Institute Inc” “SAS Institute Inc”

/Street\s/ “Street ” “Street “

Note: This form of the \s metacharacter matches only one whitespace character. We review how to find
multiple matches in Section 1.5.2 because that is frequently needed when you are matching text.

Chapter 1: Getting Started with Regular Expressions 13

1.3.6 Non-whitespace
The metacharacter \S matches on a single non-whitespace character—the exact opposite of \s. This
metacharacter is often used to account for unexpected dashes, apostrophes, commas, and so on, that might
otherwise prevent a match. Table 1.8 provides examples.

Table 1.8: Examples Using \S

Usage Matches

/Leonato\Ss/ “Leonato’s” “Leonatoas” “Leonato_s” …

/Washington\S/ “Washingtons” “Washington.” “Washington,” …

/Street\S/ “Street.” “Street,” “Streets” “Street+” “Street_”…

1.3.7 Digit
The metacharacter \d matches on a numerical digit character (i.e., 0–9). This RegEx metacharacter is
probably the most straightforward one as it has a very narrow focus. Just remember that a single occurrence
of \d is for only one character position in any text. In order to capture larger numbers (i.e., anything greater
than 9), you have to build patterns with multiple occurrences of \d. Table 1.9 provides examples, but we
discuss more sophisticated methods for accomplishing this later in the chapter. (See “Repetition Modifiers”
in Section 1.5.2.)

Table 1.9: Examples Using \d

Usage Matches

/\dst/ “1st” “9st” “4st” …

/10\d/ “101” “102” “103” …

/1-800-\d\d\d-\d\d\d\d/ “1-800-123-4567” “1-800-789-3456” …

Note: Just remember that even though your pattern might be correct, the data is not necessarily correct (4st
and 9st don’t make sense!).

1.3.8 Non-digit
The metacharacter \D matches on any single non-digit character. Again, this is the opposite of the
lowercase metacharacter \d. This metacharacter matches on every value that is not a number. Table 1.10
provides examples.

Table 1.10: Examples Using \D

Usage Matches

/1\D800\D123\D4567/ “1-800-123-4567” “1.800.123.4567” …

/1560\DWilson\DBlvd/ “1560 Wilson Blvd” “1560_Wilson_Blvd” …

/19\D\D\DStreet/ “19th Street” “19th.Street” “19…Street” …

14 Unstructured Data Analysis

1.3.9 Newline
The metacharacter \n matches a newline character. It is quite useful for some patterns to know that you
have encountered a new line. For instance, you might be processing addresses in a text file, which often
contain different pieces of information on different lines. Table 1.11 provides examples.

Table 1.11: Examples Using \n

Usage Matches

/103 Pennsylvania Ave\. NW,\nWashington, DC 20216/ “103 Pennsylvania Ave. NW,
Washington, DC 20216”

/<html tag>\n/ “<html tag>
” …

/v\ne\nr\nt\ni\nc\na\nl\nt\ne\nx\nt/ “v
e
r
t
i
c
a
l
t
e
x
t” …

Note: The test code does not enable us to actually try this metacharacter because it uses data lines, which is
a feature of SAS that intentionally ignores newline characters when typed (i.e., pressing the Enter key just
creates the start of a new data line in the SAS code window). For this reason, newline characters are not
present in data lines for you to read and match on. But have faith, for now, that this one works as advertised.
You will discover ways to process different text sources in the next chapter, enabling you to process newline
characters.

1.3.10 Bell
The metacharacter \a matches an alarm “bell” character. The alarm character falls into a class of non-
printing or invisible characters that are part of the ASCII character set. ASCII was developed long ago
when operating systems used non-printing characters fairly extensively. Today, however, these characters
are relatively uncommon, and most often occur only in files meant for computers to read rather than
humans—since they are not displayed. When encountered, these characters generate an alarm tone, or
“bell,” on a computer’s internal speaker. While they are often associated with errors, they can also be used
to alert users that the end of a file or process has been achieved (e.g., in a system log file). You can use this
metacharacter when you know to expect such a character in a source file. Table 1.12 provides examples.

Chapter 1: Getting Started with Regular Expressions 15

Table 1.12: Examples Using \a

Usage Matches

/\a END OF FILE/ “BEL END OF FILE”

/PROCESS COMPLETED
SUCCESSFULLY\a/

“PROCESS COMPLETED SUCCESSFULLY BEL” …

/\aERROR/ “BELERROR” …

Note: Since the alarm character is a non-printing ASCII character, I am representing its location in the
matching text with the BEL ASCII character. However, remember that such a code does not appear in our
text.

1.3.11 Control Character
The metacharacter \cA-\cZ matches a control character for the letter that follows the \c. For example, \cF
matches control-F in the source. This is one of several examples where you might be processing less-often-
used file types (i.e., not a file meant for humans to read). Control characters, or non-printing characters,
were once used extensively by transactional computing and telecommunications systems. These control
characters, while not visible in most text editors, are still part of the ASCII character set, and can still be
used by older systems in these regimes. For our examples in Table 1.13, we stick with the convention that
is used for the alarm metacharacter above—the standard ASCII abbreviation is used despite the fact that
they are never actually seen in text.

Table 1.13: Examples Using \cA-\cZ

Usage Matches

/\cP/ DEL the non-printing Data Link Escape ASCII control character ^P

/\cB/ STX the non-printing Start of Text ASCII control character ^B

/\cBhello\cC/ STXhelloETX the non-printing Start of Text ASCII control character ^B
followed by the character string “hello” and completed with the non-printing
End of Text ASCII control character ^C

1.3.12 Octal
The metacharacter \ddd matches an octal character of the form ddd.6 It is used to match on the octal code
for an ASCII character for which you are searching. It can be especially useful when you need to find
specific non-printing ASCII characters in a file. The default behavior by SAS is to return the ASCII
character associated with this octal code in the results. Table 1.14 provides examples.

Table 1.14: Examples Using \ddd

Usage Matches Notes

/\s\041\s/ “ ! ” This octal code translates to the ! ASCII character.

/\110\105\114\114\117/ “HELLO” This series of octal codes translate to the “HELLO”
string of ASCII characters.

16 Unstructured Data Analysis

Usage Matches Notes
/\s\007\011\s/ “ BELTAB ” These octal codes translate to the two non-printing

ASCII characters BEL and TAB. Refer to our
discussion of the alarm metacharacter in Section 1.3.10
regarding characters that are not displayed.

Note: You will discover how to search for ranges of these values in the next section (Section 1.4). Also
note that the largest ASCII value is decimal 127, octal 177, and hexadecimal 7F.

1.3.13 Hexadecimal
The metacharacter \xdd matches a hexadecimal character of the form dd. 7 The purpose of our
implementation here is again not about searching through raw hexadecimal files, etc. We are using this to
search for the hexadecimal code associated with the ASCII characters that we want in a source
(manipulation of raw hex data sources is a different book). Table 1.15 provides examples.

Table 1.15: Examples Using \xdd

Usage Matches Notes

/\x2B/ “+” This hexadecimal code translates to the + ASCII
character.

/\x31\x2B\x31\x3D\x32/ “1+1=2” These hexadecimal codes translate to the 1+1=2
ASCII characters.

/\x30\x30\x20\x46\x46/ “00 FF” This is a reminder that we can match hexadecimal
numbers stored in ASCII, and that they are not the
same.

1.4 Character Classes
In addition to using the built-in RegEx characters to match patterns, users have the ability to create custom
character matching. This capability is derived via different uses of [and] (square braces). The square
braces essentially create a custom metacharacter, where the items contained between the opening brace and
closing brace are possible match values for a single character cell. In addition to putting a list characters
inside the braces, you can also include metacharacters. Each metacharacter discussed below includes an
example, which includes the use of a metacharacter, and they all have the same match results. Just for fun,
they are all identifying a hexadecimal number range present in the ASCII source file (stored as ASCII
characters in the source file, but representing the range of possible hexadecimal values).

Note: Remember that some of the components discussed in this section are special characters that must be
escaped with \ in order to be matched in isolation. Specifically, these characters are: ^, [, and].

1.4.1 List
The metacharacter […] matches any one of the specific characters or metacharacters listed within the
braces. Being able to define an unordered list of things that you want to appear in a space is very

Chapter 1: Getting Started with Regular Expressions 17

convenient, and can sometimes be more convenient than the metacharacters that identify broad classes of
character types. Table 1.16 provides examples.

Table 1.16: Examples Using […]

Usage Matches

/[abcABC]/ “a” “b” “c” “A” “B” “C”

/[0173]/ “0” “1” “3” “7”

/[CcBbRr]at/ “cat” “Cat” “bat” “Bat” “rat” “Rat”

/[\dABCDEF]/ “0” “1” “2” “3” “4” “5” “6” “7” “8” “9” “A” “B” “C” “D”
“E” “F”

1.4.2 Not List
The metacharacter [^…] matches one of anything not listed within the braces, except for the newline
character. Sometimes it is easier to write down what we don’t want rather than what we do. And for that
reason, we might want to use this metacharacter. We can quickly identify the unwanted items and define
them here. Table 1.17 provides examples.

Table 1.17: Examples Using [^…]

Usage Matches

/[^abcABC]/ “d” “e” “f” …

/[^0173]/ “2” “4” “5” “6” “8” “9”

/[^Cc]at/ “fat” “Fat” “hat” “rat” “mat” “Hat” …

/[^\WGHIJKLMNOPQRSTUVWX
YZabcdefghijklmnopqrstuvwxyz_]/

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9” “A” “B”
“C” “D” “E” “F”

1.4.3 Range
The metacharacter […-…] matches anything that falls into a range of character values. In other words, case
matters for letters listed in the braces. RegEx, and by extension SAS, understands the inherent order of
letters and numbers. Therefore, we can define any range of numbers or letters to be matched by this
metacharacter. Table 1.18 provides examples.

Table 1.18: Examples Using […-…]

Usage Matches

/[f-m]/ “f” “g” “h” “i” “j” “k” “l” “m”

/[1-9]/ “1” “2” “3” “4” “5” “6” “7” “8” “9”

/[a-cA-C]/ “a” “b” “c” “A” “B” “C”

/[\dA-F]/ “0” “1” “2” “3” “4” “5” “6” “7” “8” “9” “A” “B” “C” “D”
“E” “F”

18 Unstructured Data Analysis

1.5 Modifiers
There are two significant things that you probably noticed as missing from the previous sections, which are
worth further discussion here. First, all of the applicable metacharacters thus far have ignored letter case. In
other words, \w, \S, \D, and . all match on a letter regardless of whether it is lowercase or uppercase.
However, there are situations in which the case of a letter becomes important, but the letter itself is not
known in advance.

Second, we can use a single match character as many times as we like, which creates additional fuzziness
for our matches. However, there is a downside to just typing them out: each occurrence must exist in order
to match the pattern. For instance, if the source text for the \D examples above contained “19thStreet” with
no spaces, we’d never find it by using \D three times. And since the primary goal of the RegEx capability is
to have automated text processing, we need a robust way to make this kind of matching more flexible.

Over the next two subsections (1.5.1 and 1.5.2), we will work through ways to overcome these limitations
by using modifiers. There are two types of modifiers, case modifiers and repetition modifiers. Combining
them gives us significant robustness and flexibility in real-world RegEx implementations, and should be
considered as fundamental to real-world implementations as the metacharacters that we have discussed thus
far.

1.5.1 Case Modifiers
When performing matches on text, there is the obvious consideration of letter case (upper vs. lower).
Although I have already introduced a rudimentary way to handle this in situations where the letter is
known, there still must be a methodology for accounting for letter case when it is unknown. This section
discusses a variety of approaches to dealing with case matching. Depending on the situation, some
approaches are more convenient than others, while not necessarily being right or wrong.

Lowercase
The metacharacter \l matches when the next character in a pattern is lowercase. This metacharacter applies
only to characters (metacharacters, groups, and so on, don’t work). In practice, it is more practical to
simply type the lowercase version of the desired character value, or provide a list of lowercase letters to
match. Table 1.19 provides examples.

Table 1.19: Examples Using \l

Usage Matches

/\lStreet/ “street” …

/\s\lS\lA\lS\sInstitute/ “ sas Institute” …

/(\lS|\lF)leet/ “sleet” “fleet” …

Uppercase
The metacharacter \u matches when the next letter in a pattern is uppercase. It functions exactly as the
lowercase version introduced above (\l), but also applies to uppercase. Table 1.20 provides examples.

Chapter 1: Getting Started with Regular Expressions 19

Table 1.20: Examples Using \u

Usage Matches

/\uinc./ “Inc.” …

/\ustreet|\ust\./ “Street” “St.” …

/\uave\.|\uavenue,/ “Ave.” “Avenue,”

Lowercase Range
The metacharacter \L…\E matches when all the characters between the \L and \E are lowercase. Strings
typed between \L and \E are forced to match on lowercase only, even when they are typed in as capital
letters. However, unlike the \l metacharacter, \L…\E can also contain character classes and repetition
modifiers. Table 1.21 provides examples.

Table 1.21: Examples Using \L…\E

Usage Matches

/\L[a-z0-9][a-z0-9][a-z0-9]\E/ “sas” “abc” “123” …

/\LTHESE ARE
LOWERCASE\E/

“these are lowercase”

/\sR\L[a-z][a-z][a-z]\E\s/ “ Read ” “ Road ” “ Rode ” “ Ride ” “ Real ” …

Note: When applying case modifiers to non-alphabet characters, the modifier is ignored. It doesn’t apply to
those characters, so it doesn’t affect the match.

Uppercase Range
The metacharacter \U…\E creates a match when all the characters between the \U and \E are uppercase.
Again, this metacharacter functions the same way as the lowercase version discussed above, but applies to
uppercase. This metacharacter can be useful for identifying acronyms or other text where capital letters are
important. Table 1.22 provides examples.

Table 1.22: Examples Using \U…\E

Usage Matches

/\U[a-z][a-z][a-z]\E/ “SAS” “CIA” …

/\U[a-z][a-z][a-z]\E\sInstitute\sInc\W/ “SAS Institute Inc.” …

/\s\Uallcaps\E\s/ “ ALLCAPS ”

Note: Notice that other metacharacters are not allowed inside \L…\E or \U…\E metacharacters. In other
words, \w can’t be used to replace the character classes above.

20 Unstructured Data Analysis

Quote Range
The metacharacter \Q…\E matches all content inside the \Q and \E as character strings, disabling
everything including the backslash character. Metacharacters cannot be used inside \Q…\E. The
functionality provided by this metacharacter is great for searching within strings that contain a significant
number of reserved characters, such as XML, webserver logs, or HTML. Table 1.23 provides examples.

Table 1.23: Examples Using \Q…\E

Usage Matches

/\Q<html tag name>\E/ “<html tag name>”

/\Qf(x) + f(y) = z\E/ “f(x) + f(y) = z”

/\Q<!DOCTYPE HTML> <html lang="en-
US">\E/

“<!DOCTYPE HTML> <html lang="en-US">”

1.5.2 Repetition Modifiers
Repetition modifiers change the matching repetition behavior of the metacharacters and characters
immediately preceding them in a pattern. They can also modify the matching repetition of an entire
group—defined using () to surround the group of metacharacters and characters before the modifier. Just
keep in mind that repetition of the entire group means that it repeats back-to-back (e.g., “haha”), unless we
also modify the individual metacharacters.

Now, there are two types of repetition modifiers, greedy and lazy. Greedy repetition modifiers try to match
as many times as possible within the confines of their definition. Lazy modifiers attempt to find a match as
few times as possible. They have similar uses, which can make the difference between their results subtle.

Introduction to Greedy Repetition Modifiers
Let’s start by discussing greedy modifiers because they are a little more intuitive to use. As we go through
the examples, it is important to keep in mind that greedy modifiers match as many times as possible—
constantly searching for the last possible time the match is still true. It is therefore easy to create patterns
that match differently from what you might expect.

There is a concept in RegEx known as backtracking, which is the root cause for potential issues with
greedy modifiers (hint: backtracking results in the need for lazy modifiers). As we discuss further when we
examine lazy repetition modifiers, a greedy modifier actually tries to maximize the matches of a modified
pattern chunk by searching until the match fails. Upon that failure, the system then backtracks to the
position where the modified chunk last matched. The processing time wasted with backtracking for a single
match is insignificant. However, as soon as we introduce a few additional factors, this problem can waste
tremendous computing cycles—multiple modified pattern chunks, numerous match iterations (think loops),
and large data sources. It is important to be mindful of these factors when designing patterns as they can
have unintended consequences.

Greedy 0 or More
The modifier * requires the immediately preceding character or metacharacter to match 0 or more times. It
enables us to generate unlimited optional matches within text. For example, we might want to match every
occurrence of a word root, along with all of its prefixes and suffixes. By allowing the prefixes and suffixes
to be optional, we are able to achieve this goal. Table 1.24 provides examples.

Chapter 1: Getting Started with Regular Expressions 21

Table 1.24: Examples Using *

Usage Matches

/Sing\w*/ “Sing” “Sings” “Singing” “Singer” “Singers” …

/D\W*C\W*/ “DC” “D.C.” “D C “ “D….-!$%^ C.-)*&^%”…

/19\D*Street/ “19th Street” “19thStreet” “19Street” …

/Hello*/ “Hell” “Hello” “Hellooooooooooooo” …

Greedy 1 or More
The modifier + requires the immediately preceding character or metacharacter to match 1 or more times.
The plus sign modifier works similarly to the asterisk modifier, with the exception that it enforces a match
of the metacharacter or character at least 1 time. Table 1.25 provides examples.

Table 1.25: Examples Using +

Usage Matches

/Ru\w+/ “Run” “Ruin” “Runt” “Runners” …

/\s\U[a-z]+\E\s/ Words with all letters capitalized, and surrounded by spaces.

/19\D+Street/ “19th Street” “19th.Street” “19…Street” …

/(ha)+/ “ha” “hahahahahahaha” …

Note: Pay special attention to the addition of the \s metacharacter in the second example in Table 1.25. If it
were not present, the pattern would also match only single capital letters at the beginning of words. By
adding \s, the pattern requires a whitespace character to immediately follow the one or more capital letters,
thus eliminating matches on single letters at the beginning of words.

Greedy 0 or 1 Time
The modifier ? creates a match of only 0 or 1 time. The question mark provides us the ability to make the
occurrence of a metacharacter optional without allowing it to match multiple times. This can be effective
for matching word pairs that have inconsistent use of dashes or spaces (e.g., short-term vs. short term).
Table 1.26 provides examples.

Table 1.26: Examples Using ?

Usage Matches

/1\D?800\D?123\D?4567/ “1-800-123-4567” “18001234567” …

/1560\sWilson\sBlvd\W?/ “1560 Wilson Blvd.” “1560 Wilson Blvd” …

/19th\s?Street/ “19th Street” “19thStreet” …

22 Unstructured Data Analysis

Greedy n Times
The modifier {n} creates a match of exactly n times. Being able to match on a metacharacter exactly n
number of times is the same as typing that metacharacter out that many times. However, from the
perspective of coding and maintaining the RegEx patterns, using the modifier is a much better approach. It
limits the opportunity for us to make typographical errors when initially creating the RegEx pattern, and it
improves readability when later editing and sharing the patterns. Table 1.27 provides examples.

Table 1.27: Examples Using {n}

Usage Matches

/1-800-\d{3}-\d{4}/ “1-800-123-4567” “1.800.123.4567” …

/R\w{4}/ “Round” “Runts” “Ruins” …

/19\D{3}Street/ “19th Street” “19th.Street” “19…Street” …

/(\d{5}-\d{4})|(\d{5})/ “12345-6789” “12345” …

Greedy n or More
The modifier {n,} creates a match at least n times. By ensuring that we can match something at least n
times, we are able to create functionality very similar to the plus modifier. However, we are raising the
minimum number of times that the metacharacter must match. This is quite useful for certain applications,
but must be handled with caution. Also, like the + modifier, we can easily get very long strings of
unanticipated matches due to a single logical error in pattern construction. Table 1.28 provides examples.

Table 1.28: Examples Using {n,}

Usage Matches

/1-800-\d{1,}-\d{2,}/ “1-800-123-4567” “1-800-789-12” …

/\d{3,}-\d{2,}-\d{4,}/ “143-25-7689” “12345689-546545654-9820”…

/19\D{3,}Street/ “19th Street” “19th, Not My Street” …

Note: Be mindful not to type a space after the comma inside the curly braces. It is easy to do out of habit,
but it will wreck our pattern!

Greedy n to m Times
The modifier {n,m} creates a match at least n, but not more than m times. Creating a match with a specified
range is quite useful for ensuring that data quality standards are being maintained. When extracting semi-
structured data elements such as ZIP codes, birthdates, and phone numbers, it is important to maintain a
certain level of flexibility while also ensuring that the source is within expected tolerances. For instance, a
two-digit year might be accepted in lieu of a four-digit year, but a four-digit zip would be unacceptable.
Table 1.29 provides examples.

Chapter 1: Getting Started with Regular Expressions 23

Table 1.29: Examples Using {n,m}

Usage Matches

/(1-)?8\d\d-\d{3,3}-\d{4,4}/ “1-800-123-4567” …

/\d{1,2}-\d{1,2}-\d{2,4}/ “10-20-1950” “8-30-52” “4-3-1979”…

/Was{1,7}/ “Washington” “Wash” “Waste” “Washing” …

Note: As you can see in the examples above, the {n,m} might not always be the best choice of modifier,
but these examples are meant to demonstrate the flexibility of implementation. For instance, the year in the
second example is allowed to be three digits with this usage. Using an OR clause with the {n} modifier is a
simple fix.

Introduction to Lazy Repetition Modifiers
Now that you are familiar with greedy modifiers, let’s begin examining the lazy ones. In terms of syntax,
they differ from the greedy modifiers only by the addition of a question mark (?). By adding the question
mark immediately after each of the greedy modifiers, we are able to subtly change their behavior—
sometimes in unexpected ways.

In general, lazy modifiers are used to both avoid overmatching and improve performance when compared
to the greedy modifiers. There are situations when matching with greedy modifiers would lead to either
grabbing too much information, or simply slowing down system performance. For instance, processing
semi-structured text files such as HTML or XML is a great example of when lazy modifiers would come in
handy.

Lazy 0 or More
The modifier *? creates a match 0 or more times, but as few times as necessary to create the match. In some
situations, it creates the same matches as does the greedy version. However, in other cases, the results are
very different. To make it clearer, Table 1.30 describes the details of a few examples.

Table 1.30: Examples Using *?

Usage Matches Notes

/Sing\w*?/ “Sing” This matches only the word “Sing” because the modifier is given
the option to match nothing. And since it is lazy, it will take that
option every time, regardless of whether a word character
immediately follows the “g” in “Sing”.

/Sing\w*?\s/ “Singing ” … Comparing this to the example above, you see that appending the
\s on the pattern creates additional matches. The \s forces the
pattern to continue searching for a match that includes white
space. This could be “Sing “ or many other combinations (similar
to the greedy outcomes).

/(ha)*?/ “” This example demonstrates why we need to be careful with lazy
modifiers. Even when “ha” exists, it is ignored, again because the
modifier has the option to do so. The greedy version of this would
match as many times as the word “ha” occurred back-to-back, with
a minimum of zero times.

24 Unstructured Data Analysis

Lazy 1 or More
The modifier +? creates a match 1 or more times, but as few times as necessary to create a match. Again, if
it is possible, this matches only once. Table 1.31 provides examples.

Table 1.31: Examples Using +?

Usage Matches Notes

/Sing\w+?/ “Singi” This matches only “Sing” plus exactly one word character
following the “g”. Again, by giving the lazy modifier an option to
match the minimum, it will do so every time.

/Sing\w+?\s/ “Singing ” … Again, we see that appending the \s on the pattern creates
additional matches. The \s forces the pattern to continue searching
for a match that includes white space. This could be “Singi “ or
many other combinations (similar to the greedy outcomes).

/(ha)+?/ “ha” This example is less of a cautionary tale than for *?. But it might
still provide undesirable results. Even when “ha” exists numerous
times back-to-back, it matches only the first time, unless an
additional match element follows it. Again, this is because the
modifier has the option to match only once. The greedy version of
this would match as many times as the word “ha” occurred back-
to-back, with a minimum of once.

Lazy 0 or 1 Times
The modifier ?? creates a match 0 or 1 times, but as few times as necessary to create a match. Unless
forced, this modifier will match 0 times. Table 1.32 provides examples.

Table 1.32: Examples Using ??

Usage Matches Notes

/Sing\w??/ “Sing” This matches only the word “Sing” because the modifier is given
the option to match nothing. And since it is lazy, it will take that
option every time, regardless of whether a word character
immediately follows the “g” in “Sing”. The reasoning is the same
as with the *? modifier.

/Sing\w??\s/ “Sings ” … Again, just as with the *? modifier, we see that appending the \s on
the pattern creates additional matches. The \s forces the pattern to
continue searching for a match that includes white space. This
could be “Sings “ or a few other combinations (similar to the
greedy outcomes).

/(ha)??/ “” This example demonstrates why we need to be careful with lazy
modifiers. Even when “ha” exists, it is ignored, again because the
modifier has the option to do so. The greedy version of this would
match as many times as the word “ha” occurred back-to-back.

Chapter 1: Getting Started with Regular Expressions 25

Lazy n Times
The modifier {n}? creates a match exactly n times. This modifier functions exactly as the greedy version,
making the ? unnecessary. Using this modifier results in no performance enhancement or change in
functionality, which makes it a completely unnecessary addition to the Perl language. It has been included
here for the sake of completeness. Table 1.33 shows that the same examples reveal the same results.

Table 1.33: Examples Using “{n}?”

Usage Matches

/1-800-\d{3}?-\d{4}?/ “1-800-123-4567” “1.800.123.4567” …

/R\w{4}?/ “Round” “Runts” “Ruins” …

/19\D{3}?Street/ “19th Street” “19th.Street” “19…Street” …

/(\d{5}?-\d{4}?)|(\d{5}?)/ “12345-6789” “12345” …

Lazy n or More
The modifier {n,}? creates a match, at least n times and as few times as necessary to create a match. This
functions just like the *? or +? modifiers, except that the minimum number of matches is arbitrary. Again,
we see similar behavior resulting from the laziness of the modifier. Table 1.34 provides examples.

Table 1.34: Examples Using {n,}?

Usage Matches Notes

/Sing\w{3,}?/ “Singing” … This usage matches exactly n=3 times. Again, by giving the lazy
modifier an option to match the minimum, it will do so every time.

/0{3,}?\s/ “0000 ” … Now that you have the hang of these modifiers, this example
should be a little more interesting. Appending \s on the pattern still
forces it to match each 0 until the white space is encountered. The
pattern is “anchored” to the first occurrence of a 0, thus capturing
more than the minimum.

/(ha){4,}?/ “hahahaha” Without surrounding information in the pattern, this matches only
the minimum number of times. By having nothing else to force
additional matching, the lazy modifier just stops after the
minimum of n=4.

26 Unstructured Data Analysis

Lazy n to m Times
The modifier {n,m}? creates a match at least n times, but no more than m times—as few times in that range
as necessary to create the match. It functions like many of the other lazy modifiers discussed thus far, but it
sets a cap on how many times it can match in addition to having an arbitrary minimum. Table 1.35 provides
examples.

Table 1.35: Examples Using {n,m}?

Usage Matches Notes

/Read\w{1,3}?/ “Ready” … This usage matches the word metacharacter only one time. Again,
by giving the lazy modifier an option to match the minimum, it
will do so every time.

/0{2,5}?\s/ “0000 ” … Again, the pattern is “anchored” to the first occurrence of a 0, thus
capturing the minimum if it exists, up to the maximum.

/\sha(ha){0,6}?/ “ ha” By not having anything after the “anchor” point for the pattern to
match on, there is nothing to force additional matching. The lazy
modifier just stops after the minimum of n=0.

1.6 Options
Options affect the behavior of the entire RegEx pattern with which they are associated. These behavioral
changes provide benefits ranging from making RegEx creation more convenient, to providing new or
enhanced functionality.

Options occur after the closing slash character, but there is one item of significance that occurs before the
first slash character that we will also discuss—it is not actually an option but this is best place to go over it.
And we are not going to cover all of the options for the same reason we haven’t covered absolutely all of
the metacharacters thus far—this is an introductory text.

1.6.1 Ignore Case
The option //i ignores letter case for the entire pattern, even character strings. This is a great option to use
when we know exactly what words we are searching for, but we don’t want the letter case to be an issue.
Table 1.36 provides examples.

Table 1.36: Examples Using //i

Usage Matches

/1600 Pennsylvania Avenue/i “1600 pennsylvania avenue” “1600 PENNSYLVANIA
AVENUE” …

/STREET/i “street” “Street” “STREET” …

/CAPS don’t MaTtEr/i “caps don’t matter” “CaPs DoN’t MATTER” …

Chapter 1: Getting Started with Regular Expressions 27

1.6.2 Single Line
The option //s forces the dot character (.) to match everything, including the newline character, when it
occurs in the pattern. This can be very helpful to ensure that we don’t miss anything for a particular
character position. Table 1.37 provides examples.

Table 1.37: Examples Using //s

Usage Matches

/43rd and Times Square.New York, NY 10036/s “43rd and Times Square
New York, NY 10036” …

/Bob Smith.\d{3}-\d{3}-\d{4}/s “Bob Smith
123-456-7891” …

1.6.3 Multiline
The option //m causes ^ and $ to match on more than just the string start and end respectively. Instead, they
match on every newline encountered because the various lines of information are treated as one continuous
line. This enhanced functionality really applies to two metacharacters that we haven’t covered yet (we’ll
discuss them in Section 1.7), so if you need to, feel free to peek ahead and come back to this one. Table
1.38 provides examples.

Table 1.38: Examples Using //m

Usage Matches

/^\w+/m Words at the beginning of a string and words following a
newline character.

/\w+?\s$/m Words immediately before a space and the string end, and
before a space and newline character.

1.6.4 Compile Once
The option //o is known as the compile once option. By having the “o” immediately following the closing
slash, SAS knows to compile that RegEx only once. This option creates a very nice simplification to SAS
code, which I demonstrate by showing updated test code below (see Section 1.1.4 for the original code).
Notice how the IF block is removed, and only the two lines that do not include the RETAIN statement
remain. These changes are possible due to the compilation happening the first time through the DATA step.
Every subsequent loop through reuses the previously compiled expression, if it exists.

Updated Test Code
/*RegEx Testing Framework*/
data _NULL_;
*if _N_=1 then
*do;
* retain pattern_ID;
* pattern="/Run/"; /*<--Edit the pattern here.*/
* pattern_ID=prxparse(pattern);
*end;

28 Unstructured Data Analysis

pattern="/Run/o"; /*<--Edit the pattern here.*/
pattern_ID=prxparse(pattern);
input some_data $50.;
call prxsubstr(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match=substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;
 end;
datalines;
Smith, BOB A.
ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234
;
run;

1.6.5 Substitution Operator
While the substitution operator s// is not technically an option, it belongs here if only because it truly stands
apart from the other items discussed in this section. Although the substitution operation is similar in
appearance to the other options, it fundamentally changes the RegEx activity from a matching operation to
a match-and-replace operation. Placing “s” in front of the surrounding slashes (//) signifies that the pattern
is being used to replace the text being matched and insert the accompanying replacement text. This operator
is another peek at additional functionality that is explored in the next chapter with SAS functions. Once a
pattern is matched, we can then do a variety of things with that information. A great analogy for how this
works in practice is the find-and-replace functionality provided by many word processing applications—
except this is much more powerful. Also, notice that there is a third slash in the examples below (in the
middle of the patterns). That additional slash denotes where the matching portion of the RegEx ends and
the replacement portion begins. And notice something important in the last example: everything is a string
literal. That’s right, all the characters that occur between the second and third slash are treated as just
characters. Table 1.39 provides some examples, but we will cover this in detail in the next chapter, where
we also discuss how to insert more than just character strings.

Table 1.39: Examples Using s//

Usage Matches Replaces with

s/Stop/Go/ “Stop” “Go”

s/Sing/Read/ “Sing” “Read”

s/1\s?\(800\)\s?-\s?/1-800-/ “1 (800) - ” … “1-800-”

Note: This is a more advanced function that our test code is not set up to handle. You’ll just need to accept
it as true until we use it with some SAS code in the next chapter.

Chapter 1: Getting Started with Regular Expressions 29

1.7 Zero-width Metacharacters
Zero-width characters, often called positional characters, are not matched in isolation because they do not
have a width. They are used as an additional piece of information for making a proper pattern match. There
are numerous examples for how these zero-width characters can be used. For instance, perhaps you want to
match a particular word, but only if it occurs at the beginning of a line.

1.7.1 Start of Line
The metacharacter ^ matches the beginning of a line or string. Depending on the text that we are
processing, we might know a priori that a new line signifies something specific. For example, we might be
looking for the beginning of a new paragraph, which could be denoted by a new line in combination with a
capital letter and no preceding white space. Or we might need to be prepared to match an address that
includes a new line for the city, state, and zip. Table 1.40 provides examples.

Table 1.40: Example Using ^

Usage Matches

/^Washington, DC 20007/ “
Washington, DC 20007”

/^\w+\b/ The first word in a string.

Note: This metacharacter is often used as the logical NOT symbol, including within the character class
metacharacters discussed in Section 1.3 and in SAS code. So be careful not to get confused in its usage
when shifting between contexts.

1.7.2 End of Line
The metacharacter $ matches the end of a line or string. There are numerous situations in which this might
become relevant, similar to the reasons for the ^ metacharacter. Table 1.41 provides examples.

Table 1.41: Example Using $

Usage Matches

/3000 K Street NW,$/ “3000 K Street NW,
”

/\$\d+?\.\d{2}\s*?$/ “$150.52
”

30 Unstructured Data Analysis

1.7.3 Word Boundary
The metacharacter \b matches a word boundary. The \b RegEx assertion metacharacter is zero-width
because it actually represents the invisible gap between two characters, with a \w character on one side and
\W on the other. Therefore, when you use this metacharacter, you won’t generate matches that contain the
associated non-word character. Table 1.42 provides examples.

Table 1.42: Example Using \b

Usage Matches

/Street\b/ “Street” from the substrings, “Street,” “Street ” …
But does NOT match from the substring “Streets” etc.

/\b8\d{2}\b/ “800” “888” … from the substrings “(800)” “-888-“ …
But does NOT match from the substrings “18002” …

/\b\U[a-z]+\E\b/ Words in all caps. Without the second \b, the output would
also include single capitalized letters from the front of a
word.

1.7.4 Non-word Boundary
The metacharacter \B matches a non-word boundary (i.e., anywhere \b does not match). This is especially
useful for matching root words or substrings without including the surrounding pieces of information.
Table 1.43 provides examples.

Table 1.43: Examples Using \B

Usage Matches

/read\B/ “read” from the substrings, “reads” “reading” “reader” …
But does NOT match from the substring “read”

/\Bun\b/ “un” from the substrings, “fun ” “rerun.” “gun,” …
But does NOT match from the substring “un”

/\b[a-zA-Z]{3,}\b/ Any word longer than three letters.

1.7.5 String Start
The metacharacter \A matches the beginning of a string. Similar to the word boundary metacharacter (\b),
\A occurs between two character cells. It also denotes when a string value occurs to its right with nothing to
its left. In the context of data lines (as in our test code for this chapter), that situation occurs at the
beginning of each line.

However, suppose we had a more complex task such as stitching together multiple strings of extracted text
(stored in SAS variables). In this context, \A could be a key to determining in what order to place or sort
them. However, for our test code, the \A matches only on the beginning of each data line, since each line is
identified as the beginning of the string. So, this is another one that you have to approach with a little bit of
faith until we start doing some more interesting tasks in the next chapter. Table 1.44 provides examples.

Chapter 1: Getting Started with Regular Expressions 31

Table 1.44: Examples Using \A

Usage Matches

/\A\w*?\s/ The first word of a line. In the case of our test code, it
matches:
“ROBERT ” from line 2;
“103 ” from line 4;
“508 ” from line 5;
“650 ” from line 6;
“3000 ” from line 7;
and “1560 ” from line 8.

1.8 Summary
We have explored a variety of interesting new concepts in this chapter, and I’ve been doing my utmost to
make them tangible along the way. Hopefully, you are now ready to tackle the challenge of implementing
these concepts in SAS code in the coming chapters. Following are some takeaways that you should keep in
mind for the coming pages and beyond.

Flexibility
It should have become clear through reading this chapter that there are many ways to accomplish the same
task, making few of them truly right or wrong. You have to decide the most efficient and effective
approach for accomplishing your goals to determine what is best for a given situation.

Scratching the Surface
We have only begun to scratch the surface of what RegEx can do. The information that you have learned
thus far is a solid foundation upon which you can develop sophisticated functionality.

Start Small
As we have explored a variety of RegEx capabilities throughout this chapter, it is easy to become
overwhelmed with attempting to do too much at once. As with anything, it is best to start small by
experimenting with simple patterns and iteratively evolve them. And remember that leveraging just a few
of the elements that we have covered can have a tremendous impact on the processing and analysis of
textual information.

32 Unstructured Data Analysis

1 Wikipedia contributors, "Regular expression," Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=857059914 (accessed August 29,
2018).

2 For more information on the version of Perl being used, refer to the artistic license statement on the SAS
support site here: http://support.sas.com/rnd/base/datastep/perl_regexp/regexp.compliance.html

3 SAS Institute Inc. “Tables of Perl Regular Expression (PRX) Metacharacters,” SAS 9.4 Functions and
CALL Routines: Reference, Fifth Edition, http://support.sas.com/documentation/cdl/en/.
lefunctionsref/67239/HTML/default/viewer.htm#p0s9ilagexmjl8n1u7e1t1jfnzlk.htm (accessed August
29, 2018).

4 “perlre,” Perl Programming Documentation, http://perldoc.perl.org/perlre.html (accessed August 29,
2018).

5 SEC, “SEC Administrative Proceedings for 2009,” U.S. Securities and Exchange Commission,
http://www.sec.gov/open/datasets/administrative_proceedings_2009.xml (accessed August 29, 2018).

6 Octal is a number system that uses base-8 instead of base-10. This system has only numbers 0–7
represented. Some old microcontrollers and microprocessors used this encoding, but it is extremely rare
today.

7 Hexadecimal is a number system that uses base-16 instead of base-10. The possible values go from “0” to
“F” in a single character position (where A=10, B=11, …, F=15).

Chapter 2: Using Regular Expressions in SAS
2.1 Introduction ..33

2.1.1 Capture Buffer ... 33
2.2 Built-in SAS Functions ...34

2.2.1 PRXPARSE ... 34
2.2.2 PRXMATCH .. 35
2.2.3 PRXCHANGE .. 36
2.2.4 PRXPOSN ... 39
2.2.5 PRXPAREN ... 40

2.3 Built-in SAS Call Routines ...42
2.3.1 CALL PRXCHANGE.. 42
2.3.2 CALL PRXPOSN ... 45
2.3.3 CALL PRXSUBSTR .. 46
2.3.4 CALL PRXNEXT ... 48
2.3.5 CALL PRXDEBUG .. 50
2.3.6 CALL PRXFREE .. 52

2.4 Applications of RegEx ...53
2.4.1 Data Cleansing and Standardization ... 54
2.4.2 Information Extraction .. 57
2.4.3 Search and Replacement .. 60

2.5 Summary ...63

2.1 Introduction
This chapter is focused on developing your understanding of built-in SAS functions and call routines, and
on starting to do some real SAS coding. Here, you will learn the mechanics of how to implement the
wonderful RegEx metacharacters introduced in Chapter 1. Each function or call routine introduced has
associated examples to ensure that their use is clear. We also briefly discuss how each is useful.

2.1.1 Capture Buffer
Now, before we go any farther, we have to address a concept called the capture buffer. The capture buffer
is a more advanced technique that I have avoided delving into thus far, but it must be understood so that
you can use some functions (required for PRXPAREN and PRXPOSN, but optional for PRXCHANGE).
As you recall from Chapter 1, parentheses create logical groupings within a RegEx, but they also do
something more interesting. For every set of parentheses used in a particular RegEx pattern, a slot in a
memory buffer is created. This slot in memory is then referenceable just like any variable (a more
experienced programmer can think of it like a pointer buffer). Each slot is created in sequential order of
parentheses pair occurrence and is referenced accordingly using the $ sign.

For example, the RegEx s/(The) (cat) (is) (fat)/$4 $3 $1 $2/ creates the output “fat is The cat”. Now,
imagine applying that same ability to unknown data elements instead of just to string literals. This could
become a very powerful capability for standardizing or restructuring data to meet specific needs.

This doc was provided to the VLE, September 2020.

34 Unstructured Data Analysis

2.2 Built-in SAS Functions
In this section, we cover the SAS functions for performing RegEx operations. SAS functions for RegEx
have the same usage limitations as other built-in functions. (See SAS documentation.) Also just like all
other functions, they can only take arguments and return output in assignment statements and expressions.

Note: Each RegEx function has PRX at the beginning, which represents Perl-Regular-eXpressions.

2.2.1 PRXPARSE

Description
This function takes a RegEx pattern as input and provides a numerical RegEx pattern identifier as output.
The unique pattern identifier is used by other functions and call routines to reference the pattern. This
function should look familiar since we used it in our example code in Chapter 1.

Syntax
RegEx_ID = PRXPARSE (RegEx)

RegEx: The pattern to be parsed (input argument, required)

RegEx_ID: Unique numerical RegEx identifier returned by PRXPARSE (output, required)

Now, it is important to understand at this point that PRXPARSE compiles the RegEx in order to create the
identifier for SAS to later reference and use. And this is what makes the RegEx //o option so important
when using PRXPARSE in code. The //o option forces SAS to compile the RegEx code once, creating the
RegEx identifier the first time only. When a particular RegEx is intended to be reused on every loop
through the DATA step, we want to leverage this functionality in order to avoid recompiling the RegEx
pattern every time it is encountered in code (i.e., on each iteration of a DATA step). If the pattern is not
definitely going to be used every time through the DATA step (e.g., it’s not defined inside an IF statement),
then we might not want to waste memory maintaining it. In other words, we might not always want to use
the //o option—the decision is about tradeoffs. When you’re dealing with very few of these patterns or with
a small amount of data, the tradeoffs don’t really apply. But when we scale up to a system using hundreds
of patterns, or tens of millions of records, the tradeoffs (speed at the expense of memory usage) become
very important.

Example 2.1: Defining Patterns with PRXPARSE
Let’s revisit the last bit of example code from Chapter 1 since it is already familiar. The RegEx below is
defined as /Smith/o, meaning that we are looking for any occurrence of the string literal “Smith” within the
data lines provided. This RegEx is the argument for PRXPARSE, which creates a pattern identifier that is
assigned to the variable pattern_ID. This variable is then passed to the call routine PRXSUBSTR, which is
discussed in section 2.3. Because you are familiar with the overall function of this code by now, this need
not be a distraction.

The output of this RegEx is presented in Output 2.1. As we expected, the code found every occurrence of
“Smith” regardless of what was surrounding it—including other letters.

/*RegEx Testing Framework*/
data _NULL_;
pattern = "/Smith/o"; /*<--Edit the pattern here.*/

Chapter 2: Using Regular Expressions in SAS 35

pattern_ID = PRXPARSE(pattern);
input some_data $50.;
call prxsubstr(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match = substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;
 end;
datalines;
Smith, BOB A.
ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234
;
run;

Output 2.1: Log Output of Pattern /Smith/o

2.2.2 PRXMATCH

Description
PRXMATCH returns the numerical position of the first character in the matched RegEx pattern. In
addition, it can be used in IF statements to test for a pattern match without a variable assignment, just like
many other familiar SAS functions. The first argument to PRXMATCH is either the RegEx or RegEx_ID.
The second is the source text variable or string literal.

Syntax
Position = PRXMATCH(RegEx_ID or RegEx, Source_Text)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required if RegEx not
used)

RegEx: The pattern to be matched (input argument, required if RegEx_ID not used)

Source_Text: The text variable or literal to be operated upon (input argument, required)

Position: Numerical position variable assignment (output, required)

As we discussed with the PRXPARSE function, RegEx patterns are compiled by SAS for use by other
functions. Therefore, in addition to using the actual RegEx, PRXMATCH is able to leverage the previously
compiled RegEx via the RegEx_ID argument in lieu of the RegEx itself. This allows us to compile the

36 Unstructured Data Analysis

RegEx once via the PRXPARSE function (using the //o option), minimizing the associated computing
cycles. Such small savings in computing cycles can prove significant when processing large volumes of
text.

The two different methods for leveraging RegEx patterns create significant flexibility in how PRXMATCH
can be used in practice. By not needing to compile the RegEx in advance, PRXMATCH allows us to
embed RegEx patterns throughout our code without the extra memory allocation required to maintain them
for each loop through the DATA step. This is very useful when you are using PRXMATCH in a dynamic
way, such as inside nested IF statements where the RegEx is used only when certain conditions are true.
Depending on the implementation, there are implications for speed as well as for memory usage.

Example 2.2: Finding Strings in Source Text with PRXMATCH
Let’s try a simple example to see how this function is used in practice. Suppose we want to find a string
such as “Street” in a source text. The code below demonstrates how we print the position of each
occurrence to the log. Obviously, we need to do more than just print the position in practice (such as by
extracting or manipulating the matched text), but this demonstrates the basic functionality of PRXMATCH.

The PRXMATCH function is implemented in this code with the RegEx as the first argument and the
datalines reference address as the second argument. The result is assigned to the variable Position. The
value of Position is then written to the log using the PUT statement.

Count the character positions in the data lines. At what position do we encounter the “S” in “Street” on the
lines in which they occur? Comparing the results to Output 2.2, we see that PRXMATCH is returning the
position of “S” (i.e., the position for the first character in the pattern match).

data _NULL_;
input address $50.;
position = PRXMATCH('/Street/o', address);
if position ^= 0 then
 do;
 put position=;
 end;
datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First Street NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Output 2.2: Log Printout for Positions of “Street”

2.2.3 PRXCHANGE

Description
This function searches for the pattern—provided in the first argument by either RegEx_ID or RegEx—
within the source text that is provided in the third argument. The pattern is matched the number of times
given in the second argument, Num_Times. Upon finding each match, the function then returns the

Chapter 2: Using Regular Expressions in SAS 37

changed text as required by the RegEx. If no match is found, PRXCHANGE returns the original text
unchanged.

Syntax
Output_String = PRXCHANGE(RegEx_ID or RegEx, Num_Times, Input_String)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required if RegEx not
used)

RegEx: The pattern to be matched (input argument, required if RegEx_ID not used)

Num_Times: Number of times the change is to be applied (input argument, required). -1 forces the
function to make the changes as many times as the pattern occurs in the source text.

Input_String: Input text variable (input argument, required)

Output_String: Output text variable assignment (output, required)

Just like the PRXMATCH function, PRXCHANGE is able to use the actual RegEx pattern or the
RegEx_ID, providing significant flexibility. The preferred use again depends on the desired application.

This function is very useful for data standardization, as you will see in more advanced examples in the next
chapters. We will work through two examples below to demonstrate some more basic functionality of the
PRXCHANGE function, as well as to demonstrate how to leverage the capture buffer concept introduced
earlier.

Example 2.3: Standardizing Data
Data standardization is a relatively simple, yet powerful, capability provided by RegEx in SAS.
PRXCHANGE enables us to scrub our data source to ensure that each occurrence of a word or phrase is
exactly the same (or removed entirely). See Output 2.3 for the results. Data scrubbing becomes especially
important when you are attempting to perform advanced applications such as text mining.

For instance, before doing any analysis of our data, we want to know that each occurrence of the word
“street” is exactly the same. If each occurrence were not identical, we might perform a word frequency
count on a document with invalid results because “street,” “Street,” “St.,” and so on, would all be counted
separately. Depending on the eventual use of this information, such problems could prove disastrous.

data _NULL_;
input address $50.;
text = PRXCHANGE('s/\s+([sS]t(reet)?|st\.)\s+/ St. /o',-1,address);
put text;

datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

38 Unstructured Data Analysis

Output 2.3: Log with Updated Data

Note: There are often a number of ways to achieve the same outcome. Understanding the context of an
application will help you determine the best RegEx pattern to use.

Example 2.4: Using the Capture Buffer
Revisiting Example 2.3, suppose we now want to also make the addresses available to a system that accepts
only comma-separated values (CSV) files. This is a great opportunity to use the capture buffer. With only a
couple of minor code changes, we can now process the data lines to be CSV ready.

The new line of code uses PRXCHANGE with a more complex RegEx that chunks the address into the
street, city, state, and ZIP code components. And we see that the new line takes the previous output
variable Text as the input argument, instead of address. Doing this allows us to make changes to the
already changed text. If we were to use address, we would merely update the original data lines rather than
building on the prior step.

In reviewing the parentheses elements in the new RegEx, we can see how the four address components are
identified. On that same line, each of the four elements is placed via the buffer reference, with a comma
and space immediately following. Reviewing Output 2.4, we see that the code produces the expected
outcome.

data _NULL_;
input address $50.;
text = PRXCHANGE('s/\s+(Street|street|St|st|st\.)\s+/ St. /o',-1,address);
text2 = PRXCHANGE('s/(.+?),*?\s+?(\w+?),*?\s+?(\w+?)\s+?(\d+?)/$1, $2, $3,
$4/o',-1,text);
put text2;

datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Output 2.4: Corrected Data in the Log

So, what else could we do to the text? A number of things remain to be performed in order to make these
addresses ready for advanced applications. For instance, “Ave” and “1st” should also be standardized.
Building on the example code above is the fastest way to explore the options and become more comfortable
with some of these concepts.

Chapter 2: Using Regular Expressions in SAS 39

2.2.4 PRXPOSN

Description
PRXPOSN returns the matched information from specified capture buffers. This RegEx function requires
the RXSUBSTR, PRXMATCH, PRXNEXT, or PRXCHANGE functions to be running before being used
so that the capture buffer can be referenced. Also, RegEx_ID is required rather than the actual RegEx.
Otherwise, PRXPOSN will not work—necessitating the use of PRXPARSE. The N input argument is
numeric and refers to the capture buffer (without $).

Syntax
Text = PRXPOSN(RegEx_ID, N, Source_Text)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

N: Integer value of the capture buffer (input argument, required)

Source_Text: The text variable or literal to be operated upon (input argument, required)

Text: Character variable assignment of captured text (output, required)

When we know the exact number of existing capture buffer elements (i.e., N is known), then we can use
PRXPOSN without an issue. However, what happens when the number of elements is different from what
we expect? If there are values in the capture buffer but we make a reference that is larger than those
available (maybe there are three, but we make a reference to number 5), then a missing value is returned.
However, if we reference capture buffer position 0 (N=0), then the entire pattern match is returned
regardless of the buffer length.

The next function, PRXPAREN, is very helpful in creating robust code when you are using the capture
buffers in conjunction with PRXPOSN. It is also important to write robust RegEx patterns to ensure that
you prevent issues from popping up.

Example 2.5: Extracting Data with Capture Buffers
In order to make both the capture buffer concept and this new function more clear, we’re going to walk
through a concrete example. Suppose we want to process addresses for which the structure is well known
and store various pieces in a SAS data set for later use. Since we know the layout of the address, the
capture buffer arrangement and the application of PRXPOSN are both very straightforward.

First, we create the RegEx_ID variable Text by using the PRXPARSE function. Then, we perform a logical
test using the PRXMATCH function in the IF statement. Notice that this is an implicit test of a match
existing (no equal sign is used). If a match of the RegEx exists within the identified text source, then we
assign the various capture buffer values to variables by using PRXPOSN (city, state, and zip).

Output 2.5 displays the values of extract, the data set created in our DATA step. As expected, we
extracted the city, state, and ZIP code from each datalines entry. Later, we’re going to build on this code
to create a more sophisticated address extractor that includes the street information as well as the ability to
include 9-digit zips.

data extract;
input address $50.;
text = PRXPARSE('/\s+(\w+),\s+(\w+)\s+(\d+)/o');

40 Unstructured Data Analysis

 if PRXMATCH(text, address) then
 do;
 city = PRXPOSN(text, 1, address);
 state = PRXPOSN(text, 2, address);
 zip = PRXPOSN(text, 3, address);
 output;
 end;
keep city state zip;
datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
3000 K Street NW, Washington, DC, 20007
;
run;
proc print data=extract;
run;

Output 2.5: PROC PRINT Results

2.2.5 PRXPAREN

Description
This function returns the numerical reference value of the largest capture buffer that contains data. It is
therefore implicitly required that PRXSUBSTR, PRXMATCH, PRXNEXT, or PRXCHANGE be run prior
to this function being used—just like with PRXPOSN. However, the only input argument is the RegEx_ID.
Simply providing the RegEx is not an option, so this function must be used in conjunction with the
PRXPARSE function.

Syntax
Paren=PRXPAREN(RegEx_ID)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Paren: Numerical reference value of the largest capture buffer (output, required)

Note: Since this function requires a RegEx_ID in lieu of the actual RegEx, it is implied that all precedents
are then forced to use RegEx_ID instead of the RegEx as well—otherwise, PRXPAREN cannot be used.

Chapter 2: Using Regular Expressions in SAS 41

What are we really trying to achieve with this function? Since it provides the length of the capture buffer by
telling us the largest buffer position to contain text, we know exactly how many possible buffer values we
can access. Because we know this, we can avoid errors when referencing them in code. It is worth noting
that effective RegEx coding avoids many potential problems. However, it is always best practice to create
fail-safe measures. In addition, we can use this function to identify which of several options has been
triggered inside the source text.

Example 2.6: Identifying Capture Buffers
Ideally, whenever we want to use the PRXPOSN function, the data that we expect to be available in the
source is available. However, we know that in reality, that is not always the case. So, we have to write code
that can account for a reasonable amount of variability in any data that we might need to process. We are
going to explore an advanced example later in this chapter that leverages the basic concepts outlined by this
example.

Now, suppose we have a pattern with multiple possible matches embedded in it. How do we know which
option allowed the pattern to create a match? In the code below, we see that it is possible to use
PRXPAREN to answer this question. We have a simple pattern with three possible matches: “Dog”, “Rat”,
and “Cat”. Each is encapsulated by parentheses to create a capture buffer location. However, notice that the
entire group is inside yet another set of parentheses. While unnecessary for practical purposes, this was
done to demonstrate how capture buffers are numbered. Also note that this is not the most efficient way to
write such code. We have sacrificed efficiency here in order to clarify how the buffers work. Notice in our
output that “Dog” has a capture buffer of 2 despite being the first item in the OR list. Why? Because the
outer set of parentheses is encountered first by SAS, thus creating a capture buffer element at position 1.

If we were to use PRXPOSN under each IF statement with position 1 in our argument list, we would see
that each of the three cases below would be provided as output (i.e., when “Dog” is true, “Dog” would be
in buffer 1 as well as in buffer 2, and so on). See Output 2.6 for the results.

data _null_;
 RegEx_ID=prxparse('/\b((Dog)|(Rat)|(Cat))\b/o');

 position=prxmatch(RegEx_ID, 'The Cat in the Hat');
 if position then paren=prxparen(RegEx_ID);
 put 'I matched capture buffer ' paren;

 position=prxmatch(RegEx_ID, 'The Rat in the Hat');
 if position then paren=prxparen(RegEx_ID);
 put 'I matched capture buffer ' paren;

 position=prxmatch(RegEx_ID, 'The Dog on the Roof');
 if position then paren=prxparen(RegEx_ID);
 put 'I matched capture buffer ' paren;
run;

As I have indicated, our goal here is to identify which particular capture buffer is used. This allows us to
build more sophisticated functionality in the future, such as conditional information capture or
standardization.

Output 2.6: Log Output

42 Unstructured Data Analysis

2.3 Built-in SAS Call Routines
In this section, you learn about the PRX call routines available in SAS for performing many of the same
RegEx tasks as the functions previously discussed, as well as some new ones. However, just like with all
other call routines, PRX call routines cannot be used in expressions or assignment statements. The way
they are implemented, and their ultimate functionality, is slightly different when compared to the functions.
These differences are explored more thoroughly in the associated examples.

2.3.1 CALL PRXCHANGE

Description
This call routine performs the match-and-replace operation similar to that of the PRXCHANGE function.
However, unlike the function version, the call routine must receive a RegEx identifier, without the option
of using the associated RegEx instead. Also, there are some additional routine arguments not available in
the function (result_length and truncation_value). The only required arguments are: RegEx_ID,
Num_Times, and Input_string. All remaining arguments are optional.

Syntax
CALL PRXCHANGE(RegEx_ID, Num_Times, Input_string, Output_string, result_length,
trunc_value, num_changes)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Num_Times: Number of times the change is to be applied (input argument, required)

Input_string: Input text variable (input argument, required)

Output_string: Output text variable (input argument, optional). Default is Input_string.

result_length: Length of the characters put into Output_string (returned value, optional)

Trunc_value: Binary integer (0 or 1 only) value (returned value, optional). 1 means that the inserted
text is longer than the text replaced. 0 means that the inserted text is either the same length or shorter
than the text being replaced.

num_changes: The number of times the changes were made (returned value, optional)

Using the call routine in lieu of the function can often be cleaner from a coding perspective, especially
when managing large programs. But there is a more practical reason for using this call routine instead
of the function: accessing the additional functionality provided by the optional arguments. Since we
have the ability to write changes directly back to the original variable, we can avoid creating new
variables unnecessarily. This is especially useful when applying multiple data standardization filters to
source text.

Note: Writing changes back to the existing variable makes them irreversible in the event of a mistake. So,
while our ultimate use of this functionality requires the overwriting approach for sound memory
management, creating new variables or data sets is ideal when you are still learning. It allows you to
experiment and make mistakes without fear of making permanent changes to source data.

Chapter 2: Using Regular Expressions in SAS 43

Example 2.7: Transforming Data
Let's look at basic usage for making changes to our source text. This is a simple example of how to use the
call routine. Notice how compact this makes our code while maintaining functionality. Output 2.7
demonstrates that we have the anticipated functionality (replacing various forms of “street” with “St.”).

data _NULL_;
input address $50.;
mypattern = PRXPARSE('s/\s+(Street|street|St|st|st\.)\s+/ St. /o');
CALL PRXCHANGE(mypattern,-1,address);
put address;

datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Output 2.7: Results in the SAS Log

Now that we’ve looked at a basic implementation of CALL PRXCHANGE, let’s explore the optional
arguments.

Example 2.8: Redacting Sensitive Data
In this example, we focus on developing your understanding of the optional elements in CALL
PRXCHANGE. As a change of pace, we’re going to develop a basic way to redact sensitive information.
This is a frequent need, especially in the medical field, for protecting Personally Identifiable Information
(PII).1 Here, we’re not going to eliminate all PII from the provided data because we are just demonstrating
the functionality of CALL PRXCHANGE. However, this process is done more rigorously in Section 2.4
and on a larger scale.

In the code below, we start by creating a data set to pass into the DATA step, called example. This data set
contains name, address, and phone number information in various configurations. In the DATA step, we
create a RegEx_ID using PRXPARSE, and then use CALL PRXCHANGE to execute the changes
prescribed by the RegEx. Notice that one RegEx_ID is commented out. The RegEx in that line behaves
very differently from the initial RegEx_ID definition, which allows us to demonstrate the trunc_val and
num_changes options. We use this commented RegEx_ID to create Output 2.8. After the DATA step, we
perform a PROC PRINT to create the output shown in both Output 2.8 and Output 2.9.

data example;
 input text $80.;
 datalines;
Ken can be reached at (801)443-9876
103 Pennsylvania Ave NW, Washington, DC 20216
JP's address is:
650 1st St NE, Washington DC 20002
Carla's information is: (910)998-8762

44 Unstructured Data Analysis

3000 K Street NW, Washington, DC 20007
Eric can be reached at: (321) 456-7890
508 First St NW, Washington, DC 20001
;
run;

data changed;
 set example;

 *RegEx_ID = PRXPARSE('s/\d+/***NUMBER REMOVED***/o');
 RegEx_ID = PRXPARSE('s/\([1-9]\d\d\)\s?[1-9]\d\d-\d\d\d\d/*REDACTED*/o');
 Call PRXCHANGE(RegEx_ID, -1, text, text, length, trunc_val, num_changes);
 put text=;
run;

proc print data=changed;
run;

Simple Insert Results
As we can see in the results below, the phone numbers have been redacted in the original text by using the
value *REDACTED*. The rest of the data set shows our optional variable values. Length is the total length
of the string written to Text (we just wrote back to the old string this time). trunc_val is 0 for every row
because the inserted value is no longer than the original phone numbers. In fact, lines 1, 5, and 7 shrink
because the inserted content is shorter. And finally, num_changes records the number of times the phone
numbers were redacted on each line (multiple phone numbers per line would have resulted in that number
occurring in this column).

Output 2.8: SAS PROC PRINT Results

More Advanced Insert Results
The commented RegEx_ID definition creates very different output for Output 2.9—a longer replacement
value that occurs for every group of numbers (***NUMBER REMOVED*** is inserted). The variables are
all the same as in Output 2.8, but notice how the values change. For instance, trunc_val now equals 1 every
time a redaction occurred, and num_changes is frequently greater than 1. Also, notice something else very
important about this output: some lines of text are actually truncated!

Chapter 2: Using Regular Expressions in SAS 45

Remember, the trunc_val variable being set to 1 does not mean that data loss is certainly going to occur.
Instead, it means that it could occur. Think of this as a warning flag telling us, “Hey, keep a look out for a
problem.” And a problem is what we would indeed have for some of these lines of text. The insertion of
longer text pushes all following text to the right (beyond the 80-character length defined for the variable
Text). Now, when there is a significant amount of white space to the right of our text, this doesn’t result in
an issue. However, when there is valuable information to the right of our inserted text, we will likely have
data loss. Regardless how small the loss of data, the integrity of our entire data set is compromised if we do
not design code that avoids this problem. We discuss this concept a bit more in Section 2.4.

Output 2.9: SAS PROC PRINT Results

2.3.2 CALL PRXPOSN

Description
This call routine takes the RegEx_ID provided by PRXPARSE and the numerical capture buffer position N
as inputs. It produces the matching Position and Length as outputs.

Syntax
CALL PRXPOSN(RegEx_ID, N, Position, Length)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

N: Integer value of the capture buffer (input argument, required)

Position: Integer value of the character position for the first character in the matched pattern (returned
value, required)

Length: Integer value for the length of the matched pattern (returned value, optional)

This call routine takes in the RegEx_ID (RegEx is not allowed!) and capture buffer, and returns the exact
locations where it occurs in the most recent match. The match results from PRXMATCH, PRXCHANGE,
PRXSUBSTR, or CALL PRXNEXT (discussed in Section 2.3.4) must exist in order for CALL PRXPOSN
to work properly. We then must use the SUBSTR function to extract the identified text.

46 Unstructured Data Analysis

Example 2.9: Context-specific Algorithm Development
Sometimes it’s useful to condition code behavior on specific words occurring in text. In this example,
you’ll see how the functionality of CALL PRXPOSN can be used in combination with PRXPAREN,
PRXMATCH, PRXPARSE, and SUBSTR to do just that.

First, we create the RegEx_ID by using PRXPARSE, which is then passed to PRXMATCH. If a result
from PRXMATCH exists (i.e., a pattern match is found), then we determine which of the capture buffers in
the pattern is matched via PRXPAREN. The output of PRXPAREN is used as input to the CALL
PRXPOSN routine to create the Position and Length outputs. SUBSTR is then used to extract the specified
text. We then print a message, depending on the buffer position. See the results in Output 2.10.

data _null_;
input text $50.;
 RegEx_ID=prxparse('/((Dog)|(Rat)|(Cat))/o');

 if prxmatch(RegEx_ID, text) then do;
 paren=prxparen(RegEx_ID);
 CALL PRXPOSN(RegEx_ID, paren, position, length);
 buffer = substr(text, position, length);
 put 'I matched capture buffer ' paren 'with ' buffer;
 end;

if paren=2 then put 'I love dogs!';
else put 'I cannot stand a ' buffer'!';

datalines;
The Cat in the Hat
The Rat in the Hat
The Dog on the Roof
;
run;

I added the commentary about cats, rats, and dogs to show a second way to perform conditioning on the
parsed text. Obviously, you could perform more interesting things, and it should be fun to experiment with
in the future. We use this concept in later chapters to build out some interesting functionality.

Output 2.10: Log Output of Code Behavior

2.3.3 CALL PRXSUBSTR

Description
This call routine takes RegEx_ID and Source_Text as inputs, and returns Position and Length as outputs.
Using the actual RegEx is not an option.

Chapter 2: Using Regular Expressions in SAS 47

Syntax
CALL PRXSUBSTR(RegEx_ID, Source_Text, Position, Length)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Source_Text: The text to be operated upon (input argument, required)

Position: Integer value of the character position for the first character in the matched pattern (returned
value, required)

Length: Integer value for the length of the matched pattern (returned value, optional)

This call routine is used extensively in Information Extraction applications like those discussed in
Chapter 4. Since only the position and length of matches are identified by CALL PRXSUBTR, it must
be used in conjunction with a function like SUBSTR in order to extract the actual text.

Example 2.10: Information Extraction
In this example, we revisit the now-familiar example code from Chapter 1. It is a great example of how you
can leverage the CALL PRXSUBSTR in many applications.

The code below creates a RegEx pattern to search for all occurrences of “Smith” in our source text. It then
generates a RegEx_ID using PRXPARSE. The code then uses CALL PRXSUBSTR to search through
source text with the provided pattern and return the position and length of matching text. As you know by
now, this could have been a much more complex pattern, but the simplicity here helps to highlight the
functionality that we are focused on learning. After the call routine, the code checks to see whether the
position variable (Position) is 0, which is the default value indicating that it did not find a match. If a
position does exist, the code proceeds to use SUBSTR to capture text from the source using the position
and length obtained by CALL PRXSUBSTR. Results are then output to the log. See Output 2.11.

data _NULL_;
pattern = "/Smith/o"; /*<--Edit the pattern here.*/
pattern_ID = PRXPARSE(pattern);
input some_data $50.;
CALL PRXSUBSTR(pattern_ID, some_data, position, length);
if position ^= 0 then
 do;
 match = substr(some_data, position, length);
 put match:$QUOTE. "found in " some_data:$QUOTE.;
 end;
datalines;
Smith, BOB A.
ROBERT Allen Smith
Smithe, Cindy
103 Pennsylvania Ave. NW, Washington, DC 20216
508 First St. NW, Washington, DC 20001
650 1st St NE, Washington, DC 20002
3000 K Street NW, Washington, DC 20007
1560 Wilson Blvd, Arlington, VA 22209
1-800-123-4567
1(800) 789-1234
;
run;

48 Unstructured Data Analysis

As we expected, the output shows the various occurrences of “Smith” from within the provided data lines.
This example brings us full circle with the above code, pulling all of the pieces together.

Output 2.11: Log Results for “Smith”

2.3.4 CALL PRXNEXT

Description
This routine searches through Source_Text, between the Start and Stop positions, for the pattern associated
with RegEx_ID. It returns the Position and Length of the location.

Syntax
CALL PRXNEXT(RegEx_ID, Start, Stop, Source_Text, Position, Length)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

Start: Numerical constant, variable, or expression containing the starting character position to begin the
search (input argument, required)

Stop: Numerical constant, variable, or expression containing the last character position to use in the
search. If the value is -1, the stop position becomes the last non-blank character position in the source.
(input argument, required)

Source_Text: The text to be operated upon (input argument, required)

Position: Integer value of the character position for the first character in the matched pattern (returned
value, required)

Length: Integer value for the length of the matched pattern (returned value, required)

This call routine can be used for two applications:

1. searching for a pattern within a defined range

2. searching for a pattern iteratively throughout text, including multiple occurrences per line

The first application of CALL PRXNEXT is a straightforward implementation of the routine’s parameters.
However, the second usage is less apparent from its definition. Therefore, we focus on that usage of the
routine in our example.

Example 2.11: Pattern Matching Multiple Times per Line
Being able to identify a pattern any number of times in a particular line of text is valuable for many
practical applications. For example, performing word frequency counts clearly requires this ability in order
for accurate counts to be obtained.

The code below shows how to use CALL PRXNEXT to identify multiple occurrences of our pattern on
each row from the data-lines source. The pattern is defined to match on any string that is three word

Chapter 2: Using Regular Expressions in SAS 49

characters (\w) in length and that ends with “un”. The Start and Stop variables are initialized to character
positions 1 and Length(some_data) respectively. These variables must be provided with initial values for
the routine’s first use. However, subsequent calls automatically reset the start position to the character
position immediately following the most recent successful match. This is a fact that we take advantage of
with the DO WHILE loop below. If we were to eliminate the loop portion of code, we would merely be
searching for the pattern in a defined range (use the above application #1), but having the loop allows us to
achieve the desired functionality (use the above application #2). See the results in Output 2.12.

data _NULL_;
input some_data $50.;

pattern = "/\wun/o";
pattern_ID = PRXPARSE(pattern);
start = 1;
stop = length(some_data);

CALL PRXNEXT(pattern_ID, start, stop, some_data, position, length);
 do while (position > 0);
 found = substr(some_data, position, length);
 put "Line:" _N_ found= position= length=;

 CALL PRXNEXT(pattern_ID, start, stop, some_data, position, length);
 end;

datalines;
Running Runners who run.
Runners who think running is fun.
"Fun Runs" are not-so-fun runs for me.
Let's run at the next reunion.
;
run;

Log Output of Pattern Match Results
Output 2.12 contains the literal string that was found, its position, and its length. As we should expect by
now, the pattern that is created ignores the surrounding text—which makes the example slightly more
interesting. Review the output (count the character locations in the data lines), and notice that we did
indeed achieve the desire results.

Output 2.12: Log Output of Pattern Match Results

50 Unstructured Data Analysis

2.3.5 CALL PRXDEBUG

Description
This routine is used to perform debugging of all PRX functions and call routines, and accepts only one
input.

Syntax
CALL PRXDEBUG (ON-OFF)

ON-OFF: Numerical constant, variable, or expression. If it equals 0, then debugging is turned off, but
any positive value turns it on. (input argument, required)

This routine prints step-by-step output to the log, enabling a low-level understanding of any PRX program.
However, be prepared—this routine can create voluminous output. It is best to use it in a targeted way at
first in order to understand how a specific function or routine is working (or not working). If we were to use
this routine for an entire program, we should be ready to read very large amounts of procedural output,
which is an inefficient approach to diagnosing issues. It is best to perform gross-level diagnostics using
PUT statements and dummy variables, thus narrowing the focus to a specific code segment before using
CALL PRXDEBUG. In practice, this is the fastest approach to identifying the source of logical errors.

Example 2.12: Debugging the PRXPARSE Function
In keeping with our goal of using the CALL PRXDEBUG in a targeted way to debug code, we are going to
apply it only to the PRXPARSE function in the code below. Notice that we have to turn it on and off at
different points in the code in order to identify the segment to which we want our debug output limited. See
the results in Output 2.13.

data _null_;
input text $50.;

CALL PRXDEBUG(1);
 RegEx_ID=prxparse('/((Dog)|(Rat)|(Cat))/o');
CALL PRXDEBUG(0);
 if prxmatch(RegEx_ID, text) then do;
 paren=prxparen(RegEx_ID);
 CALL PRXPOSN(RegEx_ID, paren, position, length);
 buffer = substr(text, position, length);
 put 'I matched capture buffer ' paren 'with ' buffer;
 end;

 if paren=2 then put 'I love dogs!';
 else put 'I cannot stand a ' buffer'!';

datalines;
The Cat in the Hat
The Rat in the Hat
The Dog on the Roof
;
run;

Chapter 2: Using Regular Expressions in SAS 51

Debugging Information Printed to the Log
Reviewing the output in Output 2.13, we see that the debugging information for just a single PRX function
can be quite large, thus reinforcing my earlier point about limiting the scope of CALL PRXDEBUG.

The first line denotes compilation of a RegEx within the PRXPARSE function. The next line shows us the
compiled RegEx size and starting location for the lines that follow. Specifically, the size of 26 refers to the
26 lines of compiled RegEx code (numbers on the left with a trailing semi-colon), and first refers to the
first line of code execution. The numbers in parentheses to the right of each line correspond to labels for the
compiled RegEx (these labels work much like our pseudo code labels in Chapter 1).

Lines 1 through 26 are the compiled steps within our RegEx, and they become easy to follow once we
understand what each represents. For instance, the various OPEN and CLOSE statements correspond to our
opening and closing parentheses; BRANCH corresponds to the OR tests between the inner three
parenthesis pairs; and EXACT is for the string literal match of the associated word. END obviously means
the end of the subroutine.

The remaining output is just the rest of our code running as normal. Should our code be malfunctioning, we
would not likely see such normal output when using CALL PRXDEBUG.

Output 2.13: Debugging Information Printed to the Log

❶ The compilation process begins for the quoted RegEx contained by PRXPARSE.
❷ Notice that each OPEN and CLOSE pair have the same number (OPEN1 and CLOSE1). These

numbers correspond to the numerical value of the capture buffer that was formed by that set of
parentheses.

➌ Each line ends with a number enclosed in parentheses, denoting the next line to jump to from that line.
However, the END tag shows a jump to 0, which takes us out of the subroutine.

➍ The minlen field defines the minimum length for the match to be 3. This information is used by
subsequent functions and routines when using this compiled pattern.

52 Unstructured Data Analysis

Moving the placement of our debug routine call should prove to yield some interesting, and potentially
rather long, output. Doing so is the best way to become more familiar with the low-level operations SAS is
performing behind the scenes of our PRX code.

Significant amounts of information can be provided by the PRXDEBUG output, but a much deeper study
of debug output is outside the scope of this text. For more information about debug output and its meaning,
visit the SAS Support website.2

2.3.6 CALL PRXFREE

Description
This call routine releases memory resources associated with a RegEx, using its unique RegEx_ID.
Subsequent references to this identifier return a missing value.

Syntax
CALL PRXFREE(RegEx_ID)

RegEx_ID: Unique RegEx identifier returned by PRXPARSE (input argument, required)

This routine is used to free up memory for a specified RegEx_ID and becomes very important for
managing the memory of large programs. Remember, there is much more happening behind the scenes of
the RegEx_ID construction, despite merely having a numerical identifier. (See CALL PRXDEBUG.) It
can’t be stressed enough that memory management can be a significant problem for large programs if not
handled properly. Although SAS still handles memory cleanup to avoid memory leaks when a session ends,
it is possible to run into memory limitations within a single session. Think very strategically about which
RegEx_IDs—or any other variables for that matter—are necessary for each chunk of code.

Example 2.13: Releasing Memory with CALL PRXFREE
In order to demonstrate the functionality of CALL PRXFREE, we are revisiting a new version of the
example code for PRXCHANGE. However, instead of printing output as in the original example, we are
going to concern ourselves only with the results related to CALL PRXFREE. (See Output 2.14.)

As we can see in the code below, the PUT statement is used to print the values of Street_RXID and
AddParse_RXID to the log for each run through the DATA step (creating four writes to the log). However,
using the IF statement, we run the CALL PRXFREE routine on the last record to release the memory
associated with both RegEx_IDs. Then, we print the results to the log. This creates a fifth write to the log,
but the values are missing this time because our routine was successful at releasing the memory allocated
for them—making them unrecoverable.

data sample;
input address $50.;
datalines;
103 Pennsylvania Ave NW, Washington, DC 20216
508 First St NW, Washington, DC 20001
650 1st St NE, Washington DC 20002
3000 K Street NW, Washington, DC 20007
;
run;

Chapter 2: Using Regular Expressions in SAS 53

data _null_;
set sample end=last;
Street_RXID = PRXPARSE('s/\s+?(S|s)\w+?\s+/ St. /o');
AddParse_RXID = PRXPARSE('s/(.+?),*?\s+?(\w+?),*?\s+?(\w+?)\s+?(\d+?)/$1, $2, $3,
$4/o');
text = PRXCHANGE(Street_RXID,-1,address);
text2 = PRXCHANGE(AddParse_RXID,-1,text);
put Street_RXID AddParse_RXID;

if last then do;
 CALL PRXFREE(Street_RXID);
 CALL PRXFREE(AddParse_RXID);
 put Street_RXID AddParse_RXID;
 end;
run;

Output 2.14: Log Printout

The missing values displayed for each of the RegEx_ID variables demonstrate that the CALL PRXFREE
routine released all memory associated with both.

2.4 Applications of RegEx
In this section, we explore some real-world applications of RegEx with SAS, demonstrating a wide variety
of scenarios in which we can implement what you have learned thus far. The general categories that these
examples have been placed under do not to imply that we are limited in what we can do (see Chapter 1),
nor do they imply a lack of overlap between some of the examples.

In order to execute some of the applications to follow, we need a good source of addresses, phone numbers,
names, birthdates, and Social Security numbers. Obviously, these sources are hard to come by for
experimentation (that is a lot of personal information!). Therefore, for the sake of practice, I created some
code to randomly generate these more sensitive data items. The code for these random Personally
Identifiable Information (PII) elements is presented in Appendix A, and is not repeated for the different
applications. Access to real data sources is always preferable when developing robust code, but the random
generator does a fair job of inserting some commonly occurring variability into these elements (see
Appendix A for documentation). Feel free to experiment with it to obtain a different number of records or
greater variability in the information.

While all of the examples in this section are realistic, there is still room for improvement. However, we can
do only so much in this book. So, at the end of each section, I assign you some homework—suggested
assignments for how to improve the code already provided. These items should prove especially interesting
for advanced programmers.

54 Unstructured Data Analysis

2.4.1 Data Cleansing and Standardization
As data sets go, the randomly generated data set that we are going to work with is fairly clean. The simple
fact is we can’t explore all of the ways that data can be dirty in the real world (this book would never end!).
However, using some realistic data, we can test our ability to develop RegEx code to process and clean
some common problems in such data sources. This exercise will prepare you to go out in the real world and
tackle a wide variety of things that you might encounter because you will have the necessary tools in your
toolbox.

So, let’s start by reviewing the data elements that we need in order to clean and standardize, and what
things we need to check for in such sources.

Firstname
The person’s first name. This piece of data should contain character values only.

Surname
The person’s last name. This piece of data should contain character values only.

PhoneNumber
The person’s phone number. Phone numbers in different countries are written very differently, so we
must be prepared to properly parse a variety of formats—especially since it is so easy for a business
contact to be from or located in a different country.

SSN
The person’s Social Security number. We should see only segments of numbers separated by dashes or
spaces, and we need to enforce this formatting.

DOB
The person’s date of birth. This can be represented in a few ways, but we primarily see the classic 8-
digit format in the US. European dates represent the day before the month. This is where context is
very important, because it is difficult to detect this format unless the obvious value thresholds are
crossed.

Address
The person’s address. This data has the most natural variability and is the most interesting to parse. We
primarily need to be concerned with abbreviations, punctuation, and ZIP code lengths.

Now, as I hinted previously, data cleansing and standardization is accomplished by creating what amount to
filters. These filters are a series of RegEx functions and routines applied in succession so as to yield
incremental changes as each one is applied. Implemented in the correct order, we can clean up some very
messy data for later use. Fortunately for us, the data set created by the PII generator (see Appendix A) is
relatively tame. But only a few things need to change in order for it to become scary data. Regardless, there
are a few things that we must fix in order to make use of the entire data set in its current state. For example,
when we look at observation 16 from the data set (Output 2.15), we see a few issues with the address.

Output 2.15: PII Observation 16

Chapter 2: Using Regular Expressions in SAS 55

In addition to having decimals immediately following the abbreviations for street and avenue, we see that
the & symbol is used. Both these issues will become problematic when we attempt to parse the address into
street, city, state, and zip.

Developing what needs to be fixed in any data set often can’t be done blindly. There are basic things that
we can apply to any data source, such as trimming excess spaces, and so on. However, it is advisable to
pull samples of data in order to understand its quality issues before you develop RegEx patterns for
cleaning.

In the code below, I created a series of cleansing and standardization steps using PRXPARSE,
PRXMATCH, CALL PRXCHANGE, and PRXPOSN. Notice how clean our code is by using CALL
PRXCHANGE in lieu of the function version.

data CleanPII;
set PII;

ChangeAND = PRXPARSE('s/\x26/and/o'); ❶
ChangeSTR = PRXPARSE('s/\s(St\.|St)/ Street/o');
ChangeAVE = PRXPARSE('s/\s(Ave\.|Ave)/ Avenue/o');
ChangeRD = PRXPARSE('s/\s(Rd\.|Rd)/ Road/o');
ChangeDASH = PRXPARSE('s/\s*(\.|\(|\))\s*/-/o');
ChangePLUS = PRXPARSE('s/\+//o');
ChangeSPAC = PRXPARSE('s/ //o');

/*Cleaning Address*/ ❷
CALL PRXCHANGE(ChangeAND,-1,address);
CALL PRXCHANGE(ChangeSTR,-1,address);
CALL PRXCHANGE(ChangeAVE,-1,address);
CALL PRXCHANGE(ChangeRD ,-1,address);

/*Cleaning Phone Number*/
CALL PRXCHANGE(ChangeDASH,-1,PhoneNumber);
CALL PRXCHANGE(ChangePLUS,-1,PhoneNumber);
CALL PRXCHANGE(ChangeSPAC,-1,PhoneNumber);

/*Cleaning SSN*/
CALL PRXCHANGE(ChangeDASH,-1,SSN);
CALL PRXCHANGE(ChangeSPAC,-1,SSN);

/*Cleaning DOB*/
CALL PRXCHANGE(ChangeSPAC,-1,DOB);

drop ChangeAND ChangeSTR ChangeAVE ChangeRD ChangeDASH ChangePLUS ChangeSPAC;
run;

data FinalPII;
set CleanPII;

/*Parsing the address into its discrete parts*/
Addr_Pattern =
PRXPARSE('/^(\w+(\s\w+)*\s\w+),\s+(\w+\s*\w+),\s+(\w+)\s+((\d{5}\s*?-
\s*?\d{4})|\d{5})/o');
 if PRXMATCH(Addr_Pattern, address) then ➌
 do;
 Street = PRXPOSN(Addr_Pattern, 1, address);
 City = PRXPOSN(Addr_Pattern, 3, address);
 State = PRXPOSN(Addr_Pattern, 4, address);

56 Unstructured Data Analysis

 Zip = PRXPOSN(Addr_Pattern, 5, address);
 end;
drop Addr_Pattern address;
run;

proc print data=finalpii;
run;

❶ First, we create a series of replacement RegEx pattern identifiers using PRXPARSE. We maintain the
“change” naming convention to denote that each identifier represents a RegEx pattern for changing the
source.

❷ Here we apply specific RegEx_ID’s by using the CALL PRXCHANGE routine to clean each of the
variables in different ways.

➌ Finally, we parse the original address data field into its constituent parts: street, city, state, and zip. The
PRXPOSN function grabs each piece of the address by identifying the associated capture buffer.
Notice that we have to skip buffer location 2 because the second bracket set is used for logical
separation inside the first bracket set (which creates buffer location 1). Referencing buffer location 2
would provide only a subset of the street information that we need.

As we can see in Output 2.16, our resulting data set now has clean, standardized data in each field. Such
data makes future analysis and manipulation much easier and more accurate. This exercise should serve as
a nice warm-up for many other such applications.

Chapter 2: Using Regular Expressions in SAS 57

Output 2.16: Cleaned and Standardized PII Data Set

Homework

1. Include more standard abbreviations than the few we currently have (e.g., Parkway, Court, and so
on).

2. Standardize two-digit years in the date field.

3. Create a method of handling state abbreviations with decimals.

4. Use CALL PRXFREE to clean up the RegEx_IDs used in the code.

5. Enhance the data set with a Census tract lookup using the address fields.

6. Enhance the RegEx to handle multiple spaces between words, spaces before commas, and
punctuation in unexpected places.

2.4.2 Information Extraction
Parsing large volumes of text to generate structured data sets is a common, valuable use of RegEx
capabilities. For example, we might want to collect information from a technology blog or website that
contains valuable customer feedback about our product. Such information could not easily or cheaply be
gathered by hand for the sake of further analysis. Due to the wide variety of possible sources from which
we might need to extract information, as well as the wide array of end goals for the information, there are a

58 Unstructured Data Analysis

number of approaches to accomplishing this task. Given the proliferation of tag-based languages such as
HTML and XML, we need to be prepared to effectively extract information from them.

Now, due to the semi-structured nature of tag-based languages, they are certainly easier to process than one
might anticipate. All such languages have paired opening and closing tags for defining various pieces of
information. We can leverage this fact to properly dissect them and extract the information that we need.

With more sophisticated techniques at our disposal (like using the SAS macro facility), we could actually
“learn” the embedded data elements and extract the data associated with the discovered variables.
However, emphasis on these techniques is beyond the scope of this book. Therefore, we need to know the
various tags that we are looking for in the XML or HTML source in advance. We will use this approach to
process the XML file in our example.

Going back to the SEC administrative proceedings example from Chapter 1, let’s parse and extract the
information from the associated sample file.

Figure 2.1: SEC XML Sample3

The primary concern is to effectively extract information from within the known XML tags that contain
data, namely: url, release_number, release_date, and respondents. As you can see in the figure
above, there are some other XML tags in the document, but they aren’t relevant to the task at hand. For
instance, root and administrative_proceeding don’t contain data independent of the previously
mentioned tags. They merely serve administrative functions in the context of XML for properly organizing
the information for consumption by a system that reads XML directly.

data SECFilings;
infile 'F:\Unstructured Data
Analysis\Chapter_2_Example_Source\administrative_proceedings_2009.xml'
length=linelen lrecl=500 pad;
varlen=linelen-0;
input source_text $varying500. varlen; ❶

Chapter 2: Using Regular Expressions in SAS 59

format ReleaseNumber $20. ReleaseDate $20. Respondents $500. URL $500.;
start = 1;
stop = varlen;
Pattern_ID = PRXPARSE('/\<(\w+)\>(.+?)\<\/(\w+)\>/o'); ❷
CALL PRXNEXT(pattern_ID, start, stop, source_text, position, length); ➌
 DO WHILE (position > 0);
 tag = PRXPOSN(pattern_ID,1,source_text);
 if tag='url' then URL = PRXPOSN(pattern_ID,2,source_text);
 else if tag='release_number' then ReleaseNumber =
PRXPOSN(pattern_ID,2,source_text);
 else if tag='release_date' then ReleaseDate =
PRXPOSN(pattern_ID,2,source_text);
 else if tag='respondents' then do;
 Respondents = PRXPOSN(pattern_ID,2,source_text); ➍
 put releasenumber releasedate respondents url;
 output;
 end;
 retain URL ReleaseNumber ReleaseDate Respondents; ➎
 CALL PRXNEXT(pattern_ID, start, stop, source_text, position, length);
 end;
keep ReleaseNumber ReleaseDate Respondents URL;
run;
proc print data=secfilings;
run;

❶ We begin by bringing data in from our XML file source via the INFILE statement, using the length,
LRECL, and pad options. (See the SAS documentation for additional information about these options.)
Next, using the INPUT statement, the data at positions 1-varlen in the Program Data Vector (PDV) are
assigned to source_text. Because we set LRECL=500, we cannot capture more than 500 bytes at one
time, but we can capture less. For this reason, we use the format $varying500.

❷ Using the PRXPARSE function, we create a RegEx pattern identifier, Pattern_ID. This RegEx matches
on a pattern that starts with an opening XML tag, contains any number and variety of characters in the
middle, and ends with a closing XML tag.

➌ Just like our example in Section 2.3.4, we make an initial call the CALL PRXNEXT routine to set the
initial values of our outputs prior to the DO WHILE loop.

➍ Since we are trying to build a single record to contain all four data elements, we have to condition the
OUTPUT statement on the last one of these elements that occurs in the XML—which happens to be
respondents.

➎ The RETAIN statement must be used in order to keep all of the variable values between each
occurrence of the OUTPUT statement. Otherwise, the DO loop will dump their values between each
iteration.

60 Unstructured Data Analysis

Output 2.17: Sample of Extracted Data

As we can see in Output 2.17, the code effectively captured the four elements out of our XML source. This
approach is generalizable to many other hierarchical file types such as HTML and should be interesting to
explore.

Homework

1. Rearrange the ReleaseDate field to look like a different standard SAS date format.

2. Create a variable named Count that provides the number of Respondents on each row. This will be
both fun and tricky.

3. Enhance the current RegEx pattern to force a match of a closing tag with the same name. There
are two occurrences in the existing output where a formatting tag called SUB is embedded in the
Respondents field. Our existing code stops on the closing tag for SUB instead of on the closing tag
for respondents. The fix for this is not difficult, but requires more code than you might
anticipate.

2.4.3 Search and Replacement
The specific needs for search and replace functionality can vary greatly, but nowhere is this capability more
necessary than for PII redaction. Redacting PII is a frequent concern in the public sector, where information
sharing between government agencies or periodic public information release is often mandated. We revisit
the data from our cleansing and standardization example here since it includes the kinds of information that
we would likely want to redact. However, in an effort to make this more realistic, the example data set that
we used in Section 2.4.2 has been exported to a text file. We want to know how to perform this task on any

Chapter 2: Using Regular Expressions in SAS 61

data source, from the highly structured to the completely unstructured. We have already worked with
structured data sources for this technique, so exploring unstructured data sources is a natural next step.

Now, before we get into how to perform the redaction, it is worth showing how the TXT file was created.
Despite knowing how it is created in advance, we want to behave as though we have no knowledge of its
construction in order to ensure that we are creating reasonably robust code.

You can see in the code snippet below that we simply take the resulting data set from Section 2.4.2,
FinalPII, as input via the SET statement. Next, we use the FILE statement to create the TXT file reference.
Once the FILE statement is used, the following PUT statement automatically writes the identified variables
to it.

data _NULL_;
set finalpii;
file 'F:\Unstructured Data Analysis\Chapter_2_Example_Source\
FinallPII_Output.txt';
put surname firstname ssn dob phonenumber street city state zip;
run;

Output 2.18 shows the output provided by this code. As we can see, the structure is largely removed,
though not entirely gone. This allows us to more closely approximate what you might encounter in the real
world (which could be PII stored in a Microsoft Word file).

Output 2.18: PII Raw Text

Now that we have an unstructured data source to work with, we can create the code to redact all sensitive
data elements. The challenge of doing this effectively is that we can’t depend on the structure of
surrounding text to inform the redaction decisions of our code. For this reason, it is important that our code
takes great care to ensure that we properly detect the individual elements before redacting them.

Below is the code that performs our redaction of the PII elements SSN, DOB, PhoneNumber, Street, City,
and Zip. Now, many organizations are allowed to publish small amounts of information that individuals
authorize in advance, such as city or phone number. However, we’re focusing on how to redact all of them,
because keeping a select few is easy. In addition to performing the redaction steps, we also output the
redacted text to a new TXT file. Again, this is an effort to support a realistic use of these techniques. For
instance, many organizations keep donor or member information in text files that are updated by
administrative staff. There are valid reasons for sharing portions of that information either internally or

62 Unstructured Data Analysis

with select external entities, but doing so must be undertaken with great care. Thus, it is useful for such
files to be automatically scrubbed prior to being given a final review and then shared with others.

Note: While the following code is more realistic than what we developed earlier in the chapter, it still needs
to be improved for robust, real-world applications. The homework for this chapter has some suggestions,
but there is always room for additional refinement.

data _NULL_;
infile 'F:\Unstructured Data Analysis\Chapter_2_Example_Source\F
inallPII_Output.txt' length=linelen lrecl=500 pad;
varlen=linelen-0;
input source_text $varying500. varlen;
Redact_SSN = PRXPARSE('s/\d{3}\s*-\s*\d{2}\s*-\s*\d{4}/REDACTED/o'); ❶
Redact_Phone = PRXPARSE('s/(\d\s*-)?\s*\d{3}\s*-\s*\d{3}\s*-
\s*\d{4}/REDACTED/o');
Redact_DOB = PRXPARSE('s/\d{1,2}\s*\/\s*\d{1,2}\s*\/\s*\d{4}/REDACTED/o');
Redact_Addr =
PRXPARSE('s/\s+(\w+(\s\w+)*\s\w+)\s+(\w+\s*\w+)\s+(\w+)\s+((\d{5}\s*?-
\s*?\d{4})|\d{5})/ REDACTED, $4 REDACTED/o');
CALL PRXCHANGE(Redact_Addr,-1,source_text); ❷
CALL PRXCHANGE(Redact_SSN,-1,source_text);
CALL PRXCHANGE(Redact_Phone,-1,source_text);
CALL PRXCHANGE(Redact_DOB,-1,source_text);

file 'F:\Unstructured Data Analysis\Chapter_2_Example_Source\
RedactedPII_Output.txt';
put source_text; ➌
run;

❶ We create four different RegEx_ID’s associated with the different PII elements that we want to redact
from our source file—SSN, PhoneNumber, DOB, Street, City, and Zip.

❷ We use the CALL PRXCHANGE routine to apply the four different redaction patterns in sequence.
➌ Using the FILE statement, we create an output TXT file for writing our resulting text changes to. Since

we overwrote the original text using the CALL PRXCHANGE routine (i.e., changes were inserted
back into source_text), we need to output only the original variable, source_text, with the PUT
statement.

Chapter 2: Using Regular Expressions in SAS 63

Figure 2.2: Redacted PII Data

As we can see in the resulting file of redacted output (Figure 2.2), only the individual’s name and state are
left. The redacting clearly worked, but in this context the resulting information might not be the most
readable. How can we achieve the same goal while making the output easier to read? It’s simple. Instead of
inserting REDACTED, we can insert “” (i.e., nothing), which effectively deletes the text. Try it out and see
what happens.

Homework

1. Update the RegEx patterns to allow City to be shown (tricky with two-word names like New
York).

2. Incorporate the results of Section 2.4.1, Homework item 5 so that the Census tract can be
displayed.

3. Use the random PII generator in Appendix A to incorporate an entirely new field to then display
this output in.

4. Make this code more robust by incorporating zero-width metacharacter concepts such as word
boundaries (\b) to ensure that word edges are identified properly.

2.5 Summary
In this chapter, we have explored the PRX suite of functions and call routines available in SAS for
implementing RegEx patterns, and a few examples of practical uses for them. They collectively provide
tremendous capability, enabling advanced applications.

As we have seen throughout the chapter, PRX functions and call routines cannot replace well-written
RegEx patterns, despite providing incredible functionality. Attempting to leverage functions and call
routines with poorly written RegEx patterns is like trying to drive a sports car with no fuel.

Also, while the PRX functions and call routines represent flexible, powerful capabilities to be leveraged for
a wide variety of applications—basic and advanced—they often cannot stand alone. It is important to
leverage them in conjunction with other elements of SAS to develop robust code; a fact that we have

64 Unstructured Data Analysis

merely had a glimpse of in this chapter. For instance, some very advanced RegEx applications benefit from
the use of MACRO programming techniques (beyond the scope of this book).

I hope this helps you to get more comfortable with RegEx, and primed to apply these concepts to entity
extraction in Chapter 4. You have all the basic tools in place to make truly useful, robust SAS programs
that leverage regular expressions. However, as promised from the outset, we are going to really pull
everything together in the coming chapters to extract and manipulate entity references.

1 McCallister, Erika, Tim Grance, and Karen Scarfone, “Special Publication 800-122: Guide to Protecting
the Confidentiality of Personally Identifiable Information (PII),” National Institute of Standards and
Technology, April 2010, http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf.

2 SAS Institute Inc., “BASE SAS DATA Step: Perl Regular Expression Debug Support,” SAS Support,
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp.debug.html, (accessed August 29, 2018).

3 The source file was downloaded manually from the SEC website in XML format.
SEC, “SEC Administrative Proceedings for 2009,” U.S. Securities and Exchange Commission,
http://www.sec.gov/open/datasets/administrative_proceedings_2009.xml (accessed August 29, 2018).

Chapter 3: Entity Resolution Analytics
3.1 Introduction ..65
3.2 Defining Entity Resolution ...66
3.3 Methodology Overview ..67

3.3.1 Entity Extraction .. 67
3.3.2 Extract, Transform, and Load ... 67
3.3.3 Entity Resolution .. 68
3.3.4 Entity Network Mapping and Analysis ... 68
3.3.5 Entity Management.. 68

3.4 Business Level Decisions ..68
3.4.1 Establish Clear Goals .. 68
3.4.2 Verify Proper Data Inventory .. 69
3.4.3 Create SMART Objectives .. 69

3.4 Summary ...70

3.1 Introduction
Organizations in every domain need to properly manage information about individuals and assets being
tracked within their data infrastructure. These individuals and assets are generically referred to by analytics
professionals as “entities,” because the term can apply to people, places, or things.

Entity is defined as something that has a real existence.

An entity can truly be any real person, place, or thing that we want to track. Below are just a few examples.

● Customer

● Mobile phone

● Contract

● House listed by a realtor

● Fleet vehicle

● Bank Account

● Employee

The specific business need will determine what entities, and associated data elements, are being tracked by
an organization’s data infrastructure. The process of tracking those entities will be customized accordingly.
Regardless of an entity type, all data and information about an entity within databases, free text, or other
discoverable sources are known as “entity references.”

Entity reference: information or data about the real-world person, place, or thing being referred to.

For example, an entity reference could include a customer profile that appears as a single record in a
customer relationship management database, an online real-estate listing for a specific house, or a phone
number listed in a billing statement.

As we can see in the example below, an entity—in this case, SAS Institute Inc.—can have incomplete
reference information, making the task of connecting that reference to the entity quite challenging. This is

66 Unstructured Data Analysis

an important element of entity resolution, and one we will spend significant time on in the upcoming
chapters.

Figure 3.1: Entity Reference Example1

Organizations of all kinds struggle with tracking and analyzing entities in different ways, but the
underlying technology and analytical tools to overcome their challenges remain the same. Thus, the
discussion throughout this book will provide examples across several domains, while keeping the
methodology very general.

However, as we will see, there are important decisions to be made throughout this methodology that will
drive effective implementation of entity resolution for the particular business context. So, thoroughly
understanding the business context is incredibly important, and will ultimately shape the success or failure
of entity resolution in practice.

3.2 Defining Entity Resolution
When sifting through the various entity references within institutional data sources, we have to determine
which entities are being referred to, and do so in an effective manner. This requires that we apply a
rigorous, repeatable process to evaluate each entity reference against every other reference (i.e., pairwise
comparison) in our data sources. This rigorous process is called “entity resolution.”

Entity resolution is the act of determining whether or not two entity references in a data system are
referencing the same entity.

The concept is actually simple—we compare uniquely identifying attributes of both entity references (e.g.,
Social Security numbers (SSN)) to determine a match, and repeat this kind of comparison for every entity
reference identified in our data sources. However, the implementation is much more complex due to
changing business needs, data quality issues, and ever-changing entities—making matches less
straightforward. In other words, real-world implementation of entity resolution is difficult, and the
particular business application dramatically impacts the kinds of challenges we will need to overcome.

A robust method for entity resolution is critical for large-scale business operations improvement, and
enables a wide variety of applications—some examples of which are below:

Domain Application
Retail Social Media Ad Campaign Analysis and Planning
Finance Know Your Customer (KYC), Insider Trading
Government Insider Threat Detection
Insurance Fraud, Waste, and Abuse Prevention

I will revisit some of these and other examples over the coming chapters to demonstrate the variety of ways
high-quality entity resolution can impact an organization’s day-to-day operations.

Chapter 3: Entity Resolution Analytics 67

3.3 Methodology Overview
As we will see during the remainder of this book, the steps involved in applying Entity Resolution (ER)
have evolved in recent years to imply far more than just the simple act of resolving two entities. Real-world
applications of ER have precipitated the need for an analytical framework that contemplates the end-to-end
steps for acquiring data, cleansing it, resolving the entity references, analyzing it for the specific need, and
managing the resulting reference linkages. By establishing a robust framework, we are able to apply ER to
numerous subject domains, capable of solving a variety of problems. I and some other authors in the
industry refer to this framework as Entity Resolution Analytics (ERA).2

The phases that we will discuss for ERA have been sufficiently generalized to support the application of
this methodology to a wide variety of data and domain types. Applying the high-level phases described
below will have some underlying variation (and nuance not depicted here), depending on the specific
problem being solved; however, the major steps shown in Figure 3.2 will not change.

Figure 3.2: Overview of the ERA Flow

3.3.1 Entity Extraction
We begin with entity extraction in both the business and technical contexts as the initial set of tasks for any
ERA project. In the business sense, we must define what kinds of entities we want to extract and for what
purpose. And the technical elements of the project have to be developed, or put in place to support the
identified needs.

Example: A hedge fund manager is researching companies.
The manager wants to better understand companies currently in her portfolio, as well as a few she
is evaluating for inclusion in the fund. She likely has at her disposal software for financial
professionals that gives her access to incredible volumes of information about the companies of
interest, including news articles. This is possible only because that software has sophisticated
algorithms for extracting and resolving the entity references in those articles effectively. In so
doing, the fund manager is able to gain access to information that enables her to make well-
informed decisions.

3.3.2 Extract, Transform, and Load
Extract, Transform, and Load (ETL) are the classic processes for changing and moving data in Relational
Database Management Systems (RDBMS). ETL processes enable us to take data from its raw form and
migrate it through database systems in a repeatable way to ensure a dependable, predictable approach to
moving and shaping data for our end use. In addition to pulling structured sources for an ERA project, ETL
will be performed on the staging tables of entity references generated by the entity extraction phase.

As with every phase of the ERA framework, this is technology function driven by business needs and best
practices. Robust business processes will ensure the proper application of ETL technology functions to
ensure the level of quality and consistency that we need for each and every project being executed.

Entity Extraction ETL Entity
Resolution

Entity
Network

Mapping and
Analysis

Entity
Management

68 Unstructured Data Analysis

3.3.3 Entity Resolution
The next step in our process is entity resolution. This step is immediately following ETL since all the data
should now be prepared and staged in the appropriate form to actually begin the process of evaluating each
entity against each other entity identified during the extraction phase.

3.3.4 Entity Network Mapping and Analysis
After ER has been completed, we have to then make decisions about what resulting linkages are kept and
which are thrown out, as well as what we can do with the results. I’m calling this process “entity network
mapping and analysis” since the links that we have we are effectively mapping out the network of entities
we will want to analyze. As will be discussed in the upcoming chapters, we have a lot of flexibility in
determining thresholds for network linkages to be retained. This process is driven by business decisions
made at the outset of the project. The variety of analysis that could be performed here is quite broad;
however, I will execute some common analytical approaches that are achievable in the scope of this book.

Example: A bank is attempting to identify fraud.
Each individual in the bank’s data stores will be analyzed for risk of fraud based on historical
patterns of behavior. However, because of all the work performed prior to this phase, each
individual’s risk profile can be enhanced based on their relationship to known bad actors, or other
high-risk individuals. This enables us to develop a more complete understanding of each
individual’s fraud risk.

3.3.5 Entity Management
For long-term monitoring of the entities tracked in your data stores, it is important to have a gold standard
or baseline understanding of said entities. So, after an initial set of verified entity references has been
developed, it then becomes the baseline against which we compare new entity references. As genuinely
new entities are identified through these new references, we add them to our gold standard database.
Redundant references are ignored, while references that augment our understanding of existing entities will
be used to edit the database.

3.4 Business Level Decisions
Every company or agency has a different set of procedures, and those must be followed. But the key
decisions that need to be made for an ERA project fit neatly into any existing management framework. So,
let’s go through key elements that you need to nail down before jumping into the technical elements of how
ERA is executed.

3.4.1 Establish Clear Goals
Determine the ultimate goal for an ERA project. What business goal(s) are you trying to achieve? If you
are a manager of such a project, you must be able to identify the goal(s). If you are the person
implementing the technical aspects of an ERA project, you still must elicit this information from your
management chain. Documentation of the goal(s) ensures there is a record of common understanding.
Without a commonly agreed upon goal(s), projects easily lose focus and success criteria are rarely
achieved. Perceived “failure” of these efforts generally stems from a fundamental mismatch in
understanding of what is feasible in the period of time allotted for the project.

Chapter 3: Entity Resolution Analytics 69

3.4.2 Verify Proper Data Inventory
Identify all the data sources available for the project, and determine whether the high-level goals are even
realistic prior to starting into any project. Once the feasibility is well-known, the specific elements from
which entities will be extracted, and the quality of those sources, will need to be determined. Entity
references being pulled from structured data will also be documented, but execution of that plan will occur
during the ETL phase of the ERA framework. This is a critical item that can’t be emphasized enough, and
goes back to goals and expectation management. In many cases, you have structured elements that you are
trying to enrich with unstructured sources. However, if you don’t have some key pieces of structure data to
leverage for combining with the unstructured references, the goals that you have established may never be
realized.

3.4.3 Create SMART Objectives
SMART objectives are aligned to the overall goal of this project—and they are Specific, Measurable,
Achievable, Relevant, and Time-bound. This is a direct result of the reasons that were already stated for
project failure. We need to ensure that project goals are rationalized via project objectives that can be
achieved in a time and performance window acceptable to the project sponsor. This is a critical step for any
technical project like ERA as it is the nexus for project management and technical staff to thoroughly set
expectations, and examine trade-offs jointly. Here are some notional examples of the things being defined
for each of these elements.

Specific: Capture company names in news source X.
Measurable: Use sample data set x to train capability and holdout set y for testing.
Achievable: Attempt accuracy equal to known/advertised baseline (e.g., 75%).
Relevant: The data source is the business section of a financial newspaper.
Time-bound: Complete project development within 90 days.

The particular business problem at hand may make some of these decisions quite obvious, but it is
important to be very intentional, documenting every decision as you go through a project. You will want to
refer back to that documentation weeks, months, or perhaps years later to understand why something is set
up the way it is—or what decisions led to a particular development path for a solution. Hindsight is always
perfect, making it is easy to ignore for factors that may seem less important years later while they were
critical during project execution.

Note: An added benefit of this documentation is the opportunity to learn from past project failures and
successes.

There is much more that could be said regarding project management best practices, but I don’t want to go
too deeply into that topic in this book. The above list is certainly not complete, but contains reminders that
can’t be emphasized enough, regardless of the management methodology that you are implementing (e.g.,
Agile).

70 Unstructured Data Analysis

3.4 Summary
Whether you are a practitioner of analytics, or a manager of analytics teams, I hope you find this
information helpful in getting started down the road of effectively executing ERA projects with SAS. As I
said before, we will explore the foundational aspects of ERA, with pointers about how you can expand your
knowledge and capabilities to execute much larger scale projects of this type—we have to start somewhere.
Now, let’s have some fun!

1 Groenfeldt, Tom, “Toyota Finance Uses Advanced Analytics to Improve Sales and Profits,” Forbes, April
13, 2007, https://www.forbes.com/sites/tomgroenfeldt/2017/04/13/toyota-finance-uses-advanced-
analytics-to-improve-sales-and-profits/#78d9bc655cb7 (accessed August 29, 2018).

2 Talburt, John R., Entity Resolution and Information Quality (Burlington, MA: Morgan Kaufmann, 2010).

Chapter 4: Entity Extraction
4.1 Introduction ..71
4.2 Business Context ..72
4.3 Scraping Text Data ..73

4.3.1 Webpage... 73
4.3.2 File System ... 74

4.4 Basic Entity Extraction Patterns ..76
4.4.1 Social Security Number ... 78
4.4.2 Phone Number ... 78
4.4.3 Address .. 78
4.4.4 Website ... 80
4.4.5 Corporation Name ... 80

4.5 Putting Them Together ...82
4.6 Summary ...83

4.1 Introduction

Figure 4.1: ERA Flow with Entity Extraction Focus

In order to identify the free text entity references we want to utilize for all subsequent resolution and
analysis activities, we have to first determine the types of entities we want to understand more about, and in
what data sources their references reside. This initial step in the ERA framework is known as “entity
extraction.”

Entity extraction: the algorithmic identification of entity references in source data.

From a purely technical perspective, this phase of work is primarily applicable to unstructured and semi-
structured data sources. However, from a business perspective, this initial phase of ERA is applicable to all
data sources—a larger scope than what is implied by our definition.

As we shall discuss further, the underlying technical steps are quite different depending on the type of data
(structured vs. unstructured), but the business-level decisions made at the beginning of this phase will
inform each branch of work to follow. The decisions made will flow into the entity extraction efforts being
undertaken during this phase for the unstructured and semi-structured data, as well as the ETL work taking
place in the next phase for any structured entity reference sources.

The extraction of entity references from unstructured text is accomplished through something called text
parsing, where text is algorithmically analyzed using previously determined rules. The process of
developing these rules can be quite difficult and time-consuming, depending on the domain and approach.
Due to the complexity of some rules, this effort may become a disproportionately large percentage of the
total ERA effort—which is why private companies like SAS have developed sophisticated software to
make this process easier, more accurate, and faster. It is also why context is incredibly important. As the

Entity Extraction ETL Entity
Resolution

Entity Network
Mapping and

Analysis

Entity
Management

72 Unstructured Data Analysis

context for an entity reference becomes more broad, the possibilities for what is “normal” in that source
text becomes increasingly more difficult to assess or anticipate. As the source data context becomes more
broadly defined, more sophisticated rules must be created in order to account for a greater number of
possibilities. For example, medical reports will have a more narrow set of possible configurations of data
elements and meanings, compared to a news article.

Regardless of the sources used for collecting data, the extracted entities will need to be placed into
temporary data tables (staging tables) in preparation for the next step in our process.

“But, what if my project doesn’t have unstructured data elements?” you ask. Well, I would be both
surprised and happy for you. And if you are as lucky as to deal only with structured sources, I would say
you should still go through the business level decisions portion of this chapter to properly document the
business goals and assumptions for the work being performed. Those decisions will need to be referenced
later to help both technical and managerial staff stay on course as the project progresses.

Note: Context is incredibly important, and we are not going to “boil the ocean” for any project. Only the
data sources necessary to achieving our goals will be selected for text parsing.

And before we go any further, I think it is important to note that we are not going to build something of
science fiction movie fame. It is not realistic to dream of building some kind of omniscient machine that
will perfectly and neatly extract every single kind of entity reference everywhere, and clean it for feeding
our version of HAL 9000. Every ERA project will have a business or mission-specific goal, and to go
beyond the scope of said goal will be counterproductive.

4.2 Business Context
Before we jump into the technical details of extracting entity references, I want to review some project
execution concepts. Assuming that the data inventory has been completed (see Section 3.4.2), we already
have an understanding of what is feasible with the available data sources. So, this provides the high-level
context that we need to make the necessary decisions about the technical approach.

When extracting entity references from text, we have to be careful to track the origination of each reference
for later use. Depending on the data source structure and context, as well as the nature of our subsequent
analyses, we may need to retain very detailed indexing of each reference. For example, we may have word
documents with dense information broken into paragraphs, and we want to later understand if two entities
are related based purely on their “closeness” within the source text. There are many ways to identify entity
relationships: this is merely one simple approach. Knowing that they are not only in the same document,
but also in the same paragraph or sentence can greatly improve our assessment that they are related in some
way. So, we would need to account for that in our indexing method when extracting the entity references.

Chapter 4: Entity Extraction 73

There are more advanced techniques that get into natural language processing, but this is one basic way for
identifying relationships without characterizing them.

As you can imagine, we have to think about those possible future analyses now, and establish the necessary
indexing scheme for entity reference extraction upfront. Otherwise, we will have a lot of refactoring to
perform much later in the project, which wastes precious time and money. So, just remember the sound
management mindset of plan now or pay later.

In order to get us going on the right path, I’m going to focus on developing the building blocks of entity
reference extraction that will enable you to put together relatively sophisticated extraction rules.

4.3 Scraping Text Data
There are many different potential sources of data for an ERA project, and I can’t hope to cover them all
(or even most of them) here. So, I want to give you the programmatic tools to grab realistic text data in a
practical way. And it is to that end that I will show you a couple ways to scrape text data sources for entity
extraction below.

But wait, this sounds like ETL! Well, it is technically in the realm of the data “Extraction” portion of ETL,
but keep in mind that we are attempting to organize around a methodical business process for executing this
kind of work—Entity Resolution Analytics or ERA. So, in order to do the entity extraction that we are
covering in this chapter, we have to grab the raw source text first. I will get into the details of what is done
with the results during our next chapter, when I walk you through the ETL processes, and ways to prepare
the extracted entities for combination with structured data sources and analyses.

4.3.1 Webpage
It is often the case that we want to leverage publicly available, unstructured, or text data sources for
analysis. So, I’m going to show you one way to easily grab data off of a website using PROC HTTP.

PROC HTTP is just one of several methods for acquiring data outside of the local file system or database.
And it is an easy method for integration into Base SAS code, like we have used thus far. I will not go
through all the different powerful options available in PROC HTTP, but just what we need for the
subsequent examples. Please refer to the documentation for more details on all the additional ways to use
PROC HTTP.1

In the below code, I start with a null DATA step to create a macro variable named FileRef that contains a
dynamic file reference. Whenever we are extracting from text sources, it is a best practice to ensure the date
of extraction is maintained. I have chosen to do this by embedding the extraction date in the file name that I
created for the resulting file. Next, the FILENAME statement uses this macro variable to establish the file
reference, Source. And finally, I use Source in PROC HTTP as the output file, using OUT=. Note the
URL= statement identifies a link to the BBC News feed (The BBC allows all forms of reuse of their
content so long as they are properly referenced.).

/*NULL DATA STEP to generate the macro variable with a dynamic file name.*/
data _NULL_;
call
symput('FileRef',"'C:\Users\mawind\Documents\SASBook\Examples\CorpNews"||put(Date
(),date9.)||".txt'");
run;

74 Unstructured Data Analysis

filename source &fileref;

/*Execution of PROC HTTP to extract from a web URL, and write to the file
designated above.*/
proc http
 url="http://feeds.bbci.co.uk/news/technology/rss.xml"
 out=source;
run;

After the above code runs, you will get a raw text file containing all of the XML content from the source
(Figure 4.2 below).

Figure 4.2: Sample of TXT from BBC News RSS Feed

Depending on how the host (BBC News, in this case) decides to maintain that information, your refresh and
indexing of it will vary. Luckily, in our example, we can use the <pubdate> tag embedded in the XML to
help us track when each headline was published.

Note: You are not constrained to XML when using PROC HTTP. It is merely how a source that I’m
allowed to reprint stores data. So, feel free to experiment with pages that don’t use XML.

But much of the data contained within webpage XML files is unstructured text (some call this “semi-
structured” data). Therefore, you want to be prepared for how to approach entirely unstructured text data—
a much more voluminous portion of potential sources. Since we went through examples of processing tag
languages in Chapter 1, I’m not going to repeat that here. I will instead focus on patterns for capturing
entities in the free text portion of our raw source.

4.3.2 File System
Now, we often have significant unstructured or textual data sources available on a file system, which we
also want to leverage for entity extraction, resolution, and analysis. In order to help you do this without any
additional software (i.e., just Base SAS), I have written the below code using only Base SAS functions and
features, in addition to examining only TXT files.

Note: This code neatly picks up where the PROC HTTP code left off. So, it is easy to imagine how that can
be incorporated for a larger macro to grab large amounts of data from web sources.

Chapter 4: Entity Extraction 75

I begin in the below code by creating a macro variable identifying the directory I want to search. Next, the
DATA step creates a data set named Files that contains the variables Filename, File_no_ext, and Full_path
as the final output. Within the DATA step, I use a series of directory functions in SAS to determine the
number of files in the directory and their names. While most of the functions and statements in the below
code are likely familiar, I have used callouts to highlight sections of some less commonly used elements.

%let dir=C:\Users\mawind\Documents\SASBook\Examples\;

data files (keep=filename file_no_ext full_path label="All Text Sources");
 length filename file_no_ext full_path $1000;
 rc=filename("dir","&dir");
 did=dopen("dir"); ❶
 if did ne 0 then do;
 do i=1 to dnum(did); ❷
 filename=dread(did,i);
 file_no_ext=scan(filename,1,"."); ➌
 full_path=Cat(&dir,filename);
 if lowcase(scan(filename, -1, "."))="txt" then output;
 end;
 end;
 else do;
 put "ERROR: Failed to open the directory &dir";
 stop;
 end;
run;

proc sort data=files;
 by full_path;
run;

proc print data=files;
run;

❶ The DOPEN function takes the directory as an input. It then opens that directory, and creates an ID
number greater than zero to identify it later.

❷ DNUM is used to determine the number of members there are in the supplied directory ID number. In
this case, our directory ID is “did.”

➌ Inside the =DO loop, I use DREAD to extract the member filename into the variable Filename.

After the code runs, you should now have a data set named Files with the three variables, Filename,
File_no_ext, and Full_path. The output from my example folder is shown in Output 4.1.

Output 4.1: PROC PRINT Output of WORK.FILES

Now, we have some more advanced steps to perform in order to complete the process of extracting the text,
but bear with me; it’s worth the extra effort. This next chunk of code takes the file names seen in our data
set output above, and builds macro variables with them. This sets up the flexibility that we need to process
folders with any unknown number of files.

76 Unstructured Data Analysis

In the below code, I create macro variables for the file names and paths, which are delineated by spaces.
Again, most of this code is straightforward, but see the highlights listed below.

data _NULL_;
set files end=last;
length myfilepaths $500. myfiles $50.;
if _N_=1 then do;
myfilepaths="'"||strip(full_path)||"'"; ❶
myfiles="'"||strip(file_no_ext)||"'";
end;
else do;
myfilepaths="'"||strip(full_path)||"'"||' '||strip(myfilepaths);
myfiles="'"||strip(file_no_ext)||"'"||' '||strip(myfiles);
end;
if last then do;
 call symputx('filelist',myfilepaths); ❷
 call symputx('filenames',myfiles);
 call symputx('filecount',_N_);
end;
put myfilepaths myfiles;
retain myfilepaths myfiles;
run;

❶ The IF and ELSE statements combine to create string variables containing full path names and just file
names. Notice the double quotation marks surround the single quotation marks on either side of each
instance of a full path name. That is done to provide the INFILE statement fully delineated path names
in our next chunk of code, which does the actual processing.

❷ The CALL SYMPUTX statements here create the final macro variables used in the next chunk of code
for actually ingesting and parsing the data.

In order to provide a neat completion to this process, I want to include patterns for processing the data
identified in the files. So, I will do that in the next section before bringing all the pieces together in Section
4.5. It is there that I will show you how we finally bring the web and local file data sources in our file
system together with a custom text parsing macro.

4.4 Basic Entity Extraction Patterns
Now, I will begin putting together extraction patterns for specific types of entity references. This will create
a foundation upon which you can build increasingly sophisticated extraction routines. Some of the elements
discussed below will look quite familiar from Chapter 2, but it is worth reviewing them with this new aim
in mind.

Caution: This is not meant to be a prescriptive listing. Your source data could override the precise patterns
developed herein, but these should give you a starting point for future work. Remember, context is critical.

For Sections 4.4.1–4.4.3 below, I will be revisiting the PII data from Chapter 2 (see Figure 4.3 as a
reminder), demonstrating methods for parsing and tracking those references. And I will use data scraped in
Section 4.3 for our examples in Sections 4.4.4 and 4.4.5 below.

As a reminder, below is a file of our PII output from the random PII generator code (see Appendix A).
Although this data is obviously artificial due to privacy concerns of publishing real PII data, I hope you can

Chapter 4: Entity Extraction 77

see the connection between these artificial examples and the real-world implementation of parsing such
data.

Figure 4.3: Source File of Example PII Data

I ran the below code to parse the PII text for Sections 4.4.1–4.4.3. The code should be familiar at this point.
I am merely taking the information matched by the pattern inside of the source PII text file, and printing
that information to the log. As you can see below, I go through the results for each pattern separately in the
sections below.

data _NULL_;
infile 'C:\Users\mawind\Documents\SASBook\Examples\PII_Text.txt' length=linelen
lrecl=500 pad;
varlen=linelen-0;
input source_text $varying500. varlen;

/*SSN Pattern*/
Pattern_ID = PRXPARSE("/\b\d{3}\s-\s*\d{2}\s*-\s*\d{4}\b/o");

/*Phone Pattern*/
Pattern_ID = PRXPARSE("/(\+?\d\s*(-|\.|\())?\s*?\d{3}\s*(-|\.|\))\s*\d{3}\s*(-
|\.)\s*\d{4}/o");

/*Address Pattern*/
*Pattern_ID =
PRXPARSE("/\s+(\w+(\s\w+)*\s\w+),?\s+(\w+\s*\w+),?\s+(\w+),?\s+((\d{5}\s*-
\s*\d{4})|\d{5})/o");

CALL PRXSUBSTR(Pattern_ID, source_text, position, length);
if position ^= 0 then
 do;
 match=substr(source_text, position, length);
 put match:$QUOTE. "found in" source_text:$QUOTE.;
 put;
 end;

run;

78 Unstructured Data Analysis

4.4.1 Social Security Number
Social Security numbers are one of the easiest items to parse from free text as their standard appearance
tends to be quite structured. They certainly could appear differently than described below, but that could be
known only by taking sample data.

The pattern below requires that 3 digits are followed by a hyphen, then 2 digits and another hyphen, and 4
digits; each element can have white space between it and the next, but nothing else. And the entire pattern
has to be bookended by anything that is not a digit character. This ensures we do not obtain errant matches
in complex text.

SSN Pattern: "/\b\d{3}\s*-\s*\d{2}\s*-\s*\d{4}\b/o"

Output 4.2: Sample Log Output for SSN Pattern

4.4.2 Phone Number
Phone numbers are also relatively straightforward to extract from text data sources. The pattern discussed
below accounts for a wide variety of US and international formats for telephone numbers.

This instantiation of the phone number capture pattern ensures that we capture 10-digit telephone numbers
with optional international codes, and a variety of number delimiters (e.g., dashes are common in the US,
while periods are common in Europe).

Phone Pattern: "/(\+?\d\s*(-|\.|\())?\s*?\d{3}\s*(-|\.|\))\s*\d{3}\s*(-|\.)\s*\d{4}/o"

Output 4.3: Sample Log Output for Phone Number Pattern

4.4.3 Address
Accounting for international formats here is much more difficult to do for addresses than for phone
numbers (above). However, the below pattern addresses a variety of US addresses. You will need to adapt
this to grab some address types such as those including PO boxes, or in very different sources. As always,
test this on your source data. If we vary the source data just a bit, this pattern would break; so, sample your
source data, and analyze the results carefully before implementing.

Chapter 4: Entity Extraction 79

Also, each country’s postal system has nuances that need to be accounted for with patterns specific to that
country. So, it is important to remember this if you are parsing data from multiple countries.

Address Pattern: "/\s+(\w+(\s\w+)*\s\w+),?\s+(\w+\s*\w+),?\s+(\w+),?\s+((\d{5}\s*-\s*\d{4})|\d{5})/o"

Output 4.4: Sample Log Output for Address Pattern

The discussion in Sections 4.4.1–4.4.3 was a fun refresher on simple patterns, and how to apply them.
Now, I will get back to the more challenging examples derived from the web data scraped back in Section
4.3.1. I have a chunk of code below that parses the RSS feed data for website names and corporation
names.

Now, pay close attention to the corporation names pattern. This will be a tricky one to get clean, as we will
explore in Section 4.4.5 below.

data RSSFeed_Data;
infile source length=linelen lrecl=500 pad;
varlen=linelen-0;
input source_text $varying500. varlen;

Corp_Pattern = "/(\b[A-Z]\w+\s[A-Z]\w+(\s[A-
Z]\w+)*\b)|(\w+\s+(\ucorp\b|\uinc\b|\uco\b))/o";
Website_Pattern = "/\b\w+\.(com|org|edu|gov)\b/o";

ExtractDate = put(Date(),date9.);

pattern_ID = PRXPARSE(Corp_Pattern);
start = 1;
stop = length(source_text);
CALL PRXNEXT(pattern_ID, start, stop, source_text, position, length);
 do while (position > 0);
 line=_N_;
 found = substr(source_text, position, length);
 put "Line:" _N_ found= position= length= ;
 output;
 CALL PRXNEXT(pattern_ID, start, stop, source_text, position, length);
 retain source_text start stop position length found;
 end;

keep ExtractDate line position length found;
run;
proc print data=Rssfeed_data;
run;

80 Unstructured Data Analysis

4.4.4 Website
Entire web addresses can get quite complicated, but we are generally interested in the root website rather
than the entire address listed in our text source. There are clearly specific cases that run counter to this
notion, such as mapping webpage hops by dissecting weblogs, but I will stick to the more general case here
of website identification. Websites of many types are attributable to an entity of interest, such as a company
or government agency, which is our aim in the general case. As you can see, we have many references to
the BBC’s website due to all the embedded links in the source page. This is something I will discuss
cleaning up later.

Website Pattern: "/\b\w+\.(com|co|org|edu|gov|net)\b/o"

Output 4.5: Sample Website Pattern Results

4.4.5 Corporation Name
Capturing proper names of any kind is difficult to do, even when employing very sophisticated natural
language algorithms. Doing so effectively without that background knowledge is honestly not worth doing
unless you have an incredibly narrow, simplistic context and data source. However, performing the
extraction of corporate entity references is much more feasible, especially if we leverage hot lists of
corporation names (with variations).

Hot list: A list of words already known, which we want to extract.

So, that is the only form of proper names that we will discuss extracting here. You will see many cases
where even corporation names are misidentified by the relatively simple baseline pattern I am using here;
however, there is plenty of opportunity for improvement based on the specific context for application.

Chapter 4: Entity Extraction 81

Corporation pattern: "/(\b[A-Z]\w+\s[A-Z]\w+(\s[A-
Z]\w+)*\b)|(\b(\w+\s+)*\w+\s+\ucorp(oration)?\b|\uinc\.?\b|\uco\.?\b|LLC\b|Company\b)/o"

This initial pattern matches under one of two circumstances; either a series of two or more words, each
beginning with a capital letter, or a series of words followed by an abbreviation or word denoting a
company (e.g., LLC, Co., or Inc.).

Output 4.6: Sample Initial Corp Pattern Results

It appears that my pattern creates too many matches to other entity types (and unusual phrases due to
unexpected capitalization). What could be done to fix this? Well, I can make an initial attempt to fix it by
simply restricting the pattern to include only explicit corporation identifiers in the name. For example:
XYZ Inc., ABC Corp, and MyCo LLC are fictional company names with some of the corporate identifiers
in the name.

Using the below pattern, you can see from my results in Output 4.7 that I’m missing a lot of potentially
useful information. So, what am I supposed to do? It depends. As I continue to say, your context and
business goals play a critical role in deciding how much time and effort you want to commit to finding the
middle ground between these two extremes. For example, how important would it be for you to capture
references to companies of interest that exclude the full company name (e.g., SAS instead of SAS Institute
Inc.)? That outcome is in the middle ground, and it is very difficult without a hot list of company names
and nicknames.

Updated corporation pattern:
"/(\b(\w+\s+)*\w+\s+\ucorp(oration)?\b|\uinc\.?\b|\uco\.?\b|LLC\b|Company\b)/o"

Output 4.7: Sample Initial Corp Pattern Results

82 Unstructured Data Analysis

4.5 Putting Them Together
Now that we have discussed the details of scraping text data, best practices for parsing it, and basic patterns
to extract entity references, it’s time to put it all together. I have constructed the code below to take the data
now available on the file system, regardless of its origins, and process it for patterns of interest to us. I ran
the code below using the Corp_Pattern variable in order to grab corporation entity references from our
folder of text files. Knowing what is in the source folder, I’m curious how well this will perform, given the
diversity of sample files.

The below macro picks up where I left off earlier, by expecting the results of that code to be present at run
time. In order to make my code dynamically respond to the number of files, their location, and their names,
I chose to build a macro to loop through each of the identified files and process them individually. The
results of each loop though are printed using PROC PRINT.

This macro definition is relatively dense; so, I’m going to walk you through it in sufficient detail via the
numbered items below.

Note: I have no intentions of making this an entire book on macro programming, but also don’t anticipate
you have a solid background in it. So, I will describe some elements without a lot of detail, but sufficient
references for you to review on your own.

%macro parsing;
%do i=1 %to &filecount; ❶
data parsing_result_&i;
infile %scan(&filelist,&i,%STR()) length=linelen lrecl=500 pad;
varlen=linelen-0; ❷
input source_text $varying500. varlen;
length sourcetable $50;
sourcetable=%scan(&filenames,&i,%STR()); ➌

Corp_Pattern = "/(\b[A-Z]\w+\s[A-Z]\w+(\s[A-
Z]\w+)*\b)|(\b(\w+\s+)*\w+\s+\ucorp(oration)?\b|\uinc\.?\b|\uco\.?\b|LLC\b|Compan
y\b)/o";
Website_Pattern = "/\b\w+\.(com|co|org|edu|gov|net)\b/o";
SSN_Pattern = "/\b\d{3}\s*-\s*\d{2}\s*-\s*\d{4}\b/o";
Phone_Pattern = "/(\+?\d\s*(-|\.|\())?\s*?\d{3}\s*(-|\.|\))\s*\d{3}\s*(-
|\.)\s*\d{4}/o";
DOB_Pattern = "/\d{1,2}\s*\/\s*\d{1,2}\s*\/\s*\d{4}/o";
Addr_Pattern = "/\s+(\w+(\s\w+)*\s\w+),?\s+(\w+\s*\w+),?\s+(\w+),?\s+((\d{5}\s*-
\s*\d{4})|\d{5})/o";

pattern_ID = PRXPARSE(Corp_Pattern);
start = 1;
stop = length(source_text);
CALL PRXNEXT(pattern_ID, start, stop, source_text, position, length);
 do while (position > 0);
 line=_N_;
 found = substr(source_text, position, length);
 put "Line:" _N_ found= position= length= ;
 output;
 CALL PRXNEXT(pattern_ID, start, stop, source_text, position, length);
 retain source_text start stop position length found;
 end;

keep sourcetable line position length found;

Chapter 4: Entity Extraction 83

run;

proc print data=parsing_result_&i; ➍
run;
%end;

%mend parsing; ➎
%parsing;

❶ I open the macro definition for the macro named Parsing using the %MACRO statement. I then begin
the macro DO loop that loops for the number of files identified in the prior step, and written to the
macro variable Filecount. Next, I establish a data set name that is indexed against the file number.

❷ The INFILE statement uses the %SCAN function to parse the macro variable Filelist to insert the fully
delineated file name for proper submission to SAS.

➌ The variable Sourcetable is created by using the %SCAN function again to parse the macro variable
Filenames in order to get just the file being processed. I did this in order to track the source file inside
of the data set. This will become important later when trying to identify source references.

➍ The PROC PRINT is referencing the indexed data sets generated above in order to print out the results.
It is needed at this stage only to test whether the code is working correctly.

➎ And finally, the macro definition ends using the %MEND statement. And I immediately call the macro
using %PARSING, the name assigned at the opening %MACRO statement.

4.6 Summary
I went through the entire process of entity extraction in this chapter—planning the strategy based on
business needs, establishing methods for scraping a variety of text sources, creating baseline extraction
patterns, and finally putting it all together using macros with notions of large-scale automation. I hope it
has given you a solid understanding of how to get started with entity extraction for your next project. The
code provided should act as a framework, while the patterns relevant to your application can be filled in to
meet your specific needs.

As you can see, we have a tremendous amount of flexibility in how we execute this phase of work; so, it is
important to continue referring back to the project goals and constraints to guide you. You also have to
think about the technical needs of the future steps to ensure you have all the information necessary to
achieve the business goals.

In the next chapter, I will explore the powerful ETL capabilities of the SAS language. What we have
generated so far would qualify as “staging tables” with entity references from sources. The next chapter
will give you the tools to clean up your structure data sources (yet to be discussed here), as well as the
staging tables I just discussed.

1SAS Institute Inc. “HTTP Procedure,” Base SAS® Procedures Guide, Seventh Edition,
http://documentation.sas.com/?docsetId=proc&docsetTarget=n0bdg5vmrpyi7jn1pbgbje2atoov.htm&docs
etVersion=9.4&locale=en (accessed August 29, 2018).

84 Unstructured Data Analysis

Chapter 5: Extract, Transform, Load
5.1 Introduction ..85
5.2 Examining Data ...85

5.2.1 PROC CONTENTS ... 86
5.2.2 PROC FREQ ... 87
5.2.3 PROC MEANS .. 88

5.3 Encoding Translation ..89
5.4 Conversion ..92

5.4.1 Hexadecimal to Decimal ... 92
5.4.2 Working with Dates ... 92

5.5 Standardization ...94
5.6 Binning ..95

5.6.1 Quantile Binning .. 95
5.6.2 Bucket Binning ... 97

5.7 Summary ...98

5.1 Introduction
Extract, Transform, and Load (ETL) is the process by which all source data is manipulated for downstream
use in storage and analysis systems. The source can be raw data streams, flat files, staging tables, or
production database tables. This stage of work is critical to ensuring that clean, useable data is entering the
analytical phase of our process. I have attempted to break out the key elements of sound ETL processing to
make clear the various things that you might need to actually do on the source data. Keep in mind that this
is not an exhaustive list, but instead a list of techniques over and above your basic DATA step processing
techniques to support ERA.

Figure 5.1: ERA Flow with ETL Focus

There are a number of standard techniques to be applied to your data at this stage in order to prepare it for
analysis. However, as a best practice, you need to understand a bit about the data sources before applying
any ETL techniques to them.

5.2 Examining Data
“Examining” is not an official ETL task, but just a smart thing to do before starting any ETL activities. You
should always know what is actually present in your data sources of choice rather than acting on the
information provided by a data dictionary or subject matter expert—although those sources are incredibly
helpful guides.

Therefore, I am going to walk through a few procedures that will assist you in doing just that. The first will
be PROC CONTENTS, which allows you to get metadata on libraries and data sets. This information can

Entity Extraction ETL Entity
Resolution

Entity Network
Mapping and

Analysis

Entity
Management

86 Unstructured Data Analysis

prove invaluable when making decisions about how to handle them. The second is PROC FREQ, which
ensures you can examine (among other things) the values contained within data sets or columns.

5.2.1 PROC CONTENTS
The CONTENTS procedure is the best means of establishing your basic understanding of a data set that is
already registered in SAS metadata—either because it is a SAS data set or registered in the metadata server
via a SAS/ACCESS engine. I will not explore all of the options with PROC CONTENTS here, just what
we need in order to read the basic metadata information that enables sound decision-making.

I’m using the CARS data set from the SASHELP library in my example below. The code below is a simple
implementation of PROC CONTENTS, using the default settings.

proc contents data=sashelp.cars;
run;

As you can see in Output 5.1 below, I get some useful metadata to include the encoding scheme by just
using the default setting the above code. It also shows the engine used for processing, which is V9 in my
case. However, if you are running on SAS Viya, the engine listed will be “CAS” for the CAS engine that
underpins SAS Viya.

Output 5.1: PROC CONTENTS Metadata Output

Important things to note in the metadata shown in Output 5.1 above include the number of observations,
variables, and indexes. These pieces of information allow you to know right away if a data set contains the
number of these things that you expected. Also, the created and modified dates listed help you to know the
age of your data, which is especially important if you don’t have date variables in the data set.

In Output 5.2 below, you can see that PROC CONTENTS is providing information about the individual
variables as well, including Type, Length, Format, and Label. Such information is critical when making
decisions about what ETL steps need to be taken on a data set.

Chapter 5: Extract, Transform, Load 87

Output 5.2: Column Metadata

5.2.2 PROC FREQ
Once you have the basic facts about a data set, you can then use the FREQ procedure to get a deeper
understanding of the data columns in your source. You have to be careful here as the FREQ procedure will,
by default, provide frequency information for numeric variables as well. Continuing with the
SASHELP.CARS example in the code below, you can see the preferred use of PROC FREQ with Output
5.3, categorical variables.

Proc freq data=sashelp.cars;
run;

Output 5.3: Sample of the CARS Categorical Variables

88 Unstructured Data Analysis

Below, in Output 5.4, is an example of what to avoid with the FREQ procedure. Depending on the data set
with which you are dealing, you may fill up your memory, or just create a process that takes far too long to
run. You will know in advance if any nightmare scenarios are likely, based on the PROC CONTENTS
results discussed above. It is clearly not a concern in the CARS situation as there are only 428 observations
in the entire data set.

Output 5.4: Sample of CARS MSRP Frequencies

Simply having a numeric variable doesn’t mean you will have many unique values to handle, even with
large data sets. For example, a binary variable (i.e., 0 or 1 only) could be numeric. However, for data sets
with many observations, it is safest to examine numeric variables with the PROC MEANS statement, as
discussed next.

5.2.3 PROC MEANS
The MEANS procedure provides useful information about numeric variables, enabling you to make
decisions about the best way to handle them. Below is the code to run the MEANS procedure with default
settings for the CARS data set. You can see the default columns in Output 5.5 below as well.

proc means data=sashelp.cars;
run;

Output 5.5: Default PROC MEANS Results

Chapter 5: Extract, Transform, Load 89

This default information can be very helpful; however, using additional options for PROC MEANS can
prove more insightful, enabling your decision-making for what to do with each column in subsequent ETL
steps.

So, I’ve updated the code to show a few different statistics about the CARS data set.

proc means data=sashelp.cars n nmiss min q1 mean q3 max std;
run;

Using the listed options, I’m getting the number of observations, number of missing values, minimum
value, first quartile, mean, third quartile, maximum value, and standard deviation for each column. There
are additional options that you can explore in the documentation, but these will provide the information that
we need for numerical columns the majority of the time. Output 5.6 shows the results for the CARS data
set.

Output 5.6: Custom PROC MEANS Output

While some additional exploratory data analysis may be desired, depending on the nature of your source
data, the brief discussion above should provide you enough information to make sound decisions about the
ETL steps that you need to take for entity resolution.

5.3 Encoding Translation
The SAS Platform has been around in some form since the 1970s, when mainframes were the primary form
of high-powered computing. As technology has changed, the SAS language has adapted without losing the
ability to communicate with these legacy systems. To facilitate smooth transitioning through an ever-
changing technology landscape, the platform has the ability to translate or convert the encoding of data
formats between various storage platforms.

A great example of this goes all the way back to mainframe computers. Without getting bogged down in
the details, EBCDIC is a compact way many mainframes used to store information. Memory was far more
expensive and precious than it is in modern systems; so, manufacturers of these systems had to create an
encoding scheme for data that was very compact. However, its compactness does not lend itself to being
readable by humans. Modern operating systems use ASCII encoding, which ensures you can read the data
stored by them. I have chosen EBCDIC specifically because legacy mainframes are still floating around
many federal and state government agencies, as well as some large financial institutions. So, it is practical
to be aware of this format, and where you might see it pop up.

Note: Modern websites use UTF-8 or UTF-16 data encoding. The steps for those data sources will be
handled using the same method I’m describing here; so, please bear with me.

90 Unstructured Data Analysis

Below is a simple example to demonstrate how we can actually encode data in EBCDIC format with the
DATA step option ENCODING. In this step, I create a data set named Encode with a single record
containing the variables x and abc123 (not creative names, but they demonstrate the idea). The variables
have the values, 1 and abc123, I typed on my ASCII-base OS (Windows). The ENCODING= option is
used to define my data set encoding as EBCDIC, meaning that is the encoding scheme SAS will use to
write the data set to the destination library. This definition will be applied to the specified data set only,
regardless of the encoding of other data sets in the associated library.

data work.encode (encoding="ebcdic");
x=1;
abc123 = 'abc123';
run;

Using what was just discussed above about PROC CONTENTS, you can check the encoding defined on the
above data set, ENCODE.

proc contents data=work.encode;
run;

See the result of running the CONTENTS procedure, and notice that the row Encoding below has a value
of ebcdic1047 Western (EBCDIC). There are different types of EBCDIC encoding, and this happens to be
the default in SAS, unless otherwise specified.

Output 5.7: PROC CONTENTS Results

I have verified that the data set ENCODE is encoded as EBCDIC. But I want to further demonstrate the
impact on consumers of your data. To help demonstrate the effect this has on the data set, I have two PROC
PRINT statements below. First note that once a data set encoding has been established, SAS automatically
translates it to the encoding of the SAS host environment when reading into memory. If I were to print the
data set without stating the encoding, it would just print the result of the conversion SAS did for me. So, I
am explicitly identifying the encoding in my PROC PRINT statements below to make it clear that I am
dealing with data that is encoded as EBCDIC. The first PRINT procedure uses the option
encoding=”ebcdic”, while the second uses encoding=”ascii”.

proc print data=work.encode (encoding="ebcdic");
run;

proc print data=work.encode (encoding="ascii");
run;

Chapter 5: Extract, Transform, Load 91

Note the difference in output below. You can see this EBCDIC encoded data set returns the expected
output when that same encoding option is used by PROC PRINT. However, when I use encoding=ASCII, I
get unreadable output (also known as “garbage”).

Output 5.8: PROC PRINT Output with EBCDIC and ASCII

Now that you’ve seen how to write a different encoding scheme with the DATA step ENCODING option,
it’s time to see how to read a data set with a different encoding. This is again quite straightforward.

I use the data set created above as my source for the below example. In the DATA statement, I define a
new data set Work.encode2 with an ASCII encoding. And using the SET statement, I identify the existing
data set Work.encode, along with its encoding scheme of EBCDIC.

data work.encode2 (encoding="ascii");
set work.encode (encoding="ebcdic");
run;

I repeat the PROC PRINT statements from the first example below, with the new data set (Encode2).
Notice how the results from Output 5.8 are flipped in Output 5.9 below. This demonstrates how the
encoding is now ASCII rather than EBCDIC as it was before.

proc print data=work.encode2 (encoding="ebcdic");
run;
proc print data=work.encode2 (encoding="ascii");
run;

Output 5.9: PROC PRINT Output with EBCDIC and ASCII

As you can see, encoding conversion of data can be simple via the SAS DATA step, but critically
important to get right. Otherwise, you could have a mess to clean up later. And again note that this process
works with whatever encoding schemes you need to translate between—SAS can be the nexus point for
many different data environments.

92 Unstructured Data Analysis

5.4 Conversion
It is often necessary to convert data formats when pulling from source tables in order to standardize the
formats across multiple data sets, or to enable a later analysis. This is distinct from encoding translation in
that all the source data columns are using the same encoding scheme (e.g., ASCII, EBCDIC), and will need
to be done after the encoding is verified as accurate.

5.4.1 Hexadecimal to Decimal
Below is a short example of how you can convert hexadecimal numbers to decimal numbers. As you can
see in the code below, I have DATALINES values with hexadecimal numbers.

Note: Hexadecimal is base 16 rather than base 10, which means that the numbers go 0 to F for a single
“digit” instead of 0 to 9. Please see Appendix A for relevant POSIX metacharacters.

data hex2dec_example;
input nums Hex2.;
datalines;
00
02
99
FF
AF
;
run;

proc print data=work.hex2dec_example;
run;

I’m using informat HEX2 in the above code to tell SAS that the DATALINES values are two-digit
hexadecimal numbers. As you can see in Output 5.10, the PRINT procedure displays the successful
conversion to decimal numbers for the variable NUMS. Decimal is the default numerical data storage
format for SAS; so, the informat conversion from hexadecimal is all I need to provide.

Output 5.10: Decimal Representation of Hexadecimal Numbers

5.4.2 Working with Dates
It is also commonly necessary to convert date formats. Whether you are converting from European to
American date formats, or four-digit to two-digit years, SAS has an informat option for the task at hand. I
will just cover a couple of options below, but there are so many different date formats that you may
encounter. It all starts with analyzing your data ahead of time to understand what format you are receiving
from the source.

Chapter 5: Extract, Transform, Load 93

In the below code, I have created data lines that are likely something that you will encounter; unformatted
numerical representations of European dates, one with 2-digit years and one with 4-digit years. I have only
two lines to demonstrate the concept. Note the DDMMYY informat is used for the column Euro while
DDMMYY10 is used for the column FourDigit. An unformatted date with the day-month-year order is
often called a European date because that is the standard order in Europe, while the month-day-year order
is standard in the United States.

data DateConversion;
input Euro ddmmyy. FourDigit ddmmyy10.;
datalines;
010118 01012018
120117 12012017
;
run;

When you apply the correct informat, SAS stores the variables as internal date numbers, which allows you
to then display the date using any preferred format. I use PROC PRINT below to display the date in the
U.S. standard format of MMDDYY.

proc print data=work.DateConversion;
format euro mmddyy8. fourdigit mmddyy10.;
run;

Output 5.11: US Date Format

Now, just to emphasize the point about dates, I have created PROC PRINT output below that uses a
different display format for the same internally stored date numbers.

proc print data=work.DateConversion;
format euro date7. fourdigit date10.;
run;

Output 5.12: Abbreviated Month Date Format

I want to emphasize that this is a very small taste of the litany of possible date formats out there. Rather
than expending many pages trying to show you many, but not nearly all, of the other formats out there, I
have chosen to provide a couple of fairly common tasks here. I would encourage you to research other
formats in the SAS documentation.1

94 Unstructured Data Analysis

5.5 Standardization
Data standardization takes on different meanings, depending on the data type in the source field that you
are trying to standardize—numeric or character. For numeric fields, we would normally use PROC
STDIZE, or a similar method, to perform a statistical standardization of the data. However, in the case of
character values, it means we will change the character field values to be consistent for every record. Since
the goal of this activity is to prepare data for entity resolution activities, I will focus on character
standardization as that will be what we need to improve match quality.

Standardizing a character field is very straightforward, but there unfortunately isn’t a simple procedure to
do the heavy lifting for you. You must assess all possible values in a field, and map them to the same
standard character representations. This step is most often taken to ensure consistency across data sources;
however, it is also helpful to perform on large data sets as a means of reducing the data storage needed.
Every ASCII character is a byte of storage; so, trimming a few characters off of a column length can turn
into huge memory savings on very large data sets.

Note: You save memory only if the new SAS data column is the smaller format! Be sure to change the
format definition on your resulting data set.

For example, yes, y, and 1 can all be mapped to Y, while all versions of no can be mapped to N; this
ensures a standardized binary representation for the concept of yes/no or true/false while using less
memory. You might think I’ve gotten something backwards by deferring to characters rather than numbers
for creating binary variables. However, keep in mind that SAS requires a minimum of 2 bytes to store a
numeric (the minimum can vary by operating system) on ASCII systems like Windows, while it requires a
minimum of only 1 byte to store a single character.2 So, if space is truly at a premium, a single-byte
character is what you will want to do in SAS.

I have taken this approach for the simple example below by using a SELECT statement to remove the noise
in my source data.

/*Character Standardization*/
data charSTD_example;
input answer $;

select(answer);
 when('yes','y','1') STDans='Y';
 when('no','No','n','0') STDans='N';
 otherwise;
 end;
datalines;
yes
y
1
no
n
No
run;

proc print data=work.charSTD_example;
run;

The above code creates the output shown in Output 5.13 below. As you can see, all the various values for
the column that is called answer are standardized to the binary Y/N I want. Could this be done through

Chapter 5: Extract, Transform, Load 95

other means? Of course, but I have attempted to provide a method that is intuitive and accessible via Base
SAS code.

Output 5.13: Standardization Results

5.6 Binning
Numeric variables are clearly very valuable in their native form. However, depending on the intended use,
you may want to break them into categories instead. Doing so can make them more valuable for data
segmentation, predictive modeling, and entity resolution.

Binning for entity resolution helps us ensure that small discrepancies in numeric values don’t prevent the
matching of two entity references (discussed more in the next chapter). You have to use your best judgment
regarding which variables are the ideal candidates for binning.

Example: Suppose you have multiple real estate listings for the same house, with slightly different
numerical details such as price. By binning the price for that address, you will have an improved chance of
getting a multi-factor match during the actual matching process performed during the ER phase of work.

I will demonstrate a couple binning strategies with the HPBIN procedure below. Your business problem
will drive the best choice for you.

HPBIN stands for High-Performance Binning; it is a procedure that is flexible enough to run in a high-
performance environment across numerous nodes, or on your desktop. I’ve chosen a sample data set from
the SASHELP library, which is available with all SAS products. It provides some simple numerical
variables to bin using a couple of different approaches, discussed below.

PROC HPBIN provides a great deal of flexibility for how you want to bin your numeric variables. As I
mentioned, your particular end-use will drive the best binning strategy for you, but I am covering two very
common methods below: quantile and bucket.

5.6.1 Quantile Binning
First is a quantile-based approach, where you want the number of records to be roughly equal in each bin.
You can determine how many quantiles you want to build after examining your data (as we did in Section
5.2 above), but I’m going to stick with 4 (quartiles) for my example below.

proc hpbin data=sashelp.baseball numbin=4 pseudo_quantile computequantile;
input nHits;
run;

96 Unstructured Data Analysis

By setting my NUMBIN equal to 4, I am telling HPBIN to create 4 bins. I then tell HPBIN to do that with
the “pseudo_quantile” method. This creates 4 quantile bins or quartiles. You can see the results in the
output below.

Output 5.14: PROC HPBIN Settings

Output 5.14 provides a fair amount of detail about the settings. But take particular notice of the Method and
Number of Bins Specified. You see the method defined as Pseudo-Quantile Binning, which creates the bins
using a quantile method, resulting in nearly equal sized bins (by frequency). You can see in Output 5.15
below that the bin ranges match the quartile values in the Quantiles and Extremes table also shown in
Output 5.15 below.

Output 5.15: Results of PROC HPBIN

Chapter 5: Extract, Transform, Load 97

5.6.2 Bucket Binning
The second approach is to create bins using equal-length numerical ranges of the source variable. So, rather
than trying to ensure that the number records are roughly equal, as we did above, the number of records can
vary wildly; only the numerical range that defines each bin is equal in size. So, using the same data set as
before, I have created equal length bins using the defaults for PROC HPBIN below.

proc hpbin data=sashelp.baseball;
input nHits;
run;

As you can see in Output 5.16, the bucket binning method creates 16 bins spanning the same length of the
nHits range. The resulting bins can have very different frequencies, as you can see below.

Output 5.16: Bucket Binning Results

The two binning methods discussed above demonstrate very different results, with different uses. For
variables with very sparse data and wide ranges, a quantile method would be better for grouping them.
However, for data that has a small range or is quite dense, a bucket binning approach may be more
effective.

98 Unstructured Data Analysis

5.7 Summary
As mentioned in the outset of this chapter, I hope the information discussed provides you additional tools
for wrangling your data sources. While there is nothing magical about the techniques discussed, I think
they will enable you to tackle the significant task of preparing your various data sources for integration and
analysis.

Data cleaning and preparation via a robust set of ETL processes will provide you results that are ready for
fusion and entity resolution as discussed in the next chapter.

1 SAS Institute Inc. “Formats by Category,” SAS® 9.4 Formats and Informats: Reference,
http://support.sas.com/documentation/cdl/en/leforinforref/64790/HTML/default/viewer.htm#n0p2fmevfgj4
70n17h4k9f27qjag.htm (accessed August 29, 2018).

2 SAS Institute Inc. “Ways to Create Variables,” SAS® 9.4 Language Reference: Concepts, Sixth Edition,
http://go.documentation.sas.com/?docsetId=lrcon&docsetTarget=n0bbin3txgxlown1v2v5d8qbc9vq.htm&d
ocsetVersion=9.4&locale=en (accessed August 29, 2018).

Chapter 6: Entity Resolution
6.1 Introduction ..99

6.1.1 Exact Matching .. 99
6.1.2 Fuzzy Matching .. 100
6.1.3 Error Handling .. 101

6.2 Indexing ... 102
6.2.1 INDEX= ... 103

6.3 Matching .. 105
6.3.1 COMPGED and COMPLEV .. 105
6.3.2 SOUNDEX ... 107
6.3.3 Putting Things Together .. 109

6.4 Summary .. 116

6.1 Introduction
There are a number of robust methods for performing entity resolution efficiently at scale. But despite their
diversity, they all fall into two basic families: exact and fuzzy.

Figure 6.1: ERA Flow with Entity Resolution Focus

6.1.1 Exact Matching
Exact matching performs an exact comparison of each entity reference attribute, and makes a “match”
determination based on how many attributes are the same. A previously defined rule for similarity—a
threshold for percentage of attributes covered—provides the decision mechanism. As I mentioned during
the introduction to ERA in Chapter 3, this threshold is informed by the business context. The need to get a
match exactly correct is going to vary by the application as the error tolerance will be very different across
domains.

In contexts where entity false positives are of chief concern, a higher similarity percentage would be
preferred, while contexts most concerned with false negatives would allow a much lower similarity
percentage. So, if you set the match tolerance such that you must get a 100% similarity, there will be some
number of entity references that will not be matched together—creating false negatives. However, if the
tolerance is set very low, requiring a 50% match, then the false positives could be quite high. Your context
would drive the determination as to what tradeoffs you are willing to make. And detailed analysis of
sample data will help you quantify these tradeoffs.

Example: The table below shows two records with similar, but not identical, information. These records
could be matched, depending on the matching tolerance—which is driven by the eventual business need
and associated risk tolerance. If we simply utilize a raw percentage of match, then we have six out of eight
fields with exactly the same data (75%). Now, in many cases, certain values are far more important than the
others. So, the business may decide to be concerned only about the percentage of match between the first

Entity Extraction ETL Entity
Resolution

Entity
Network

Mapping and
Analysis

Entity
Management

100 Unstructured Data Analysis

four data columns (coincidentally, for this example, it is also 75%). However, if the business requirements
set the threshold at 87.5% (7 out of 8), these records would not meet the criteria under either approach
(comparing all 8 or comparing just the first 4).

Table 6.1: Similar Entity Reference Records

First Name Last Name DOB Gender Address City State Zip

Bob Smith 2/5/1967 M 123 Fourth Street Fairfax VA 22030

Robert Smith 2/5/1967 M 123 4th St. Fairfax VA 22030

In addition to expert opinion for determining the most important variables for building unique matches, you
can infer a weighting through careful analysis. You can sample the available data, build matches with it,
and then analyze the frequency of match by each variable. If a single variable created unique matches (e.g.,
by SSN), it would clearly be important. However, variables that create many non-unique matches would be
less important. Then looking at the two, three, etc., variable combinations that create unique matches will
enable you to rank or group those that will be required for a “match” to be accepted for the whole
population.

6.1.2 Fuzzy Matching
A fuzzy matching approach measures similarity between each entity reference element being compared,
computes the overall entity reference similarity, and determines a match based on the defined threshold.
The similarity of each attribute is derived based on the kind of data that it contains. If it is a numeric field,
then a numerical distance is calculated. On the other hand, if it is a text field, then semantic or syntactic
comparisons can be performed.

Semantic match: The meaning of the words or phrases used is the same.

Syntactic match: The arrangement of words or phrases used is the same.

Some of the advanced techniques, such as semantic matching, are beyond the scope of this book, but I will
still explore a robust set of matching techniques in Section 6.3 using edit distance concepts—which is a
kind of syntactic matching.

Example: Referring to the table in the previous example, the address line seems to simply be different
ways of writing the same information. If I standardize the address information, then you see that the
address line is the same for both records.

Table 6.2: Modified Entity Reference Records

First Name Last Name DOB Gender Address City State Zip

Bob Smith 2/5/1967 M 123 4th St. Fairfax VA 22030

Robert Smith 2/5/1967 M 123 4th St. Fairfax VA 22030

● Now, while this sort of normalization should be performed at the database level during ETL, it is
not always done properly. In addition, it is not always feasible to anticipate this level of
normalization for such data when it is being pulled from multiple sources—often the case in real-
world applications. Therefore, performing the matching operation of this information requires that
a syntactic match be applied. The result generates a 100% match of the address lines, since they

Chapter 6: Entity Resolution 101

are just different ways to write the same information. This in turn changes the percentage of
overall match to 7 out of 8 columns.
Achieving an 8 out of 8 match at this point would require a semantic match on the first name. This
is where things become truly fuzzy; since there is no way to know for sure that “Bob” and
“Robert” are references to the same person. This sort of determination is either asserted via an
expert rule, or learned from a significant corpus of culturally similar data. The asserted or learned
similarity would then be applied to the name field, and incorporated with the overall percentage of
match. This new number, depending on the algorithm chosen for integration and the similarity
value, would then be tested against the known match threshold.

Explaining the last step described in the above example is beyond the scope of this book. The domain-
specific knowledge, corpus of training data, and detailed examples needed to properly cover the topic are
beyond what I have the capacity to cover here. However, performing syntactic matches via edit distance
functions in SAS is reasonable, and what I will do in this book. I will also cover a method for making
names easier to match with edit distance functions available in Base SAS, mitigating this potential gap.

Examples such as the one above make the matching process seem easy. However, automating matching
decisions at scale is the very essence of what makes ERA so difficult. I therefore want to emphasize the
importance of consistent matching decisions via a framework like ERA—creating institutional buy-in
before rollout across any production systems is critical to ensure effective implementation.

In addition, ERA provides a decision framework for determining error tolerance for the particular
application.

6.1.3 Error Handling
In the vast majority of entity resolution applications, Type-1 error (false positive) is far worse than Type-2
error (false negative).

Type-1 error in this context means that two entities are equivalent when they in fact are not, which among
other issues could lead to the mishandling of Personally Identifiable Information (PII).

Example: An insurance company merges the records for two individuals erroneously, thus corrupting the
medical history of two patients, possibly sharing their PII with the incorrect individual, and putting their
health at risk.

By contrast, a Type-2 error would essentially cause duplicative entity references to be generated and
maintained. While a frustration for both the organization and individual(s) affected, the risk to either party
is lower than the Type-1 case.

Example: ABC Inc. (ABC) has duplicate customer records in their database, possibly causing an item to be
shipped to an old address, or requiring support staff to clean out duplicate accounts; but the PII is kept safe.
This represents an inconvenience, which is relatively easy to avoid or resolve.

While generally less dangerous, Type-2 error is also much harder to detect. Unless you have enough data to
identify and fix such a problem, it will go completely unnoticed. In situations where Type-2 error has
occurred, it will likely require customers to identify the issue rather than the company or agency.

The best strategy for reducing Type-2 errors, while reducing security risk, is to communicate directly with
users. For example, by cross-referencing credit card information, ABC could internally identify accounts
that are connected. Through email alerts with customers, ABC can provide them the opportunity to merge

102 Unstructured Data Analysis

or close accounts with multiple PII verification steps involved. By removing these ghost accounts, the
Type-2 error across the system is reduced, thus lowering the risk of old accounts getting hacked, and
enabling ABC to better understand its real customer base.

6.2 Indexing
In order to effectively perform entity reference matching at scale, you have to properly index your source
data tables. By this point in the ERA process, any data sources that you are working with have been
ingested and staged as SAS data tables. So, I will focus this discussion on creating indexes on SAS data
sets. By indexing said tables, we will be able to more efficiently perform matching of the entity references
on a very large data set.

However, it is important to note that indexes are not always beneficial to processing performance. Once
created, indexes are treated as part of the data set; as data set values change, the index is automatically
updated. This results in overhead associated with building and maintaining indexes, as well as with their
real-time use. So, you have to determine whether the size of your data will necessitate using indexes, which
can depend on a number of factors.

Note: Indexes are ignored in the DATA step when a subsetting IF statement is used!

Here are a few guidelines to help you determine how and when to build and use indexes: 1

● Do not create an index for a data set of less than three memory pages as the index overhead will
ultimately prove counterproductive. As a general rule of thumb, you will see performance
improvements for data sets larger than three data set memory pages. Use PROC CONTENTS to
determine the number of pages for any data set.

● Data sets that change with high frequency will require updates to their indexes, creating increased
resource demands, which may outweigh the overall benefit of the indexes. So, in general, avoid
using indexes on data sets that change frequently, and run tests on data sets that you are unsure
about prior to implementing an index at scale.

● Ensure that the index that you want to create is as discriminating as possible (i.e., it selects the
fewest records per index value as possible). For example, indexing a data set by date on a data set
that contains dozens or hundreds of records for each date is not at all discriminating. However,
building an index on Last Name and Date of Birth will generate far fewer record matches per
index value—more discriminating.

As with anything in SAS, there are multiple methods for creating and updating indexes on data sets. You
can use PROC DATASETS, PROC SQL, or the INDEX= option in the DATA step. There are tradeoffs
with each option, and you are welcome to explore all of them. However, the INDEX= option in a SAS
DATA step is easy to understand and use, and fills the need for our purposes.

Chapter 6: Entity Resolution 103

6.2.1 INDEX=
The INDEX= option is easy to implement, whether we want a simple index or composite index. I will
demonstrate how to do both with INDEX= below.

Simple Index
A simple index is made up of only one variable in the target data set. The code below uses PII_DATA,
which I will explore in more depth later in this chapter, to create PII_DATA2 with an index on the variable
Last_Name.

data pii_data2 (index=(Last_Name));
set pii_data;
run;

When running the code above, assuming no errors, you won’t be able to see any indication that an index
was actually built. There is neither a reference in the SAS log, nor anything on the data set. So, running
PROC CONTENTS on the resulting data set is the best way to know for sure that your index has been
created. Running the following code, creates Output 6.1 below.

proc contents data=work.pii_data2;
run;

In addition to the index count now being equal to 1 in the PROC CONTENTS results, you will see the
information in Output 6.1 at the bottom of your results. Immediately after the alphabetical list of variables,
you see the alphabetical list of indexes. As expected, you see the index Last_Name. The data set we are
using has only 25 rows; so, this is an index that uniquely identifies each record (i.e., it is highly
discriminating).

Output 6.1: Simple Index in PROC CONTENTS Output

104 Unstructured Data Analysis

Composite Index
Now, there will be situations where you need to use more than one variable to build an index. This is
known as a composite index. Generally speaking, you will want to do this in order to ensure you can
improve the discrimination of the index, ensuring that it is as efficient as possible.

For example, you will not always have unique entity reference identifiers such as Social Security numbers.
In such a case, the composite, uniquely identifying index might be First Name, Last Name, and Date of
Birth. The likelihood of those three variables uniquely identifying a person is quite high; however, this
should always be verified in the data set with which you are working.

Below is an example of how I chose to build a composite index using the same data sets as before. Note
that I ran the simple index DATA step and the below DATA step back-to-back without any problems. SAS
merely overwrote the simple index created above with the composite index that you see below.

data pii_data2 (index=(comp_ind=(Last_Name DOB)));
set pii_data;
run;
proc contents data=work.pii_data2;
run;

The code is very similar to the simple index example above, but note that I have created a variable,
COMP_IND, inside the first set of parentheses, and set it equal to a parenthetical list of variables,
Last_Name and DOB. This creates a composite index called COMP_IND, as you can see in Output 6.2
below.

Output 6.2: Composite Index PROC CONTENTS Output

Unique and Nomiss Modifiers
There are two very helpful modifiers that you can use in the INDEX= data set option, Unique and Nomiss.
The Unique modifier ensures that the index is built only if all the values for the variables that are used to

Chapter 6: Entity Resolution 105

build it are unique. And the Nomiss modifier ensures that rows with missing values are excluded from the
index. Below is an example of how to use these modifiers when constructing an index.

data pii_data2 (index=(Last_Name /unique /nomiss));
set pii_data;
run;
proc contents data=work.pii_data2;
run;

Notice that the forward slash (/) must be applied before each modifier. Without the / present, SAS will
interpret the modifier as an attempt to list a variable for your index, and throw an error. Below in Output
6.3 is the updated index information from PROC CONTENTS.

As you can see, Unique and NoMiss are both set to YES, indicating that these two modifiers are true for
this index.

Output 6.3: Unique and NoMiss Index Modifiers

Keeping the guidelines at the beginning of this section in mind, you now have the basic tools to create or
update indexes on data sets.

6.3 Matching
Exact matching is the most straightforward method for comparing entity references, while fuzzy matching
is usually a bit more complicated. Both approaches can be performed through a variety of methods
available in SAS. You can perform exact matching with traditional “equal” join criteria, while also making
certain join criteria on other elements fuzzy with match-merges or PROC SQL. Again, as with many things
in SAS, there are multiple methods for tackling the issue of joining or merging data sets. However, PROC
SQL offers the most flexibility of all options; so, I will use that in Section 6.3.3 for bringing the matching
concepts together as a complete example.

6.3.1 COMPGED and COMPLEV
Both exact and fuzzy matching can be performed in Base SAS with assistance from the COMPGED and
COMPLEV functions by dialing match thresholds to a desired level. COMPGED provides the General Edit
Distance (GED) between two string variables, while the COMPLEV function provides the Levenshtein
Edit Distance (LEV)—a special case of the GED.

COMPLEV runs more efficiently than COMPGED, but the LEV result is not considered as useful in the
context of text mining or fuzzy matching due to the simplicity of output.2 Conversely, the output from
COMPGED, while more computationally expensive, is more nuanced to support more refined
measurement. Your ultimate needs will determine the best function.

106 Unstructured Data Analysis

I demonstrate output differences between the two methods in the example below. As you can see in the
DATALINES section, I have chosen “balloon” as my word to match. I defined GED equal to the
COMPGED result, and LEV as the COMPLEV. And the first row of data shows that the match between
“balloon” and “balloon” is 0 for both GED and LEV. In other words, there are no edits needed to make the
two strings equal. You can see the cost for each operation in Output 6.4 below, with both GED and LEV
values provided. The list of operations is in the GED order of increasing cost.

data Edit_Dist;
 infile datalines dlm=',';
 input String1 : $char10. String2 : $char10. Operation $40.;
 GED = compged(string1, string2);
 LEV = complev(string1, string2);
 datalines;
balloon,balloon,match
ba lloon,balloon,blank
balloo,balloon,truncate
baalloon,balloon,double
ballon,balloon,single
balolon,balloon,swap
ball.oon,balloon,punctuation
balloons,balloon,append
balkloon,balloon,insert
blloon,balloon,delete
ba1loon,balloon,replace
blolon,balloon,swap+delete
balls,balloon,replace+truncate*2
balXtoon,balloon,replace+insert
blYloon,balloon,insert+delete
bkakloon,balloon,insert+replace
bllooX,balloon,delete+replace
kballoon,balloon,finsert
alloon,balloon,fdelete
kalloon,balloon,freplace
akloon,balloon,fdelete+replace
akloo,balloon,fdelete+replace+truncate
aklon,balloon,fdelete+replace+single
;

proc print data=Edit_Dist label;
 label GED='Generalized Edit Distance'

LEV='Levenshtein Edit Distance';
 var String1 String2 GED LEV Operation;
run;

Chapter 6: Entity Resolution 107

Output 6.4: Comparing COMPGED and COMPLEV

As you can see from Output 6.4 above, the costs associated with GED can be quite different from costs for
LEV. This is because each operation in the LEV result is equal to 1 (except for swap because it is changing
two characters at once), while the computational cost associated with each operation varies for GED. So,
the accumulated cost for the final result will have different scales, with more differentiation in the GED
result due to the kind of operation, as well as the number. I will focus more on GED as it is more widely
used in matching applications. But it is easy to change the function calls and testing thresholds to align with
LEV, if that is the desired matching methodology.

6.3.2 SOUNDEX
Now, GED is a very useful, powerful method for comparing two strings. However, some kinds of strings,
particularly names, can have improved matching rates with some additional preprocessing performed. The
SOUNDEX function implements a technique for processing names that was initially developed in 1918,
improved in 1922, and remains useful today.3

Note: It’s important to recognize that SOUNDEX was developed for processing English names, and the
rules inherent in the algorithm are therefore biased in favor of English names. I would recommend
therefore, that you use COMPGED without SOUNDEX for non-English names.

SOUNDEX Algorithm
Below is the algorithm implemented by the SOUNDEX function to reduce match errors between names.

1. Keep the first letter of the string, and discard: A E H I O U W Y

2. Assign values to letters as follows:
1: B F P V

108 Unstructured Data Analysis

2: C G J K Q S X Z
3: D T
4: L
5: M N
6: R

3. If, before any letters were discarded, there are adjacent letters of the same classification in Step 2,
then keep only the first one.

I have created a few simple name examples using SOUNDEX below. Notice in Output 6.5 how effective
the algorithm is at mapping the phonemically similar names to the same encoding. This is just a taste of
how effective the algorithm is for processing English names.

data MyNames;
 input Name : $12.;
 SDX = Soundex(name);
 datalines;
Tom
Tommy
Tomas
Thomas
Bonny
Bony
Bonnie
Bonie
Lori
Laurie
Lauree
;

proc print data=MyNames;
label SDX="SOUNDEX Code";
run;

Output 6.5: Soundex Codes

As you can see from Output 6.5 above, we have a greatly improved chance of getting “exact” matches for
names after SOUNDEX processing. And by applying COMPGED to the resulting codes rather than the raw

Chapter 6: Entity Resolution 109

names, you also have improved performance. This helps when processing names that have been manually
entered into the source data, as mistakes are more likely.

Caution: SOUNDEX can lead to over-matching, so use with care. Test thresholds with your data set to
understand the sensitivity for your application.

6.3.3 Putting Things Together
Now it’s time to show how matching different data sets actually occurs in reality. Up to this point, I’ve
shown you toy examples of how the functions work, but not how you would then use these functions to
actually take disjoint data sets and merge them together on the basis of the function results. I will cover that
topic now.

Note: The examples below will not be large enough to require indexes, but I expect you can use the PII
generator code provided in Appendix A to create very large data sets that will.

We can accomplish threshold-specific merges using PROC SQL in SAS code as follows. And fair warning,
this kind of matching process is inherently slow, but I will take steps to make it as fast as possible. You will
need to tune your processes based on the data and business context with which you are faced.

Sample PII Data
Below is the code I use to take some randomly generated PII data (see Appendix A), and ingest it for a
processing my matching examples to follow.

data pii_data;
infile "C:\Users\mawind\Documents\SASBook\Examples\PII_text.csv" dsd firstobs=2
dlm=",";
input First_Name : $20. Last_Name : $20. Phone : $15. SSN : $11. DOB : mmddyy10.
Address : $100.;

*Breaking the Address field into its distinct pieces;
Street=scan(address,1,',');
City=scan(address,2,',');
State = scan(address,-2);
Zip = scan(address,-1);

*Cleaning up the phone numbers;
Clean_Phone = PRXPARSE('s/(\+|\.|\(|\)|-)//o');
CALL PRXCHANGE(Clean_Phone,-1,Phone);

*Clean up the SSNs;
Clean_SSN = PRXPARSE('s/(\+|\.|\(|\)|-)//o');
CALL PRXCHANGE(Clean_SSN,-1,SSN);

drop Clean_Phone Clean_SSN;
run;

proc print data=pii_data;
run;

The steps used to clean up the source files should be familiar by now, except for the SCAN function. I
chose to parse my address field a different way to demonstrate some variety in approach. By using SCAN,
I’m able to quickly pull out street, city, state, and zip as separate variables. You can see the regular

110 Unstructured Data Analysis

expressions (RegEx) used later in the code to clean up the phone numbers and Social Security numbers.
Below is the PROC PRINT output for the PII_DATA.

Output 6.6: PROC PRINT Output of PII_DATA

Next, I create PII_DATA3, a transformed subset of PII_DATA, to demonstrate how to match similar, but
not exactly the same records, using just names. As you can see in the code below, I manually make edits in
the first and last name fields for three records so as to demonstrate the concepts of fuzzy matching (but, not
too fuzzy!) in the PROC SQL examples to follow.

data work.pii_data3;
set work.pii_data (obs=10);
if last_name='BROWN' then first_name='RICH';
if first_name='MICHAEL' then last_name='JONSON';
if first_name='PAUL' then last_name='MILER';
run;

proc print data=pii_data3;
run;

The output from the above PROC PRINT statement is provided in Output 6.7. As expected, I have created
a data set containing the first 10 records of PII_DATA, with edits made to 3 records.

Chapter 6: Entity Resolution 111

Output 6.7: PROC PRINT Output of PII_DATA3

Now, to create a baseline for comparison in the following examples, I have provided a PROC SQL
statement below that generates only output (i.e., doesn’t store the results in a table). This is to help you see
the exact matching case for first and last names in our sample data sets.

You see that I’m selecting only the first name and last name from each data set (renaming the first and last
name columns from PII_DATA3 to avoid an error). And I’m creating the exact matching conditions in my
WHERE clause with an AND statement to ensure that both equality conditions are met. Also, notice the use
of the QUIT statement in lieu of the RUN statement. This is required to exit PROC SQL.

proc sql;
select A.first_name, A.last_name,
B.first_name as Fname, B.last_name as Lname

from work.pii_data A, work.pii_data3 B
where A.last_name = B.last_name
AND A.first_name = B.first_name;
quit;

Note: After the PROC SQL statement is submitted, you can run as many SQL statements as you want—
RUN has no effect—until you submit the QUIT statement to end SQL processing.

Output 6.8: Exact Match Results

As you can see in Output 6.8, we get only 7 exact matches, which was expected given that I made edits to 3
records. Note that those edited records do not appear in the output.

Now that I have established a baseline with an exact match example, I’m going to incorporate COMPGED
into the WHERE clause in lieu of the equal statements.

proc sql;
select A.first_name, A.last_name,
B.first_name as Fname, B.last_name as Lname

112 Unstructured Data Analysis

from work.pii_data A, work.pii_data3 B
where compged(A.first_name,B.first_name)<50
AND compged(A.last_name,B.last_name)<50;
quit;

You can see that I placed the COMPGED function in the WHERE clause above, comparing the first and
last name for each data set. I established an arbitrary cost of 50 for my threshold (See Section 6.3.1 for the
COMPGED cost list). This allows for a fair amount of fuzziness. And it results in an additional match
(“Paul Miller” and “Paul Miler”).

Output 6.9: COMPGED Match with 50 Threshold

I can continue adjusting the thresholds up until I get the additional records, but I would do so at the risk of
over-matching—a big problem in the real world. So, I can use SOUNDEX to improve the power of my
name-matching approach without too much additional risk (again, this is used for English names rather
than general applications).

After adding SOUNDEX inside the COMPGED function calls, I am able to convert the first and last name
variables on the fly for the comparison. I recommend running SOUNDEX to actually create new variables
for large-scale applications, but this works without noticeable performance impact for small (less than three
memory pages) data sets. Notice that my new thresholds are now 20 for both the first and last name
comparisons. So, my COMPGED cost associated with SOUNDEX converted variables must be less than
20, which is quite reasonable.

proc sql;
select A.first_name, A.last_name,
B.first_name as Fname, B.last_name as Lname

from work.pii_data A, work.pii_data3 B
where compged(soundex(A.first_name),soundex(B.first_name))<20
AND compged(soundex(A.last_name),soundex(B.last_name))<20;
quit;

These updates result in Output 6.10 below, which shows that we get 9 matches for lower COMPGED cost
values of 20 for both comparisons (“Michael Johnson” and “Michael Jonson”).

Chapter 6: Entity Resolution 113

Output 6.10: Combining SOUNDEX and COMPGED

While this does not remove risk of over-matching, it does better control for the kind of spelling errors that
we may naturally see in hand-coded name values in real-world data sources. So, this enables you to account
for many of those potential issues in English names, and then narrow the COMPGED tolerance to a much
smaller level. This ensures you don’t accept too many uncommon errors in name fields in pursuit of fuzzy
matching.

Notice that I still can’t get Richard to show up in the resulting data set above (see Output 6.10). The
truncation down to “Rich” is large enough that I would need to increase the threshold for the COMPGED
results. Now, I don’t have to increase the threshold for both first and last name comparisons.

It is more common for nicknames to creep into a customer relationship management (CRM) system, for
example. So, below are the results of increasing the threshold for first name to 150, while keeping the last
name threshold at 20. You can see that I am able to match all ten names in PII_DATA3 after just making
the match criteria for First_Name much looser.

Output 6.11: Full Match with SOUNDEX and COMPGED

I believe the above steps demonstrate how you can potentially tune a matching approach to account for a
wide variety of desired outcomes. Now, to take this discussion to a close, I think it is necessary to
demonstrate how you might want to construct a stronger set of matches. Clearly, name matches alone
would not be sufficient for resolving entity references in many real-world applications. So, I’m going to use
some of the other variables to truly resolve the entity references.

114 Unstructured Data Analysis

Combining Full Name, DOB, and SSN is generally accepted as a means of creating a strong match between
entity references. I just walked through how you can tackle the name matching portion of the exercise, but
the other elements are not without their challenges.

The SSN is a system-generated element passed across enterprise data systems with relative ease, and little
or no human interaction. However, there are numerous times with people enter their SSN into an online or
paper form. That creates the possibility of transposing digits, or other errors. As a result, you may
occasionally want to provide for a limited window of error, depending on your application; but I would not
recommend it as a general rule. If you were to, for whatever reason, loosen the strictness of matching for
the SSN variable, it is important to ensure it is being stored as a text field. You can’t perform edit distance
on a numeric field, and the numerical distance between two SSNs doesn’t make sense here. Simply
switching two numbers could create numbers that are very far apart, numerically for a minor “fat finger”
error.

DOB on the other hand, while having many of the same characteristics, isn’t meant to uniquely identify a
person in a government system of record. So, it must be tied to a name or other PII element to be useful as a
matching constraint. Also, as long as the DOB is stored as a date number, it makes sense to perform
distance calculations for the purposes of fuzzy matching with it. However, if the source fields were
character fields, it is possible for edit distance to be more relevant. Understanding your data lineage is
important for identifying potential issues, and developing strategies for resolving them.

For our purposes here, I will wrap up by completing my matching SQL with the generally preferred method
for matching these elements: exact match on both SSN and DOB. That, combined with mild fuzzy matches
on names, generates a reasonable data set for us to use.

Note: Your particular context may not allow even this level of fuzzy matching for any elements of PII data,
but you can still use these concepts for performing entity network mapping and analysis in the coming
chapters.

In the updated code below, I have added the CREATE TABLE statement in order to generate a SAS data
set (WORK.MERGE_FUZZY) from my PROC SQL. I have also added fields to the SELECT statement so
that they can be displayed or output to the resulting data set. I’m also adding the INNER JOIN statement
here as it is a best practice for joining tables and is more efficient than using a simple WHERE clause.

proc sql;
create table work.merge_fuzzy as

select A.first_name, A.last_name, A.SSN, A.DOB,
B.first_name as Fname, B.last_name as Lname, B.SSN as Social, B.DOB as BirthDate

from work.pii_data A inner join work.pii_data3 B
 on compged(soundex(A.first_name),soundex(B.first_name))<150
 AND compged(soundex(A.last_name),soundex(B.last_name))<20
 AND A.DOB = B.DOB
 AND A.SSN = B.SSN
;
quit;

proc print data=work.merge_fuzzy;
run;

Just to explain the above syntax, the FROM clause is essentially saying: Perform an INNER JOIN A and B,
ON all of the following criteria.

Chapter 6: Entity Resolution 115

Novice Note: The syntax of SQL is a little confusing at first, but its efficiency for running large-scale data
manipulation makes it worth the additional effort. Since you can do it in a familiar environment like SAS, I
would highly recommend taking the time to learn it.

As you can see in the output below, I still get a match on all 10 records in common between the data sets.
You can see the unformatted DOB date number and unformatted SSN text in each record, along with the
same names that we have been experimenting with in this section.

Output 6.12: PROC PRINT Output of MERGE_FUZZY

Now, if I had set an overall match threshold at the beginning of this exercise of 100%, I would have just
met that threshold as I have achieved the matching criteria for each individual variable in the data sets. But,
this was possible only because I increased the level of fuzziness for the matches between first and last
names. If I still wanted to maintain a 100% overall match threshold without including fuzzy matching on
names, I would have obtained a data set with only 7 records.

Determining whether that level of fuzzy match is acceptable for names, or any variable, is driven entirely
by the context in which you are working. As I said at the beginning of this book, a plan for how to handle
these decisions should be developed at the outset of any project. Experiments like those we have done here
may be necessary to answer initial questions by management during the planning phase, which is
reasonable to do with representative sample data.

Surviving References
Output 6.12 shows the two entity references matched together in my final data set. But one question is left
unresolved: Which version of the entity reference do I use? The answer is: Well, it depends.

Generally speaking, you will have a system of record, or other trusted system against which you are testing
potential matches. For example, you might have a database of donors and a table of recent donations; you
would want to match the recent donations against the clean database of donor information. In that kind of
situation, you would keep the donor database system of record, while adding the donation to their donation
records.

However, there could be situations in which you are pulling together two sources of data that are external to
your organization, with no point of reference. Without a baseline, you will have to research your sources,
and determine the source that you trust the most. Document that information for the person who has
requested your analysis, and use the version of an entity reference within that source as the surviving
reference. This does not always lead to satisfying answers, especially when building up a reference

116 Unstructured Data Analysis

database from scratch. But you can, with enough storage space, keep the ambiguous references for
reprocessing as you obtain additional data. When multiple sources show an entity reference combination
that agrees, you can accept that version as the correct version for future use.

6.4 Summary
I finally got to the entity resolution part of this book! Now you know how to go from potentially very raw
data sources to actually creating entity reference matches. However, as I mentioned earlier, that is not
where many real-world applications end. As shown in the next chapter, Entity Network Mapping and
Analysis, the matching process can be applied to create unresolved links that we want to preserve for a
variety of applications. But why?! You’ll have to read the next chapter to see.

1SAS Institute Inc. “Understanding SAS Indexes,” SAS® 9.2 Language Reference: Concepts, Second
Edition,
http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a000440261.htm
(accessed August 29, 2018).

2 SAS Institute Inc. “COMPGED Function,” SAS® 9.4 Functions and CALL Routines: Reference, Fifth
Edition,
http://go.documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p1r4l9jwgatggtn1ko81fyjys4s7
.htm&docsetVersion=9.4&locale=en (accessed August 29, 2018).

3 SAS Institute Inc. “SOUNDEX Function,” SAS® 9.4 Functions and CALL Routines: Reference, Fifth
Edition,
http://go.documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=n1i9a3o4kciemhn1kpgutl20e4i
0.htm&docsetVersion=9.4&locale=en (accessed August 29, 2018).

Chapter 7: Entity Network Mapping and Analysis
7.1 Introduction ... 117
7.2 Entity Network Mapping ... 118

7.2.1 Shared Entity Attributes .. 118
7.2.2 Entity Interactions.. 119

7.3 Entity Network Analysis ... 122
7.3.1 Articulation Points and Biconnected Components .. 122
7.3.2 Minimum Spanning Trees ... 125
7.3.3 Clique Detection .. 127
7.3.4 Minimum Cut .. 128
7.3.5 Shortest Paths ... 131

7.4 Summary .. 134

7.1 Introduction
This chapter will focus on structuring and analyzing your data to understand the networks formed by entity
relationships within your data sources. When performing Entity Resolution (ER), as I did in the last
chapter, I am attempting to resolve entity references to the same real-world entity. However, Entity
Network Mapping and Analysis (ENMA) is designed to establish and characterize linkages between
different real-world entities based on shared characteristics of the entity references. In other words, I don’t
want to merge the entity references into a single record or reference. Instead, I just want to denote a
connection between them using entity reference attributes. It is important to do this after entity resolution,
as I don’t want to create links between entities that ultimately get fused together as one.

Figure 7.1: ERA Flow with Entity Network Mapping and Analysis Focus

All discussion in the last chapter ignored the issue of entity type (i.e., person, corporation, etc.) as I was
focused on just resolving entity references. In real-world applications, heterogeneous sets of entity
references are often dealt with as part of the broader ERA project. In other words, the end goal of an ERA
project isn’t only to see whether entities of the same type are in fact the same person, place, or thing;
instead, it is to understand the relationship among many distinctly different entities. And context plays a
major role in the decision to comingle entity types for this purpose.

For instance, it is more common—even necessary—in the national security and law enforcement regimes to
comingle entity reference types for the benefit of investigations, but it is less common in other regimes.

Example: An FBI special agent needs to create a holistic picture of a suspect’s life, including all the
entities with which he or she is associated: family members, vehicles, businesses, coworkers, credit cards,
bank accounts, and so on. Therefore, comingling different entity types clearly serves a business need.

Now, links identified between entity references are again driven by context, and the associated business
decisions. This linkage information should be recast as a multi-dimensional, heterogeneous network graph

Entity Extraction ETL Entity
Resolution

Entity Network
Mapping and

Analysis

Entity
Management

118 Unstructured Data Analysis

to best support any future analysis. In other words, we can assume that a network graph is formed with any
number of entity types (comingling). As such, all of the entities become “nodes,” while the attributes that
link them become the “edges” of the graph. The graph information is stored separately from the ER results
so as to avoid improper integration of our resolved entities and linked entities. This graph can then be
leveraged for visualization and analysis.

Linkages between multiple entities form networks, which are important for a variety of applications,
including fraud and criminal investigations. This information can also be extremely informative for very
different purposes, such as social media ad campaigns.

Rigorous analysis of entity networks can lead to discoveries that are easily obscured by the large volumes
of data present--discoveries such as fraud rings, identity theft, and social media market penetration. This
analysis must be automated because the data volumes tend to be so large as to make manual analysis
infeasible. And the analytical algorithms applied at this stage are dependent upon the specific business
need.

There are some very sophisticated procedures for analyzing networks within the SAS platform; however,
the more sophisticated options are bundled into enterprise solutions such as SAS Fraud Framework. Since I
want to introduce you to the most widely available tools possible, I have focused on procedures that are
available in SAS/OR, a more generally available software suite that is more likely to be licensed by either
you or your employer.

7.2 Entity Network Mapping
The entity network mapping phase of the ERA process is, as usual, driven by the specific business needs
and available data. There are essentially two ways for networks of entities to be identified in your data
sources:

● Shared entity attributes

● Entity interactions

7.2.1 Shared Entity Attributes
When two entity references share one or more attributes, but not enough to be resolved as the same entity
reference, then you are able only to identify a relationship between them. The number and type of attributes
they share will shape how you characterize that relationship. The analyses demonstrated in Section 7.3 will
provide additional opportunities to characterize these relationships, and the networks formed by them.

Now, the shared entity attributes discussion is the most straightforward as it is a very similar process to that
of entity resolution, but with a different goal in mind.

There are many examples of entities that share attributes, such as a husband and wife sharing an address or
phone number, while not actually being the same entity. And I want to identify as many vectors along
which to establish and characterize such relationships in the soup of entity data I have available. However, I
still have to apply some logical boundaries in which to operate. That means that I’m not going to check
every entity reference attribute against every other, as that would be counterproductive. Rather, I want to
check reference attributes that could logically establish a relationship in geographical, temporal, or group
identity vectors. There are no hard and fast rules for how to choose these, but knowledge of your
application can guide logical research and decision-making here.

Chapter 7: Entity Network Mapping and Analysis 119

For example, I obviously don’t want to establish links between all individuals named Bob, as that wouldn’t
be useful information, especially since I’ve already resolved my entity references. Instead, I would want to
use attributes like address, phone number, or employer that allow me to establish and characterize a
relationship among entities. A collection of such links will form entity networks.

Below is a reminder of the PII data set I used quite a bit in Chapter 6, and the process for mapping shared
entity attributes is the same as resolving entities like I did there; however, I would do it only one attribute at
a time. Given the similarity, I don’t feel the need to repeat that work here as you have the tools to do it
already. However, I do want to make a few notes regarding the potential for network development.

Figure 7.1: PII Data Set Reminder

The entity networks formed by this activity can easily be heterogeneous in nature. As you might imagine,
entity references of very different types can share attributes of interest to investigators or researchers.

For example, you may have a database table of cell phones, as well as a table of people. Assuming that both
of these data tables have phone number as an attribute, you could use that share reference attribute about
the cell phones and the persons to generate a network of cell phones and persons. This is a very simplistic
example of how you can blend entity types as a means of revealing indirect relationships between real-
world entities of interest (usually persons). Depending on the context of application, the construction of
these heterogeneous networks can reveal anything from fraud rings to cancer clusters.

7.2.2 Entity Interactions
In addition to sharing attributes, such as address or phone number, entity references will appear that
characterize transactions where real-world entities are interacting based on the data (for example, a call log
showing just the phone numbers of a caller and recipient). This kind of data creates a record of interaction
between the phone number owners. So, I can use such information to establish a link between real-world
entities based on this kind of interaction between entity reference attributes.

120 Unstructured Data Analysis

In addition to simply having attributes in common, there are many instances when systems contain
information that demonstrates interactions between different entities. The types of interactions, and data
sources describing them, will determine what you will want to do with said information—all within the
business context. Since this becomes very context specific, and I can’t hope to cover every context, I will
proceed by way of example. I believe you can extrapolate effectively from the following.

In order to effectively demonstrate the interaction between entities, I have manually created a call log using
the phone numbers in the PII data set shown in Figure 7.2. Below is a sample of the 200 calls I manually
generated via copy and paste in a spreadsheet.

Figure 7.2: Phone Call Log Sample

Now, analyzing the call log information without the associated entity references is interesting, but less
informative, for my end goal of understanding how the entities are related. So, in the code below, I am
performing a left join with the originating data set pictured in Figure 7.2.

proc sql;
create table work.temp as
select B.From, B.To, A.last_name as ToName
from work.pii_data A left join work.phone_calls B
 on A.phone = B.To
;

create table work.CallMap as
select B.last_name as FromName, A.*
from work.temp A left join work.pii_data B
 on A.From = B.phone
 order by FromName
;
quit;

proc print data=work.CallMap;
run;

Chapter 7: Entity Network Mapping and Analysis 121

Output 7.1: Join of Names and Calls

Now that I have created a mapping between known entities, I want to characterize that mapping in advance
of doing any network analysis. The first characterization of the network will be the count of connections
among callers using PROC FREQ. Note that the PROC FREQ output is a matrix with call counts between
caller and recipient. I used the options NOPERCENT, NOCUM, NOROW, and NOCOL to generate this
simplified view. Also, while this is the view in my output below, it is a simplified structure for the data set
being stored as WORK.CALLMAP rather than a matrix.

proc freq data=work.callmap;
tables fromname*toname / out=work.counts nopercent nocum nocol norow;
run;

Output 7.2: Sample PROC FREQ Phone Log Counts

For the particular example I’m working with here, these counts will be used as network link weights
because that is just one way I can quantify the connection between these entities. However, there are
different applications and analyses that may have weights based on very different information, such as the
cost of traversing the network linkages or the distance these individuals live apart.

As another example, suppose a prior analysis has determined that the count of calls between individuals has
a nonlinear impact on the quality of their relationship. So, a count 6 would be far more interesting than a

122 Unstructured Data Analysis

count 2, for example. Under that scenario, we would want to apply a function to the counts in order to
create values in a matrix similar to Output 7.2, which would have incorporated this weighting in our matrix.

Again, context and business needs and available data drive how you will approach this phase of work; but
whatever you do will be a corollary to what I do herein. Just remember that the entire point of this step is to
attempt to quantify the relationship between entities in a meaningful way. You are wading into an area of
analytics with a lot of gray. There will rarely be a clean answer to questions regarding the absolute best
way to quantify relationships for your particular application—it will require interaction with subject matter
experts in your domain and experience.

7.3 Entity Network Analysis
There are many different analyses that you can execute on networks formed by the shared attributes or
interaction records of entities, from the most basic to the incredibly sophisticated. I will demonstrate just a
few network analysis techniques available to you in the SAS/OR suite, and discuss a few additional
analytical techniques that you may want to investigate further.

As with anything through this process, you will have to think very carefully about the business goals of any
ERA effort, and the data that you have to support the analysis work to be performed. For these reasons, I
am doing only a sampling of popular analyses, and hope you find them useful for your particular problem.

7.3.1 Articulation Points and Biconnected Components
There are a number of applications, such as managing power grids, telecom networks, or supply chains,
where it can be very important for you to know the articulation points. That will be clear as I go through a
national security example below.

Articulation points: Nodes in an undirected network graph that, once removed, disconnect the network,
creating two or more disconnected subnetworks. In other words, these are points of failure in your network.

The below example borrows heavily from an example used in the SAS documentation for PROC OPTNET
as it is a great way to demonstrate the biconnected graph and articulation point analysis available with the
procedure (the data is very interesting).

After the terrorist attacks on September 11, 2001, much research and analysis was performed on the
individuals involved, their contacts, and the broader community of supporters. Many publications have
published the entire list, and resulting network analysis. In the DATALINES below is the sample published
in the documentation for SAS/OR 14.3.1 This provides sufficient information to demonstrate the concept of
articulation point analysis in an entity network.

data work.TerrorNetwork;
 input from & $32. to & $32.;
 datalines;
Abu Zubeida Djamal Beghal
Jean-Marc Grandvisir Djamal Beghal
Nizar Trabelsi Djamal Beghal
Abu Walid Djamal Beghal
Abu Qatada Djamal Beghal
Zacarias Moussaoui Djamal Beghal
Jerome Courtaillier Djamal Beghal
Kamel Daoudi Djamal Beghal
Abu Walid Kamel Daoudi

Chapter 7: Entity Network Mapping and Analysis 123

Abu Walid Abu Qatada
Kamel Daoudi Zacarias Moussaoui
Kamel Daoudi Jerome Courtaillier
Jerome Courtaillier Zacarias Moussaoui
Jerome Courtaillier David Courtaillier
Zacarias Moussaoui David Courtaillier
Zacarias Moussaoui Ahmed Ressam
Zacarias Moussaoui Abu Qatada
Zacarias Moussaoui Ramzi Bin al-Shibh
Zacarias Moussaoui Mahamed Atta
Ahmed Ressam Haydar Abu Doha
Mehdi Khammoun Haydar Abu Doha
Essid Sami Ben Khemais Haydar Abu Doha
Mehdi Khammoun Essid Sami Ben Khemais
Mehdi Khammoun Mohamed Bensakhria
;

I created the basic data set of connections, TerrorNetwork, in the DATA step above. And with that data set,
I can use PROC OPTNET below to analyze the articulation points. Using the DATA_LINKS option, I
define the data set of links to be TerrorNetwork, and I create the data set NodeOut using the OUT_NODES
option. This data set contains the nodes and their articulation status artpoint. The articulation points are
found with PROC OPTNET by invoking the BICONCOMP statement, as I have done below. Note that this
statement works only on undirected network graphs. This is intuitive when you understand that this option
is just looking at the connection between network nodes, regardless of the directionality of that relationship.

proc optnet
 Data_Links = work.TerrorNetwork
 Out_Links = work.LinkOut
 Out_Nodes = work.NodeOut;
 biconComp;
run;

Now, in addition to generating the articulation points of my network, BICONCOMP also provides the
biconnected components of an undirected network. You can see in the above code that I am using the
OUT_LINKS option, generating the data set LinkOut, which will contain the mapping of my biconnected
components in the network with the variable biconcomp. The biconnected components are numbered in
order of discovery, and each link (from/to relationship) in my data set is then assigned to the affiliated
component.

Biconnected components: Connected subnetworks that cannot be broken into disconnected parts by
deleting any single node.

So, while articulation points reveal points of brittleness in your network, revealing biconnected components
helps you understand your robust subnetworks. Depending on your analytical goals, you may need to
identify these subnetworks separately to understand the ideal path for new linkages to increase redundancy
for a more robust overall network. However, in the terror network case that we are dealing with here, this
helps you identify closely tied subgroups or “cells” within the network. As terrorist group tactics have
evolved over time (they change rapidly in response to law enforcement efforts to thwart them), this concept
may become less dependable.

The articulation points identified in my network by PROC OPTNET are flagged in the NodeOut data set
with the binary variable Artpoint. So, I can view only my articulation points with a PROC PRINT
statement and a WHERE clause as shown in my code below. The result is shown in Output 7.3 below.

124 Unstructured Data Analysis

proc print data=work.NodeOut;
 where artpoint=1;
run;

Output 7.3: Articulation Points

PROC PRINT creates the results that you see below in Output 7.4. Notice that this output does not need
filtering as it is just printing each link in the original data set along with the component membership in the
biconcomp column. In the context of our working example, this component membership mapping
effectively shows the subgroups of our network.

proc print data=work.LinkOut;
run;

Output 7.4: Biconnected Components in Terror Network Example

The preceding outputs provide incredibly valuable information when making decisions about real-world
networks. Whether you are attempting to shut down terror network communications or improve the
robustness of your supply chain, the above analysis will give you the basic information that you need to
make sound, fact-based decisions.

Chapter 7: Entity Network Mapping and Analysis 125

7.3.2 Minimum Spanning Trees
Imagine you have been tasked with designing a system where each node in the network can reach every
other node in the network, using existing infrastructure, while minimizing the cost to do so. This is the
classic problem solved with minimum spanning trees, and running PROC OPTNET to solve for it is
relatively straightforward so long as you have the proper data. In other words, you need to have data that
relates to the cost of traversing or connecting that network as the minimum spanning tree algorithm is
attempting to minimize something.

Minimum spanning tree: a subset of links in a network that connects all the nodes together without any
cycles, and with minimum total cost.

Below is a simple example of the classic use for minimum spanning tree analysis. I have constructed by
hand a simple data set that you can follow to help you understand the concept. I will demonstrate a twist
with the call mapping data set from Section 7.2.2 after the below example is completed.

I have created a very simple data set below called MINSPAN, containing the node and link definitions that
include the cost to traverse between each node. The minimum spanning tree algorithm is applied to
undirected graphs; so, I have to provide only the From/To for one direction, shorting the definition of my
network. If you draw it out on paper, you can see that I have fully defined a 6-node network.

data work.minspan;
input From $ To $ Cost;
datalines;
A B 1
A C 3
A E 1
B D 2
B F 4
C D 1
C E 2
D F 1
;
run;

Using the above data in PROC OPTNET below, I have defined the necessary FROM, TO, and WEIGHT
elements with the DATA_LINKS_VAR statement. And I am invoking the minimum spanning tree
algorithm with MINSPANTREE. The resulting data set (the nodes that are part of the MST) is then written
to MST_CLASSIC.

proc optnet data_links=work.minspan;
 data_links_var from=from to=to weight=cost;
 minspantree out=work.MST_classic;
run;

The result of my minimum spanning tree can be viewed using the PROC PRINT statement below, which
you can see in Output 7.5.

proc print data=work.mst_classic;
run;

126 Unstructured Data Analysis

Output 7.5: Simple Network MST Results

Now, I want to focus on a different way to use this technique. Sticking with the law enforcement or
national security theme established in Section 7.3.1, suppose I want to understand the most influential
subnetwork.

Influence is a subjective concept that is usually measured by things like number of connections, emails,
calls, etc. It is whatever quantifiable measure for interaction that makes sense in the given context. So, I’m
going to apply this idea to the call mapping network generated in Section 7.2.2. I want to find the
subnetwork of individuals that are most influential on each other. This is just one way of looking at the
notion of influence or information flow in networks, and is based entirely on level of communication
between individuals. In this way, I have to assume that if persons A and B call each other daily, and B and
C also talk daily, then there is a high likelihood that information from person A will flow to person C (and
vice versa).

However, I have to make a change to my call map data set in order to use it in the minimum spanning tree.
Since I’m looking for those with the highest activity, I have to find the inverse of my call activity counts in
order for the minimum search to yield what I need.

data work.Inverted;
set work.counts;
Inverse = 1/count;
run;

In the DATA step above, I simply create the inverse of my count value from the call mapping result data
set COUNTS. That allows me to perform MST on the resulting data set INVERTED to see which
individuals created the highest communication channel or influence throughout my network.

proc optnet data_links=WORK.Inverted;
 data_links_var from=FromName to=ToName weight=Inverse;
 minspantree out=WORK.MST_links;
run;
proc print data=work.mst_links;
run;

Chapter 7: Entity Network Mapping and Analysis 127

The above code runs the MST on the INVERTED data set with the same settings as before, with the output
data set created as MST_LINKS. This resulting data set is the printed using PROC PRINT. See the results
below.

Output 7.6: MST of Inverse Value Call Map

As you can see in Output 7.6 above, the 50 call count pairs that formed my original network of counts has
been reduced to only 24 pairs. They are ranked from lowest to highest cost, meaning the top observations
actually had the highest call frequencies. So, these are, based on my data, the most influential entities in my
network. While the metric validity is possibly debatable, the notion that this is the most communicative
subnetwork is not. I say debatable here because such a simple metric may not truly be indicative of
influence—additional data may enable you to correlate this metric to the outcome that you want influenced,
thus validating or rejecting it in favor of something else. Influence is a tricky thing to measure, but simple
metrics about networks can be analyzed within your specific context to assess their utility.

You might be able to imagine at this point that the applications of this approach can quickly become quite
complex as I add vectors for connecting these network nodes (i.e., email, texts, etc.); however, I’ll let you
have fun exploring that on your own.

7.3.3 Clique Detection
Identifying cliques in a network can be another way to identify communities of influence or strong
association. For example, marketers like to use clique analysis to perform micro-targeting across social
media platforms—if your close friends are doing it, you might do it, too.

Clique: Subnetwork in which every node is connected to every other node in the subgraph.

128 Unstructured Data Analysis

Going back to the law enforcement domain, you can see that once I’ve identified a clique in my network, it
may either help me see who else is a bad actor, or persons to interview with potential knowledge of a
crime.

You can see below that I have pulled my call mapping COUNTS, with the CLIQUE statement used to find
cliques within the call data entirely on the undirected connection (i.e., the number of calls doesn’t matter
here, only that there was a call in one direction between the individuals).

proc optnet data_links=WORK.COUNTS loglevel=basic;
 data_links_var from=FromName to=ToName;
 clique out=WORK.MCP_cliques;
run;

proc print data=work.mcp_cliques;
run;

After my PROC OPTNET call, you can see the PROC PRINT output for the MCP_CLIQUES data set,
generated by OPTNET. Output 7.7 below shows only a sample of the results of PROC PRINT. The number
of cliques in my call data set is actually much higher than shown below, but you can see how the approach
works. Each person in a clique is shown with their associated clique number (automatically sorted by clique
number). So, you can see in Output 7.7 that ANDERSON, LEWIS, and THOMPSON form a clique of size
3, for example.

Output 7.7: Sample of Call Network Cliques

7.3.4 Minimum Cut
Depending on the business context, this can enable you to segment your network into two pieces,
comprising the most closely associated individuals based on linkage metrics—but not as close as a clique
or biconnected component. Think of these two pieces as communities or subnetworks that you want to
identify.

Chapter 7: Entity Network Mapping and Analysis 129

Minimum cut: The minimum cost bisection of the network into two disjoint sets.

Now, like with any optimization routine, you can have multiple solutions to your problem set, and thus
ways to generate the segmentation of your network. As a result, you can control the number of solutions
PROC OPTNET provides as output. I have chosen to show up to 3 possible solutions by setting the
MAXNUMCUTS to 3 in the below code.

proc optnet data_links=WORK.COUNTS graph_direction=undirected loglevel=basic
outnodes = MinCuts;
 data_links_var from=FromName to=ToName weight=count;
 mincut
 out=WORK.CallMinCut
 maxnumcuts=3;
run;

As with the other analyses I have explored, OPTNET is set to use WORK.COUNTS as an UNDIRECTED
data source. And I have invoked the MINCUT statement to tell PROC OPTNET to perform the minimum
cut algorithm.

In the below code, I have a PROC PRINT statement for both the MINCUTS and CALLMINCUT data sets,
which contain the partition mapping and link sets for the mincut, respectively.

proc print data=work.MinCuts;
run;

proc print data=work.callmincut;
run;

In Output 7.8 below, you can see there is a binary value associated with each node in my network and
every mincut generated. The binary value shows how the network nodes are partitioned (all the 0 nodes are
in one partition, while all the 1 nodes are in the other). You can also see that this example doesn’t offer a
very interesting partition set. This is just an artifact of my phone call data set. As you try different data
sources, with different levels of connectedness and weighting, you will see the partitions and mincut sets
change dramatically. I would encourage you to play with some sample data sets to get more comfortable
with how to use Mincut in the future.

130 Unstructured Data Analysis

Output 7.8: Node MinCut Matrix

You can see the output for the CALLMINCUT data set below. It contains the link sets broken by the
mincut algorithm associated with each mincut generated by PROC OPTNET. Each record includes the
weight values for those links as well as the mincut set to which they belong. So, taking the first mincut set
as an example, you can see that the JOHNSON node is isolated into its own partition in Output 7.8 above,
and the two broken links for JOHNSON are listed in Output 7.9 below.

Output 7.9: Sets of Minimum Cut Pairs

How you ultimately use this information will depend entirely on your business goals. Suppose you are a
marketer that needs to partition the network based on a specific metric to identify communities of interest
within your market territory. Alternatively, you may be working to identify ideal targets for breaking up a
criminal organization.

Chapter 7: Entity Network Mapping and Analysis 131

7.3.5 Shortest Paths
I will end the overview of analyses with a discussion of shortest paths with PROC OPTNET. There are
many applications where you may want to understand the shortest distance (or lowest cost path) between
two entities within a network. This determination of distance or cost can be whatever metric makes the
most sense for your particular business problem. For example, communications network routing
optimization would probably use network latency data as the metric, while a supply chain optimization
problem could use financial cost, time, or distance.

Source: The starting node input to a shortest path search algorithm.

Sink: The ending node input to a shortest path algorithm.

For convenience, I’m going to reuse the COUNTS data set I have worked with a bit in this chapter already.
Even though the data set is generated to show the counts of calls between individuals, we can imagine it is
the cost of traversing that edge instead. I’m again doing this out of convenience as I want to focus on the
analysis, and not be so concerned about a new data set.

I’m starting with the code below by showing you how to create all the shortest paths for a network. By
specifying only shortest path analysis using the SHORTPATH statement, without identifying source and
sink nodes, I will get every permutation of shortest paths for my data set. The resulting paths and path
weights are written to SPP_PATHS and SPP_WEIGHTS respectively, which are shown in Output 7.10 and
Output 7.11 below.

proc optnet data_links=WORK.COUNTS graph_direction=undirected loglevel=basic;
 data_links_var from=FromName to=ToName weight=COUNT;
 shortpath
 out_paths=WORK.SPP_Paths
 out_weights=WORK.SPP_Weights;
run;

proc print data=work.spp_paths;
run;

proc print data=work.spp_weights;
run;

The shortest path permutations for the COUNTS data set results in 1,962 records, of which I show only a
sample in Output 7.10 below (WORK.SPP_PATHS). This data set contains a record for every segment of
the source, sink path.

132 Unstructured Data Analysis

Output 7.10: All Shortest Paths

Below, Output 7.11 is a sample of the shortest path weight data set (WORK.SPP_WEIGHTS), containing
600 records. Notice that this output shows just one record for every source, sink pair as it is the total weight
for that entire path.

Output 7.11: Path Weight Totals

Chapter 7: Entity Network Mapping and Analysis 133

Now that I have reviewed how to find all the shortest paths within the source data set, COUNTS, I want to
show you how to make a couple of minor tweaks to the code to specify a single source and sink.

proc optnet data_links=WORK.COUNTS graph_direction=undirected loglevel=basic;
 data_links_var from=FromName to=ToName weight=COUNT;
 shortpath
 source=ANDERSON
 sink=CLARK
 out_paths=WORK.SourceSink_Paths
 out_weights=WORK.SourceSink_Weights;
run;

Notice in the above code that all I have to do is add the options, SOURCE= and SINK= after the
SHORTPATH statement. Further notice that the text information that I put into the options is not
surrounded by quotation marks, but simply typed in. I have identified my source as ANDERSON and my
sink value as CLARK. You can see the difference in Output 7.12 below.

proc print data=work.sourcesink_paths;
run;

proc print data=work.sourcesink_weights;
run;

Output 7.12: Path and Weight Results

Output 7.12 above shows the shortest path between Anderson and Clark, with all the segments in the first
PROC PRINT result and the total path weight in the second PROC PRINT result.

134 Unstructured Data Analysis

7.4 Summary
In this chapter, I walked through methods for mapping networks of entities based on shared characteristics
or interactions, and demonstrated a variety of analyses that you can perform on the resulting maps. I hope
you found this enlightening and motivating, and a practical assistance to your work.

Keep in mind that there are many different approaches to the same problem in SAS. And I hope you
experiment with different variations on the methods and approaches I have shown thus far.

I am going to wrap up in the next chapter by focusing on entity management, the final phase of the ERA
process. The focus on entity management will be less technical than the information covered thus far.
Instead, I will concentrate on the policy and business aspects to effectively managing your entity reference
data.

1 SAS Institute Inc., SAS/OR® 14.3 User’s Guide: Network Optimization Algorithms (Cary, NC:
SAS Institute Inc.: 2017), 106–107, http://support.sas.com/documentation/onlinedoc/or/143/ornoaug.pdf.

Chapter 8: Entity Management
8.1 Introduction ... 135
8.2 Creating New Records .. 137
8.3 Editing Existing Records .. 138
8.4 Summary .. 138

8.1 Introduction
It is important for every organization to maintain an authoritative repository of entity references, regardless
of the end use. Such a repository allows organizations to compare incoming entity references against an
existing, authoritative source. So, in this chapter, I’m going to discuss some best practices to ensure that
you are thinking about how to build and maintain a clean entity repository.

Figure 8.1: ERA Flow with Entity Management Focus

A repository facilitates the ability of an organization to avoid a host of problems such as these:

◦ duplicate customer accounts

◦ incorrect invoicing

◦ improperly sharing personally identifiable information (PII)

◦ identity theft

◦ inability to perform entity-level analytics

When you “see” an entity reference for the first time, you know very little about it compared to an entity
that is known to your organization. So, when thinking about reference management, you have to think
about the primary aspects of the vetting process with the business context in mind.

Specifically, what is your business process trying to achieve? What do you need to do with this entire
workflow? For instance, when applying the end-to-end ERA process in a retail customer relationship
management setting as compared to a law enforcement intelligence gathering setting, the decision criteria
for inclusion or exclusion of entity references will be very different. In addition, the criteria for making
updates to the entity database will differ by specific business needs.

I have outlined a generic workflow for managing entity references, regardless of business context, in Figure
8.2. The goal here is really to provide guidelines for how to approach entity management rather than a
prescriptive process, as the business context makes the specific needs vary.

However, I will walk through these elements as a means of helping you think through the details of this
process.

Entity Extraction ETL Entity
Resolution

Entity Network
Mapping and

Analysis

Entity
Management

136 Unstructured Data Analysis

Figure 8.2: Entity Management Workflow

The first step in the process is to assess the entity reference to determine whether it even has enough
information to be reviewed for incorporation in the entity database. I anticipate that your work in this vein
is accompanied by the planning documentation discussed in Chapter 3, because that will contain most of
the information that you need at this stage to assess entity references—filtering out the ones that don’t even
contain enough of your key criteria for consideration.

Next, use the entity database shown in Figure 8.2 as the gold standard for determining the surviving
reference (the concept of surviving references was discussed in Section 6.3). If the precise entity reference
being assessed already exists in your database, the database record will remain unchanged. Keep in mind
that “precise” is based on your predefined match criteria. However, if the entity reference is substantively
different from what already exists in the database, a new record is created using the newly identified
reference.

If the newly discovered reference is for a currently tracked entity, but contains new information, you may
need to update the existing database records. This will depend on the documented decisions regarding
matching thresholds in your database. And the thresholds will be driven by the risk preferences of your
specific context.

As always, the criteria for each decision go back to the context in which you are working. The context of
your application will determine the entity matching thresholds, error tolerances, and criteria for adding or
updating the entity references.

Example: A customer relationship management system within a large company determines whether an
incoming order is from either a new or existing customer. If it is a new customer, then a new identity record
is created in the system. Otherwise, the order information is associated with an existing identity.

In the CRM system example above, the company must protect personally identifiable information (PII) at
the possible risk of creating duplicate entity records. The potential risk to both the customer and the

Chapter 8: Entity Management 137

company of duplicate records is much lower than that of accidental sharing of PII. I will discuss more
about the criteria for creating new records in the next section.

The same is true for possibly editing the current customer record, as you wouldn’t want to accidentally
update the records for entities that are similar, but actually different in reality. I will discuss that further in
Section 8.3.

8.2 Creating New Records
Establishing a new entity reference in your system of record requires a high level of certainty in order to
avoid duplicate records. So, you need to create a records management plan—if you don’t already have
one—that identifies the specific elements of each entity reference that must be “new” in order to create a
new entry in your entity database. And you must ensure through rigorous testing of your source data that
new entries are not generated erroneously.

So, as part of the records management plan, you should have lists of data elements by the sensitivity of
information that they contain, and by how frequently they change. The sensitivity aspect will inform your
data handling policies (outside the scope of this text), while the frequency of information changes will drive
which elements you can depend on for your gold standard entity reference data (i.e., what you will match
on).

Depending on your context, you should have several elements of an entity that never change:

Social Security number (SSN)
date of birth (DOB)
place of birth (POB)
gender at birth

Simultaneously, there are elements of an entity that may change, but relatively infrequently or rarely:

full name
marital status

And finally, there are other elements that are likely to change much more frequently:

address
phone number
credit card number

By establishing a plan for which elements never change in your context, you can ensure that the entity
reference being evaluated will be accurate with a high level of certainty. If it is not possible to depend
entirely on elements that never change, then some combination of elements that never change with
elements that change very rarely should provide a robust set of thresholds. The final determination for the
best approach should be based on testing your plan on the available database. Regardless, you should avoid
using the elements that change frequently, as it is too likely to generate new entities erroneously.

138 Unstructured Data Analysis

8.3 Editing Existing Records
Depending on your business context, making updates to existing entities requires an even higher level of
confidence to certify the entity reference. Why? Well, under many circumstances, it would be worse to edit
an existing entity reference entry in the database than to accidentally add a new entry.

Example: Similar, but different, customer records get mixed up. The potential impacts include sharing of
PII, or incorrectly addressed items. Depending upon the scale of the mistake, this could lead to catastrophic
impact to your business.

So, again, you have to go back to your risk tolerance for the business context at hand, and establish rules
and processes to protect existing records from being updated based on your risk attitude.

Accordingly, if the resulting threshold for existing record matches is not achieved, absolutely no automated
updates should occur. At that point, a human would need to intervene in order to force the system updates
to occur. Appropriate logging of their activity should also be enforced under such circumstances. An
emphasis on protecting entity reference data cannot be overstated here, which is why you should always
take redundant measures to protect user privacy and avoid corrupting your data stores.

Always refer back to a records management plan, or system of record documentation, to ensure you are
appropriately following your institution’s policies. These policies have both practical and legal implications
for your organization, and should be adhered to as closely as possible. When they are unclear, work with
management to get clarification, and document that clarification for future reference.

If such documents do not exist, work with your management to create them. And realize these documents
do not necessarily need to conform to a specific format. It is more important that they clearly communicate
to the recipient the information needed to establish clear policies and processes, and how said reader can
follow them. Due to the practical and legal implications, you will generally have some foundational
framework within which you have to work for your industry. So, you should have a starting point, and a
control board to review your documentation. However, whatever you put together must be clear for the
eventual reader. If a policy or process for managing your entity reference database is unclear for readers,
they will possibly make the wrong decisions with a document that has been thoroughly vetted. Effective
documentation is worth the effort.

8.4 Summary
We have finally arrived at the end of the book. This chapter was a brief dissection of the key elements that
you need to be thinking about for managing entities in your business context. I hope this has proven a
useful introduction to the concepts for entity resolution analytics, as well as provided you some new tools
for tackling a diverse set of problems in your work.

We have come a long way from just getting started with regular expressions, to now applying some
relatively powerful analytics with concepts built on that foundation. Each topic area that we have explored
in this book really could have been its own book. I hope you walk away equipped to handle these different
topics, while appreciating that there is so much more to learn in each. And I hope you use this introduction
as a jumping off point to dig deeper into whatever areas you found most intriguing.

Thank you for reading, and happy coding!

Appendix A: Additional Resources
A.1 Perl Version Notes ... 139
A.2 ASCII Code Lookup Tables ... 140

A.2.1 Non-Printing Characters ... 140
A.2.2 Printing Characters ... 141

A.3 POSIX Metacharacters ... 145
A.4 Random PII Generation .. 147

A.4.1 Random PII Generator .. 147
A.4.2 Output .. 152

A.1 Perl Version Notes
This section contains notes about the limitations of the Perl version that is used by SAS 9.4.1 It is intended
for the Perl experts out there who are wondering about some of the missing pieces within SAS. The
information below was taken directly from the SAS website and is provided here with some slight
modifications because it is somewhat difficult information to find but is potentially very useful to the
advanced reader of this book.

The PRX functions use a modified version of Perl 5.6.1 to perform regular expression compilation and
matching. Perl is compiled into a library for use with SAS. This library is shipped with SAS® 9. The
modified and original Perl 5.6.1 files are freely available in a ZIP file from the Technical Support Web site.
The ZIP file is provided to comply with the Perl Artistic License and is not required in order to use the
PRX functions. Each of the modified files has a comment block at the top of the file describing how and
when the file was changed. The executables were given nonstandard Perl names. The standard version of
Perl can be obtained from the Perl Web site.

Only Perl regular expressions are accessible from the PRX functions. Other parts of the Perl language are
not accessible. The modified version of Perl [RegEx] does not support the following items:

● All Perl variables, except for the capture buffer variables $1 - $n

● Metacharacters \G, \pP, \PP, and \X

● RegEx options /c and /g, and /e with substitutions

● Named characters (i.e., \N{name})

● Executing Perl code within a regular expression, which includes the syntax (?{code}), (??{code}),
and (?p{code})

● Unicode pattern matching

● Pattern delimiters other than the backslash. For example: ?PATTERN?, !PATTERN!, etc.

● Perl code comments between a pattern and replacement text. For example: s{regexp} #perl
comment {replacement text}

● Using matching backslashes with m/\\\\/ instead of m/\\/ to match a backslash2

140 Unstructured Data Analysis

A.2 ASCII Code Lookup Tables

A.2.1 Non-Printing Characters

Binary Hex Dec Oct
ASCII
Abbr.

Crtl Character
(Command
Prompt Display) Description

0000 0000 00 0 000 NUL ^@ Null Character

0000 0001 01 1 001 SOH ^A Start of Header

0000 0010 02 2 002 STX ^B Start of Text

0000 0011 03 3 003 ETX ^C End of Text

0000 0100 04 4 004 EOT ^D End of Transmission

0000 0101 05 5 005 ENQ ^E Enquiry

0000 0110 06 6 006 ACK ^F Acknowledgment

0000 0111 07 7 007 BEL ^G Bell

0000 1000 08 8 010 BS ^H Backspace

0000 1001 09 9 011 HT ^I Horizontal Tab

0000 1010 0A 10 012 LF ^J Line Feed

0000 1011 0B 11 013 VT ^K Vertical Tab

0000 1100 0C 12 014 FF ^L Form Feed

0000 1101 0D 13 015 CR ^M Carriage Return

0000 1110 0E 14 016 SO ^N Shift Out

0000 1111 0F 15 017 SI ^O Shift In

0001 0000 10 16 020 DLE ^P Data Link Escape

0001 0001 11 17 021 DC1 ^Q Device Control 1
(oft. XON)

0001 0010 12 18 022 DC2 ^R Device Control 2

0001 0011 13 19 023 DC3 ^S Device Control 3
(oft. XOFF)

0001 0100 14 20 024 DC4 ^T Device Control 4

0001 0101 15 21 025 NAK ^U Negative
Acknowledgment

0001 0110 16 22 026 SYN ^V Synchronous Idle

Appendix A: Additional Resources 141

Binary Hex Dec Oct
ASCII
Abbr.

Crtl Character
(Command
Prompt Display) Description

0001 0111 17 23 027 ETB ^W End of Transmission
Block

0001 1000 18 24 030 CAN ^X Cancel

0001 1001 19 25 031 EM ^Y End of Medium

0001 1010 1A 26 032 SUB ^Z Substitute

0001 1011 1B 27 033 ESC ^[Escape

0001 1100 1C 28 034 FS ^\ File Separator

0001 1101 1D 29 035 GS ^] Group Separator

0001 1110 1E 30 036 RS ^^[j] Record Separator

0001 1111 1F 31 037 US ^_ Unit Separator

0111 1111 7F 127 177 DEL ^? Delete

A.2.2 Printing Characters

Binary Hex Dec Oct
Display
Character

0010 0000 20 32 040

0010 0001 21 33 041 !

0010 0010 22 34 042 "

0010 0011 23 35 043 #

0010 0100 24 36 044 $

0010 0101 25 37 045 %

0010 0110 26 38 046 &

0010 0111 27 39 047 '

0010 1000 28 40 050 (

0010 1001 29 41 051)

142 Unstructured Data Analysis

Binary Hex Dec Oct
Display
Character

0010 1010 2A 42 052 *

0010 1011 2B 43 053 +

0010 1100 2C 44 054 ,

0010 1101 2D 45 055 -

0010 1110 2E 46 056 .

0010 1111 2F 47 057 /

0011 0000 30 48 060 0

0011 0001 31 49 061 1

0011 0010 32 50 062 2

0011 0011 33 51 063 3

0011 0100 34 52 064 4

0011 0101 35 53 065 5

0011 0110 36 54 066 6

0011 0111 37 55 067 7

0011 1000 38 56 070 8

0011 1001 39 57 071 9

0011 1010 3A 58 072 :

0011 1011 3B 59 073 ;

0011 1100 3C 60 074 <

0011 1101 3D 61 075 =

0011 1110 3E 62 076 >

0011 1111 3F 63 077 ?

0100 0000 40 64 100 @

0100 0001 41 65 101 A

0100 0010 42 66 102 B

Appendix A: Additional Resources 143

Binary Hex Dec Oct
Display
Character

0100 0011 43 67 103 C

0100 0100 44 68 104 D

0100 0101 45 69 105 E

0100 0110 46 70 106 F

0100 0111 47 71 107 G

0100 1000 48 72 110 H

0100 1001 49 73 111 I

0100 1010 4A 74 112 J

0100 1011 4B 75 113 K

0100 1100 4C 76 114 L

0100 1101 4D 77 115 M

0100 1110 4E 78 116 N

0100 1111 4F 79 117 O

0101 0000 50 80 120 P

0101 0001 51 81 121 Q

0101 0010 52 82 122 R

0101 0011 53 83 123 S

0101 0100 54 84 124 T

0101 0101 55 85 125 U

0101 0110 56 86 126 V

0101 0111 57 87 127 W

0101 1000 58 88 130 X

0101 1001 59 89 131 Y

144 Unstructured Data Analysis

Binary Hex Dec Oct
Display
Character

0101 1010 5A 90 132 Z

0101 1011 5B 91 133 [

0101 1100 5C 92 134 \

0101 1101 5D 93 135]

0101 1110 5E 94 136 ^

0101 1111 5F 95 137 _

0110 0000 60 96 140 `

0110 0001 61 97 141 a

0110 0010 62 98 142 b

0110 0011 63 99 143 c

0110 0100 64 100 144 d

0110 0101 65 101 145 e

0110 0110 66 102 146 f

0110 0111 67 103 147 g

0110 1000 68 104 150 h

0110 1001 69 105 151 i

0110 1010 6A 106 152 j

0110 1011 6B 107 153 k

0110 1100 6C 108 154 l

0110 1101 6D 109 155 m

0110 1110 6E 110 156 n

0110 1111 6F 111 157 o

0111 0000 70 112 160 p

Appendix A: Additional Resources 145

Binary Hex Dec Oct
Display
Character

0111 0001 71 113 161 q

0111 0010 72 114 162 r

0111 0011 73 115 163 s

0111 0100 74 116 164 t

0111 0101 75 117 165 u

0111 0110 76 118 166 v

0111 0111 77 119 167 w

0111 1000 78 120 170 x

0111 1001 79 121 171 y

0111 1010 7A 122 172 z

0111 1011 7B 123 173 {

0111 1100 7C 124 174 |

0111 1101 7D 125 175 }

0111 1110 7E 126 176 ~

A.3 POSIX Metacharacters
Throughout the book, we discussed metacharacters of all types that adhere to Perl standards (de facto
standard across the industry) for implementation since they are what SAS uses. And they are all that you
need when you’re running within the SAS environment. However, if you ever need to push the RegEx
processing to a system outside of SAS, there is no guarantee that they will always work because not all
systems use Perl syntax (mostly older systems don’t).

Note: When you are attempting this more advanced application, know the parameters of the system you are
using. You might not need to change the RegEx coding.

The exact applications of the metacharacters described in this section are outside the scope of this text but
are provided here for the advanced reader who is interested in them. For example, although we have not
covered it, POSIX metacharacters might be needed when you are performing in-database fuzzy matching
with PROC SQL.

146 Unstructured Data Analysis

[[:alpha:]]
This metacharacter matches any alphabetic character and is equivalent to [a-zA-Z].

[[:^alpha:]]
This metacharacter matches any non-alphabetic character and is equivalent to [^a-zA-Z].

[[:alnum:]]
This metacharacter matches any alphanumeric character and is equivalent to [a-zA-Z0-9].

[[:^alnum:]]
This metacharacter matches any non-alphanumeric character and is equivalent to [^a-zA-Z0-9].

[[:ascii:]]
This metacharacter matches any ASCII character and is equivalent to [\0-\177] (i.e., it does not match
UNICODE).

[[:^ascii:]]
This metacharacter matches any non-ASCII character and is equivalent to [^\0-\177] (i.e., it matches
UNICODE).

[[:blank:]]
This metacharacter matches any blank character.

[[:^blank:]]
This metacharacter matches any non-blank character.

[[:cntrl:]]
This metacharacter matches any control character.

[[:^cntrl:]]
This metacharacter matches any non-control character.

[[:digit:]]
This metacharacter matches any digit character and is equivalent to \d or [0-9].

[[:^digit:]]
This metacharacter matches any non-digit character and is equivalent to \D and [^0-9].

[[:graph:]]
This metacharacter matches any visible character and is equivalent to [[:alnum:][:punct:]]. In other
words, if you can see it when printed on a piece of paper, then it is matched by this metacharacter.

[[:^graph:]]
This metacharacter matches any non-printing character and is equivalent to [^[:alnum:][:punct:]]. If
you can’t see it printed on a piece of paper, then it is matched by this metacharacter.

[[:lower:]]
This metacharacter matches any lowercase alphabetic character and is equivalent to [a-z].

[[:^lower:]]
This metacharacter matches anything except a lowercase alphabetic character and is equivalent to [^a-
z].

Appendix A: Additional Resources 147

[[:print:]]
This metacharacter prints a string of characters—any characters encountered.

[[:^print:]]
This metacharacter does not print any characters.

[[:punct:]]
This metacharacter matches any visible punctuation or symbol character.

[[:^punct:]]
This metacharacter matches anything except visible punctuation or symbol characters.

[[:space:]]
This metacharacter matches any space character and is equivalent to \s.

[[:^space:]]
This metacharacter matches anything except a space character and is equivalent to \S.

[[:upper:]]
This metacharacter matches any uppercase alphabetic characters and is equivalent to [A-Z].

[[:^upper:]]
This metacharacter matches all non-uppercase alphabetic characters and is equivalent to [^A-Z].

[[:word:]]
This metacharacter matches any word character encountered and is equivalent to \w.

[[:^word:]]
This metacharacter matches any non-word characters and is equivalent to \W.

[[:xdigit:]]
This metacharacter matches any hexadecimal character.

[[:^xdigit:]]
This metacharacter does not match a hexadecimal character.

A.4 Random PII Generation
The output from the code discussed in this section is used throughout the book. To avoid the distraction of
your encountering it embedded in the chapters, I have moved it to the appendix for you to study outside the
flow of the book. I hope you find this a sensible approach, and easy to follow. It is best to review this
section, and run the included code, starting in Chapter 4, Entity Extraction, as that is where I introduce the
output for those examples.

A.4.1 Random PII Generator
The following code was developed to provide a set number of randomly generated elements for the
purposes of the following examples. This process is an effort to replicate the kind of data we all see on a
regular basis, PII, without encountering the usual privacy issues associated with it. As we will see in the
code, every effort was made to make these elements feel real. However, it is worth noting that more
advanced techniques (and more efficient techniques) were not employed because of the introductory nature

148 Unstructured Data Analysis

of this text. If you’re interested, use this code as a baseline to develop a more sophisticated and efficient
random PII generator. Doing so is a great way to support both learning and real-world development work.

Note: All occurrences of PII shown in the coming pages were generated in a random fashion. Any
resemblance to actual PII is completely coincidental.

A static snapshot of randomly generated data is used below, and it is not guaranteed to be replicated. But
the parameters for any data set that is created by this code will be the same for any data set. Also, the code
uses a few different methods for creating the various data elements. I want to demonstrate the variety of
methods available to us for doing any task in SAS.

Much of this code is unavoidably long due to the steps taken to create names, addresses, and other
information. However, I hope it is commented well enough for you to follow. It should be easy to
understand, and update to your needs, after you have run through it a few times.

/*First, we create data sets for First and Last names*/
data FirstNames; ❶
input Firstname $20.;
/*Common First Names (male and female) in the United States*/
datalines;
JAMES
JOHN
ROBERT
MICHAEL
WILLIAM
DAVID
RICHARD
CHARLES
JOSEPH
THOMAS
CHRISTOPHER
DANIEL
PAUL
MARK
DONALD
GEORGE
KENNETH
STEVEN
EDWARD
BRIAN
RONALD
ANTHONY
KEVIN
JASON
MATTHEW
MARY
PATRICIA
LINDA
BARBARA
ELIZABETH
JENNIFER
MARIA
SUSAN
MARGARET
DOROTHY
LISA

Appendix A: Additional Resources 149

NANCY
KAREN
BETTY
HELEN
SANDRA
DONNA
CAROL
RUTH
SHARON
MICHELLE
LAURA
SARAH
KIMBERLY
DEBORAH
;
run;

data surnames;
input Surname $20.;
/*Common Last Names in the United States*/
datalines;
SMITH
JOHNSON
WILLIAMS
JONES
BROWN
DAVIS
MILLER
WILSON
MOORE
TAYLOR
ANDERSON
THOMAS
JACKSON
WHITE
HARRIS
MARTIN
THOMPSON
GARCIA
MARTINEZ
ROBINSON
CLARK
RODRIGUEZ
LEWIS
LEE
WALKER
;
run;

/*Next, we take a simple random sample of a fixed number of names*/
proc surveyselect data=firstnames method=srs n=25 ❷
 out=firstnamesSRS;
run;
proc surveyselect data=surnames method=srs n=25
 out=surnamesSRS;
run;

150 Unstructured Data Analysis

/*We must create an index value to perform match-merge on later*/
data firstnamesSRS;
set firstnamesSRS;
 Num=_N_;
run;
data surnamesSRS;
set surnamesSRS;
 Num=_N_;
run;

data PII_Numbers;
n = 25; /*Determines the number of records we will create.*/

/*Arrays used for random day creation below*/➌
array x x1-x12 (1:12);
array d d1-d28 (1:28);
array a a1-a30 (1:30);
array y y1-y31 (1:31);
array z z1-z20 (1974:1994);
seed=1234567890123; /*Random Number Seed Value*/

do i= 1 to n; /*Master Loop for PhoneNumber, Date of Birth, and SSN*/
 Num=i; /*Num is used as a unique index value for data set merging later*/
 /*First, we randomly create the number segments*/➍
 CountryCode = Strip(INT(10*rand('UNIFORM')));
 AreaCode =
Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM')
));
 NextThree =
Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM')
));
 LastFour =
Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM')
)||INT(10*rand('UNIFORM')));

 /*Next, we randomly create common separator types*/
 separator = rand('UNIFORM'); ➎
 if separator >= .66 then do;
 PhoneNumber = Compress(CountryCode||'-'||AreaCode||'-'||NextThree||'-
'||LastFour);
 end;
 else if separator >=.33 AND separator <.66 then do;
 PhoneNumber = Compress(CountryCode||'
'||'('||AreaCode||')'||NextThree||'-'||LastFour);
 end;
 else if separator <.33 then do;
 PhoneNumber =
Compress('+'||CountryCode||'.'||AreaCode||'.'||NextThree||'.'||LastFour);
 end;

 /*Social Security Number*/ ➏
 SSN=Compress(INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UN
IFORM'))||'-'||
 INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||'-'||

 INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT(10*rand('UNIFORM'))||INT
(10*rand('UNIFORM')));

Appendix A: Additional Resources 151

 /*Date Of Birth*/
 call ranperk(seed, 1, of x1-x12); ➐
 month=x1;
 if x1=2 then do;
 call ranperk(seed, 1, of d1-d28);
 day=d1;
 end;
 else if x1 in (4,6,9,11) then do;
 call ranperk(seed, 1, of a1-a30);
 day=a1;
 end;
 else if (x1=1|x1=3|x1=5|x1=7|x1=8|x1=10|x1=12) then do;
 call ranperk(seed, 1, of y1-y31);
 day=y1;
 end;
 call ranperk(seed, 1, of z1-z20);
 year=z1;
 DOB=compress(month||'/'||day||'/'||year);

 output; /*OUTPUT must be made explicit within a DO LOOP*/
end; /*The DATA step only runs once because there is no data.*/

keep Num SSN DOB PhoneNumber; /*The only elements we need for the next step*/
run;

/*Now we extract the addresses from a file using RegEx*/
data Addresses;
infile 'F:\Unstructured Data Analysis\Appendix_A_Example_Source\addresses.txt'
length=linelen lrecl=500 pad;
varlen=linelen-0;

input source_text $varying500. varlen; ➑
pattern = "/^(\d+?)\t(.+)/o";
pattern_ID = prxparse(pattern);
position = PRXMATCH(pattern_ID, source_text);

if PRXMATCH(pattern_ID, source_text) then do;
 Num = PRXPOSN(pattern_ID, 1, source_text) * 1;
 Address = PRXPOSN(pattern_ID, 2, source_text);
end;

keep Num Address;
run;

proc print data=addresses;
run;

/*Now, we create the PII data set with match-merge*/ ➒
data PII;
merge firstnamesSRS surnamesSRS PII_Numbers addresses;
by num;
drop num;
run;

proc print data=PII;
run;

152 Unstructured Data Analysis

❶ We start with an easy way to create pseudo-random names, by just creating name data sets using data
lines. It is not elegant or short, but it gets the job done for our purposes.

❷ Here we are sampling the name data sets, using simple random sampling and a sample size of n=25.
The sample size is completely arbitrary and chosen to match the number of other random values
created later in the code.

➌ The arrays are created to ensure that legitimate date values can be created for our arbitrary range of
years. To avoid any complications, we are ignoring leap years (no Feb 29th in the set of possibilities)
and are using an arbitrary set of 4-digit years. The seed value is an arbitrary number.

➍ Now, we construct the phone number by using the RAND function (UNIFORM option) to generate the
individual digits. The INT function takes the integer portion of a value, so multiplying the random
value between 0 and 1 by 10 and applying the INT function yields a single digit between 0 and 9. This
method ensures that zero values are not dropped (a leading zero would otherwise not be held). Other
methods can achieve the same outcome, but this is a straightforward implementation without the need
for arrays. The COMPRESS function is used to remove all spaces between the connected values.
However, removing this function is an easy way to make the data messier.

➎ After creating the individual chunks of a phone number, we randomly assign different separator types
in an effort to demonstrate the various representations that might be expected in practice.

➏ Next, we create Social Security numbers (SSNs) by applying the same techniques as with the phone
numbers immediately above. However, we are not randomizing the separator. It is less often an issue,
but you could do it as an extracurricular exercise.

➐ We now build the date of birth (DOB) using the arrays discussed in ➌ and the RANPERK function.
This function creates random permutations of the provided arrays and provides k values from the
results. Other methods could have been employed, but this is a simple approach to create random date
elements within a specific range (i.e., valid dates).

➑ The DATA step for addresses uses some familiar RegEx functionality to extract addresses from a text
file, along with the Num value that allows us to perform a match-merge in the next step.

➒ This final DATA step creates a single data set, PII, from the above elements.

A.4.2 Output
Output A.1 displays the final data set created by our code, Rand_PII_Generator.sas. As expected, it
contains 25 pseudo-random PII elements to support some of our upcoming examples.

Appendix A: Additional Resources 153

Output A.1: Rand_PII_Generator.sas Sample Output

1 The available Perl RegEx functionality has not changed since SAS 9.1. These notes are current as of the
writing of this book. For the most up-to-date information regarding versioning, please visit the
SAS documentation website at: http://support.sas.com/documentation/.

2 SAS Institute Inc. “Perl Artistic License Compliance,” SAS® 9.4 Functions and CALL Routines:
Reference, Fifth Edition,
http://support.sas.com/documentation/cdl/en/lefunctionsref/67239/HTML/default/viewer.htm#p0tw80fkq
qpow5n1f7xwvd6bsonq.htm (accessed August 29, 2018).

154 Unstructured Data Analysis

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2017 SAS Institute Inc. All rights reserved. M1588358 US.0217

Be among the fi rst to know about new books,
special events, and exclusive discounts.

support.sas.com/newbooks

Share your expertise. Write a book with SAS.
support.sas.com/publish

sas.com/books
for additional books and resources.

Ready to take your SAS®
and JMP®skills up a notch?

	Contents
	About This Book
	Software Used to Develop the Book's Content
	Example Code and Data
	SAS University Edition

	Acknowledgments
	Chapter 1: Getting Started with Regular Expressions
	1.1.1 Defining Regular Expressions
	1.1.2 Motivational Examples
	1.1.3 RegEx Essentials
	1.1.4 RegEx Test Code
	1.3.1 Wildcard
	1.3.2 Word
	1.3.3 Non-word
	1.3.4 Tab
	1.3.5 Whitespace
	1.3.6 Non-whitespace
	1.3.7 Digit
	1.3.8 Non-digit
	1.3.9 Newline
	1.3.10 Bell
	1.3.11 Control Character
	1.3.12 Octal
	1.3.13 Hexadecimal
	1.4.1 List
	1.4.2 Not List
	1.4.3 Range
	1.5.1 Case Modifiers
	1.5.2 Repetition Modifiers
	1.6.1 Ignore Case
	1.6.2 Single Line
	1.6.3 Multiline
	1.6.4 Compile Once
	1.6.5 Substitution Operator
	1.7.1 Start of Line
	1.7.2 End of Line
	1.7.3 Word Boundary
	1.7.4 Non-word Boundary
	1.7.5 String Start

	Chapter 2: Using Regular Expressions in SAS
	2.1.1 Capture Buffer
	2.2.1 PRXPARSE
	2.2.2 PRXMATCH
	2.2.3 PRXCHANGE
	2.2.4 PRXPOSN
	2.2.5 PRXPAREN
	2.3.1 CALL PRXCHANGE
	2.3.2 CALL PRXPOSN
	2.3.3 CALL PRXSUBSTR
	2.3.4 CALL PRXNEXT
	2.3.5 CALL PRXDEBUG
	2.3.6 CALL PRXFREE
	2.4.1 Data Cleansing and Standardization
	2.4.2 Information Extraction
	2.4.3 Search and Replacement

	Chapter 3: Entity Resolution Analytics
	3.3.1 Entity Extraction
	3.3.2 Extract, Transform, and Load
	3.3.3 Entity Resolution
	3.3.4 Entity Network Mapping and Analysis
	3.3.5 Entity Management
	3.4.1 Establish Clear Goals
	3.4.2 Verify Proper Data Inventory
	3.4.3 Create SMART Objectives

	Chapter 4: Entity Extraction
	4.3.1 Webpage
	4.3.2 File System
	4.4.1 Social Security Number
	4.4.2 Phone Number
	4.4.3 Address
	4.4.4 Website
	4.4.5 Corporation Name

	Chapter 5: Extract, Transform, Load
	5.2.1 PROC CONTENTS
	5.2.2 PROC FREQ
	5.2.3 PROC MEANS
	5.4.1 Hexadecimal to Decimal
	5.4.2 Working with Dates
	5.6.1 Quantile Binning
	5.6.2 Bucket Binning

	Chapter 6: Entity Resolution
	6.1.1 Exact Matching
	6.1.2 Fuzzy Matching
	6.1.3 Error Handling
	6.2.1 INDEX=
	6.3.1 COMPGED and COMPLEV
	6.3.2 SOUNDEX
	6.3.3 Putting Things Together

	Chapter 7: Entity Network Mapping and Analysis
	7.2.1 Shared Entity Attributes
	7.2.2 Entity Interactions
	7.3.1 Articulation Points and Biconnected Components
	7.3.2 Minimum Spanning Trees
	7.3.3 Clique Detection
	7.3.4 Minimum Cut
	7.3.5 Shortest Paths

	Chapter 8: Entity Management
	Appendix A: Additional Resources
	A.2.1 Non-Printing Characters
	A.2.2 Printing Characters
	A.4.1 Random PII Generator
	A.4.2 Output

